
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 

Dynamic (General) Vehicle Routing Problem 
(DVRP) can be considered as a good example 
of a distribution context, because of the fact 
that intelligent manipulation of real-time 
information can distinguish between one 
company and another by superior on-time 
service. Problems of both generic vehicle 
routing (V. R. P.) and dynamic vehicle 
routing (DVRP) are identical. But in VRP all 
routing and demand information are certainly 
known prior the day of operation; whereas in 
DVRP part or all of the necessary 
information is available only at the day of 
operation. Significance of DVRP is 
crystallized by the variety of environments it 
can model. Additional assets are the 
transportation of elderly or physically 
handicapped and emergency services (e.g. 
police, fire and ambulance dispatching). 

The paper is organized as follows: Section 2 
gives the previous researches using meta-
heuristics. The mathematical formulation of 
the problem is in section 3. The proposed 
mutation and crossover operators are 
explained in section 4 and 5. The proposed 
algorithm is forwarded in section 6 and 
simulation and results in section 7. 
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2. Previous Studies Using 
Metaheuristics 

Braysy and Gendreau [1, 2] have prepared a 
comprehensive survey on the utilization of 
Meta-heuristics for vehicle routing problem 
with time windows (VRPTW). Examples are 
simulated Annealing, Genetic Algorithms, 
Ant Systems, and Tabu Search. Simulated 
Annealing helps to allow moves resulting in 
solutions of worse quality to keep away from 
locally optimal solutions [5]. 

Genetic Algorithms, Ant Systems and Tabu 
Search are memory based methods 
considered as Adaptive Memory 
Programming (AMP) Methods [13]. 
Examples of (AMP) Methods are the Genetic 
Algorithms for the dynamic pickup and drop 
problem (PDP) presented by Pankratz [8] and 
an Ant System for the dynamic VRP by 
Montemanni [7]. Tabu Search Algorithms for 
the dynamic PDP by Mitrovic - Minic [6]. 
Polacek [9] presents an algorithm for the 
multi-depot (VRPTW) as an example of VNS 
algorithms (Variable Neighborhood Search 
Algorithm) for vehicle routing problem. Size 
of the design of a neighborhood search 
approach is tackled by Schrimpf [11] and 
Ropke and Pisinger [10] as they presented 

Studies in Informatics and Control, Vol. 18, No. 2, June 2009 159



similar LNS (Large Neighborhood Search) 
Algorithms utilizing fast insertion heuristics 
for the re-insertion of transportation requests. 
The LNS approach is very well suited for rich 
vehicle routing problems in which data may 
change dynamically (Goel and Gruhn [3]). 

3. Mathematical Formulation of 
the Problem 

The Contribution of each vehicle to the 
objective function is  
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The first term represents the accumulated 
revenue of served orders, the second term 
represents the accumulated costs for vehicle 
movements. [3]  

The General Vehicle Routing Problem 
(GVRP) is maximize 
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The objective function (1) represents the 
accumulated revenue of all served orders 
reduced by the costs for all arcs used in the 
solution. Equation (2) represents the flow 
conservation constraints which impose that 
each vehicle reaching a node  also 
departs from the node. Constraints (3) and (4) 
impose that each node is visited at most once. 
Constraints (5) to (7), and (8) and (9) 
represent capacity and time window 
constraints (10) and (11) are the precedence 
constraints imposed on the sequence in which 
nodes associated to vehicles and orders are 
visited. Equation (12) imposes that each 
vehicle visits all nodes associated to it. 
Equation (13) represents the grouping 
constraints which imposes that all locations 

Nn ∈
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belonging to an order are visited by the same 
vehicle. Inequality (14) represents the 
compatibility constraints which impose the 
orders are only assigned to vehicle capable of 
serving the order. Eventually, Constraints 
(15) impose that the values of and  
are binary. 

v
mnx v

ny

The GVRP is a generalization of the classical 
models described in the previous sections. In 
contrast to the classical models, not all 
transportation requests must be served in the 
GVRP. The requirements that all 
transportation requests are served, however, 
can be fulfilled by assigning sufficiently large 
revenue  to each transportation request 

. This guarantees that any solution in 
which all transportation requests are served 
has a higher objective function value than 
every solution in which at least one 
transportation request is not served.  

op
Oo ∈

4. Mutation Operators 

4.1 Mutation Type 1 

The first mutation operator is the basis of all 
insertion methods and inserts all locations 
belonging to an unscheduled order into the 
tour of a vehicle, subject to compatibility and 
precedence constraints imposed on the 
GVRP.  

 

 

 

 

 

 

 

 

 
Figure 1. First Mutation Operator 

Figure 1 illustrates the insertion of an 
unscheduled order to the tour of a vehicle.  

4.2 Mutation Type 2 

The second mutation operator is the inverse 
of the first operator and removes all locations 
belonging to a scheduled order from a tour. 

 

Tour  

Tour 

Mutation operator 

Figure 2. Second Mutation Operator  
 

Figure 2 illustrates the removal of a 
transportation request from the tour of a 
vehicle. 

4.3 Mutation Type 3 

The third mutation operator rearranges 
locations belonging to one order to other 
positions within the same tour, subject to 
precedence constraints imposed on the 
GVRP. 

 

Tour 

Tour 

Mutation operator 3 

Figure 3. Third Mutation Operator 

Tour  

Tour  

 

Mutation operator 1 

The third operator is illustrated in figure 3 
and can be interpreted as combination of the 
first and second mutation operators. 

5. Crossover Operators 

5.1 Crossover Type 1 

The first crossover operator moves all 
locations belonging to an order from one tour 
to another, subject to compatibility and 
precedence constraints imposed on the 
GVRP. 
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This operator is illustrated in figure 4. 

5.2 Crossover Type 2 

The second crossover operator is a combined 
first operator which shifts the locations 
belonging to two orders in different tours to 
the respective other tour. Compatibility and 
precedence constraints imposed on the GVRP 
are taken into account by this operator. 

 
Figure 5. Second Crossover Operator 

This operator is illustrated in figure 5. 

 

6. Adapted Evolution Strategy 

The ),1( λ evolution strategy [4] is adopted 
where there is one initial parent and 4=λ  
offspring are produced. The initial parent is 
not included in the selection process rather 
the parent of the following generation should 
be selected only from λ  offspring. The 
algorithm of this strategy is formulated as 
follows: 

Step 0: (Initialization) 

Tour 2 

Figure 4. First Crossover Operator  

Crossover operator 1

Tour 1 

Tour 2 

Tour 1 

An initial population of one parent, is 
characterized by its genotype of n genes (n 
tours) which unambiguously determine the 
vitality or fitness for survival. 

Step 1: (Variation) 

The parent produces 4=λ  offspring so that a 
total of λ new individuals are available by 
the application of: 

Step 1-a: 

Apply mutation operators with equal 
probabilities (on the initial parent)  

Step 1-b:  

 Apply crossover operators with equal 
probabilities (on produced offspring) 

The genotypes of the descendents differ from 
the initial parent. The number of genes, 
however, remains to be n in the following, 
i.e., neither gene duplicate nor gene deletion 
occurs.  

Step 2: (Filtering) 

Only one best of the λ  offspring becomes 
the parent of the following generation. 

Tour 2

 

Crossover operator 2

Tour 1

Tour 2

Tour 1

7. Simulation and Results 

First, the number of vehicles V  (the no. of 
tours), the number of orders known at the 
beginning of the simulation 0O , the number 
of orders that arrive dynamically at timestep t 

tO  and the length of the time windows ( in 
hours) τ  are given. The distance between 
sources and destinations are also given. 
Travel distances are based in the direct 
distances. In order to consider the average 
deviation occurring in transport, they are 
multiplied by 1.4 travel costs are proportional 
to travel distances. The revenue is gained by 
the completion of an order. 

Computational experiments were performed 
on a personal computer with core (2) Duo 
2.33 GHz processor and 4 GB of RAM. In 
the simulation of 12 hours of dynamic 
planning, the algorithm was allowed only 1 
minute of computing time per timestep 
(representing one hour in the simulation 
scenario). At each timestep all previously 
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unscheduled transportation requests and new 
transportation requests are inserted to the 
tours by the operators discussed. The capacity 
K for each vehicle is constant. 

To measure the performance of this on-line 
algorithm, “competitive analysis” introduced 
by sleator and Trajan [12] is used. The 
competitive ratio cr is defined as follows: 

)(
)(sup * IZ

IZcr
I

=  

Where  is the cost of solution by the 
proposed algorithm for instance 

)( IZ
I  and 

 is the optimal cost found by an ideal 
offline algorithm which had to access the 
entire instance 

)(* IZ

I  including dynamic requests 
beforehand. The competitive analysis 
framework offers a measure for evaluating 
the performance of a certain on-line routing 
policy based on the worst- case ratio between 
this policy and optimal offline policy. In 
other words, this ratio quantifies the loss of 
cost-efficiency stemming from the lack of 
full information. The following table gives 
the results for some instances generated to 
test this proposed method. 

Table 1. Simulation Results  

 

8. Conclusion 

An adapted Evolution Strategy is forwarded 
with operators specially designed to solve the 
real-time dynamic (general) vehicle routing 
problem. Not all of the orders were known 
prior to the day of distribution. This incurred 
the intelligent dynamic planning and re-
planning of routes (tours). Several test 
problems were generated and solved both by 
an offline suitable algorithm and the 
proposed real-time algorithm giving an 
average of 65% competitive ratio.  
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