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1. Introduction 

Starting with an initial point 0x  every 

algorithm for solving the general continuous 
nonlinear optimization problem 

min ( )f x  

subject to 

( ) 0h x  , 

where : nf R R  and : n mh R R , can 
be considered as a generator of a sequence of 

points  kx  which satisfy the constraints of 

the problem in such a way 

that *( ) ( )kf x f x , where *x  is a local 

solution of the problem. The line search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 methods are characterized by two main 
actions. At the iteration k  a search direction 

kd  is generated and then a suitable point 

k k kx d  is computed by a step length k  

so that a reduction of the minimizing function 
or of a merit function (a penalty function) is 
obtained. The main action in any 
optimization algorithm is the design of the 
generator of directions kd . The step length is 

computed using the standard procedures of 
Armijo or of Wolfe in order to reduce the 
values of the function f or of a merit function. 
Plenty of nonlinear optimization algorithms 
are known and there are a lot of papers and 
books presenting them from the viewpoint of 
theoretical and computational aspects. 

To solve the above problem, or a more 
general version of it with inequality 
constraints, each optimization algorithm must 
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“understand” it. There is a large diversity of 
optimization algorithms. Many of them solve 
a constrained optimization problem by 
converting it to a sequence of unconstrained 
problems via Lagrangian multipliers or via 
penalty or barrier functions. Another class of 
methods solves nonlinear programming 
problems by moving from a feasible point to 
a new improved one along a feasible 
direction. However, every optimization 
algorithm, in one way or another, is based on 
the Karush-Kuhn-Tucker optimality 
conditions. Generally, these conditions are 
expressed as a nonlinear algebraic system. In 
the framework of the Newton machine this 
nonlinear system is reduced to a sequence of 
linear algebraic systems, which is equivalent 
to a sequence of quadratic programming 
problems. The quadratic internal model 
principle in mathematical programming states 
that “an optimization algorithm must 
encapsulate implicitly or explicitly a 
quadratic internal model of the problem to 
be solved”. Every optimization algorithm 
uses its own quadratic internal model which 
takes into account the main ingredients 
defining the algorithm. This is the minimal 
part that must be encapsulated by the 
algorithm in order to solve the problem [1]. 

The philosophical motivation behind the 
quadratic internal model principle in 
mathematical programming is as follows. As 
known, the mathematical model of a physical 
reality is based on the conservation laws. In 
physics, a conservation law states that a 
particular measurable property of an isolated 
system does not change while the system 
evolves. Any particular conservation law is a 
mathematical identity to certain symmetry of 
a physical system. For systems which obey 
the principle of the least action and therefore 
have a Lagrangian (see [8], [6]) the Noether’s 
theorem [9] expresses the equivalence 
between conservation laws and the invariance 
of physical laws with respect to certain 
transformations called symmetries. The 
behavior of a physical system can often be 
expressed in terms of a specific function of 
the system variables, called Lagrangian. The 
system follows a path through the phase 
space such that the integral of the Lagrangian 
is stationary. For a system with Lagrangian 
L of the variables q  and /q dq dt  the 
equation of motion is 

.
d L L

dt q q

  
   

 

From this equation Noether specified that if 
the quantity on the right hand term is zero 
(meaning that L  is symmetrical over q ), then 
the rate of change of the quantity in 
parentheses on the left side is also zero, i.e. it 
is a conserved quantity. Generally, any 
symmetry of the Lagrangian function 
corresponds to a conserved quantity, and vice 
versa. It seems that at the fundamentals of our 
cognoscible universe lie the concept of 
symmetry. But, mathematically symmetries 
are expressed by quadratic forms – a 
homogeneous polynomial of degree two in a 
number of variables. It is worth saying that 
the quadratic forms are central objects in 
mathematics and they are ubiquitous in 
physics and chemistry. Quadratic forms occur 
in number theory, Riemannian geometry, Lie 
theory and they always express energy of a 

system, particularly in relation to the 2L  
norm, which leads us to the use of the 
concept of Hilbert spaces [13]. Therefore, it 
is quite natural to see that at the heart of 
every mathematical model is a quadratic 
form. This quadratic form must be replicated 
in an optimization algorithm in order to get a 
solution of the corresponding problem. This 
is the quadratic internal model principle in 
mathematical optimization. 

The structure of this paper is as follows. In 
section 2 following the synthesis of Yuan 
[16] we present some ingredients showing 
that, in the context of Karush-Kuhn-Tucker 
theory, every optimization algorithm for 
solving general equality constrained 
optimization problems reduce to a nonlinear 
algebraic system. Using the Newton machine, 
this nonlinear system reduces further to a 
sequence of linear algebraic systems, known 
as Newton systems. We show that these 
Newton systems have the same structure, 
however being different for specific 
optimization methods. In section 3 the 
quadratic internal model principle for 
nonlinear optimization is presented, showing 
that at the heart of every optimization 
algorithm there is a quadratic model 
(quadratic programming problem) imbedding 
the main ingredients of the algorithm [1]. 
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2. Linear Systems Used in Algo-
rithms for Solving Constrained 
Optimization Problems 

In this section, following the synthesis given 
by Yuan [16], we consider a number of 
methods for solving constrained optimization 
problems and show that the main ingredient 
into the corresponding algorithms of these 
methods is the solution of a linear algebraic 
system of equations with a special structure.  

2.1 Newton method for nonlinear 
equality constraints 

Let us consider the equality constrained problem: 

min ( )f x  (1a) 

( ) 0,h x   (1b) 

where : nf R R  and : n mh R R  are 
smooth nonlinear functions. For this problem, 

a point nx R  is a regular point of the 
constraints if the vectors ( ),ih x  

1, ,i m   are linear independent. From the 
Karush-Kuhn-Tucker theory we know that at 

a local solution *x  of (1) which is a regular 
point there exists the Lagrange multipliers 

i , 1, , ,i m  such that 

* * *( ) ( ) 0Tf x h x    , (2a) 

*( ) 0.h x   (2b) 

To have * unique in (2), *x  must be a 
regular point of the problem. Therefore, the 
algorithms that solve the first order 
optimality conditions (2) require the 
assumption that all iterates kx  are regular 

points of the problem. Denote: 

( ) ( )
( , )

( )

Tf x h x
F x

h x




  
  
 

 (3) 

For solving the system ( , ) 0F x   , let kx  

be the current iterate point and k  be the 
corresponding Lagrange multiplier. The 

Lagrange-Newton step for the above 
nonlinear system is 

( , ) ( )

( )

( ) ( )

( )

k T
kk k

kk

T k
k k

k

dW x h x

h x

f x h x

h x






   
      

  
   

 (4) 

where 

2 2

1

( , ) ( ) ( )
m

k k
k k i i k

i

W x f x h x 


     (5) 

is the Hessian matrix of the Lagrange 

function ( , ) ( ) ( ).TL x f x h x    Observe 

that the system (3) is linear in .  Therefore, 

the Newton method gives *  in one iteration. 

In fact, taking *
kx x  in (4) we have that 

*k   when   *.kx x  This behavior of 

the Newton method for solving the system 
( , ) 0F x    is very important because to get 

the global convergence in ( , )x   variables 
we can consider a line search strategy based 
only on the x  variables. Of course, since in 
(3) we need h  in order to evaluate ,F  it 

seems we can substitute ( , )k
kW x  in (4) by 

its quasi-Newton approximation. Observe 

that if kx  is a regular point and ( , )k
kW x   

or its quasi-Newton approximation is positive 
definite, then it can be proved that the 
solution of (4) is unique. 

2.2 Sequential quadratic programming 

Another method for solving the equality 
constrained problem (1) is the sequential 
quadratic programming method proposed by 
Wilson [15] and interpreted by Beale [2]. In 
this method the search directions are 
computed by minimizing a quadratic 
approximation of the objective function 

( )f x  subject to linear approximation of the 

constraints. For (1), in the current point kx  

the quadratic programming approximation 
has the following form 
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1
min ( ) ,

2
T T
k k k k kd B d f x d  (6a) 

( ) ( ) 0k k kh x h x d  , (6b)  

where n
kd R  is the unknown and kB  is a 

quasi-Newton approximation of the Hessian 
2 ( )kf x  [10]. The global convergence of 

this method is given by Han [7]. Powell [11] 
proved its superliniar convergence. Solving 
this quadratic approximation of the problem 
we get kd  with which another iterate 

1k k kx x d    can be computed. Again from 

the Karush-Kuhn-Tucker theory a solution 

kd  of this problem and its corresponding 

Lagrange multiplier k  consist a saddle point 
of the Lagrange function 

1
( , ) ( )

2

( ) ( )

T T
k k

T T
k k

L d d B d f x d

h x h x d



 

 

  
 (7) 

Namely, ( , )k
kd   is a solution of the 

following linear algebraic system of 
equations 

( )

( )

( )

( )

T
k k

k

k

k

dB h x

h x

f x

h x


   
      

 
   

 (8) 

Therefore, we can see that ignoring the right-
hand-side term, the linear system (4) obtained 
from the Lagrange-Newton method is the 
same as that of the sequential quadratic 
programming method (8) if the exact Hessian 
matrix ( , )W x  of the Lagrange function 

( , ) ( ) ( )TL x f x h x    of the original 
problem, or its quasi-Newton approximation, 
is the same as the quasi-Newton 

approximation of the Hessian 2 ( )kf x  

given by matrix kB . 

2.3 Augmented Lagrange function 

The augmented Lagrange function is 

2

2

( , , ) ( ) ( )

1
( )

2

TL x f x h x

h x

  



 


 (9) 

where mR  is the Lagrange multiplier and 
0   is the penalty parameter. The 

stationary condition of augmented Lagrange 
function is 

( ) ( ) ( ) ( ) 0T Tf x h x h x h x       (10) 

Now, applying the Newton method in the 

current point ( , )k
kx   we get the following 

linear system 

2 2

1

1

2

1

( ) ( )

( ) ( )

( ) ( )

m
k

k i i k
i

m
T

i k i k
i

m

i k i k
i

f x h x

h x h x

h x h x d












 


  


  









 

( ) ( )

( ) ( )

T k
k k

T
k k

f x h x

h x h x





  
  

 (11) 

Let us define [16] 

( ) ( ) ,k kh x d h x      

where mR . With this we have 

 

1

( ) ( )

( ) ( )

( ) ( )

m
T

i k i k
i

T
k k

T
k k

h x h x d

h x h x d

h x h x





 



 

  

  


 

i.e. the Newton system (11) becomes 

( , ( )) ( )

( ) ( )

k T
k k k

T k
k k

W x h x d h x

f x h x

  



  

    
 

Therefore (11) can be rewritten as 
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( , ( ) ( )

1
( )

( ) ( )

( )

k T
k k k

k

T k
k k

k

W x h x h x d

h x I

f x h x

h x

 





     
       

  
   

 

 (12) 

2.4 Inverse barrier function 

For inequality constrained problems the 
inverse barrier function is 

1

1 1
( )

( )

m

i i

f x
h x 

   (13) 

The necessary condition for minimization of 
the inverse barrier function is 

2
1

1 1
( ) ( ) 0

( )

m

i
i i

f x h x
h x 

     (14) 

Let us define the following diagonal matrix 

1( ) ( ( ), , ( ))mD x diag h x h x   

Therefore, (14) can be written as 

31
( ) ( ) ( ) ( ) 0Tf x h x D x h x


     

In the current point kx  the Newton system 

for (14) is 

2 2
2

1

3

3

1 1
( ) ( )

( )

2
( ) ( ) ( )

1
( ) ( ) ( ) ( )

m

k i k
i i k

T
k k k

T
k k k k

f x h x
h x

h x D x h x d

f x h x D x h x














  


   

  



 (15) 

As in Yuan [16] let as define 

 31
( ) 2 ( ) ( )k k kD x h x d h x 


     (16) 

After some simple algebra, the above system 
(15) can be written as 

2

3

1
( , ( ) ) ( )

( ) ( )
2

( )

1
( )

2

T
k k k

k k

k

k

W x D x h x
d

h x D x

f x

h x




 

 



 
   
   

  
  

 
 
 
 

 (17) 

2.5 Log-barrier function 

The log-barrier function for problem (1) is 

1

1
( ) log( ( ))

m

i
i

f x h x
 

   (18) 

Similarly as in the case of the inverse barrier 
function the necessary condition for 
minimum is 

1

1 1
( ) ( ) 0

( )

m

i
i i

f x h x
h x 

     (19) 

which can be rewritten as 

21
( ) ( ) ( ) ( ) 0Tf x h x D x h x


     (20) 

The Newton system associated to (19) is 

2 2

1

2

2

1 1
( ) ( )

( )

1
( ) ( ) ( )

1
( ) ( ) ( ) ( )

m

k i k
i i k

T
k k k

T
k k k k

f x h x
h x

h x D x h x d

f x h x D x h x













  

   

  



 (21) 

As in Yuan [16] let us define 

 21
( ) ( ) ( )k k kD x h x d h x 


     (22) 

Since 

2

2

1
( ) ( ) ( )

1
( ) ( ) ( ) ( )

T
k k k

T T
k k k k

h x D x h x d

h x h x D x h x










  

   
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it follows that the above system is reduced to 

2

1
( , ( )) ( )

( ) ( )

( )

( )

T
k k k

k k

k

k

W x D x h x d

h x D x

f x

h x






 

 



 
  
      

 
  
 

 (23) 

2.6 Log-barrier function for   
inequality constraints 

For the problem with inequality constraints 

min ( )f x  (24a) 

( ) 0,c x   (24b) 

where : n pc R R , the best known merit 
function is the logarithmic barrier function 

1

( ) log( ( )),
p

i
i

f x c x


   

where   is a positive scalar barrier 
parameter. We use the technique as in the 
case of log-barrier function for equality 
constraints. The first order optimality 
conditions are 

( ) ( ) 0,Tf x c x     

( ) 0,C x    

( ) 0c x   and 0,   

where   are the Lagrange multipliers and 

1( ) ( ( ), , ( ))pC x diag c x c x  . Now consider 

the perturbed problem 

( ) ( ) 0,Tf x c x     

( ) ,C x e   

( ) 0c x   and 0,   

where 0.   As we know, the primal-dual 
path following methods aim to track solutions 
to the system 

( ) ( ) 0Tf x c x     (25a) 

( ) 0C x e    (25b) 

as 0   while maintaining the constraints 

( ) 0c x   and 0  . For the nonlinear system 

(25) the Newton correction ( , )d   satisfies 

( , ) ( )
( )

( ) ( )

( ) ( )

( )

T
k k

i k

k
k k

T k
k k

k
k

W x c x d
c x

c x C x

f x c x

C x e






 

            
  

   

 

where 1( , , )k k k
pdiag      and 

[1, ,1] pe R  . 

2.7 Interior point algorithm for 
inequality constraints 

Consider the problem (24) with inequality 
constraints. After adding the nonnegative 
slack variables 1( , , )pv v v   we obtain the 

equivalent formulation of the problem (24) as 

min ( )f x  (26a) 

( ) 0,c x v   0v   (26b) 

The interior-point method introduces the 
slacks in a barrier term, thus obtaining the 
following problem 

1

min ( ) log
p

i
i

f x v


   

( ) 0,c x v   

where   is the barrier parameter. The 
solution of this problem satisfies the 
following primal-dual system [3] 

( ) ( ) 0,Tf x c x     (27a) 

0,e V e     (27b) 

( ) 0,c x v   (27c) 
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where pR  is the vector of Lagrange 
multipliers,   and V are diagonal matrices 
with elements i  and iv  respectively and 

[1, ,1] .pe R   Appling the Newton 
method to the system (27) we get the 
following linear system for the Newton 
directions 

1

1 1

( , ) ( )
( )

( )

( ) ( )

( ) ( )

T
k k

i k

k

T k
k k

k k

W x c x d
c x

c x V

f x c x

v c x V V e






 



 

    
       

  
      

 (28) 

2.8 Path-following method in         
linear programming 

For a couple of linear programming problems 

max Tc x  min Tb y  

,Ax w b   ,TA y z c   

, 0,x w   , 0,y z   

(29)

where nx R  and my R , the first order 
optimality conditions can be expressed as 

,

,

,

,

T

Ax w b

A y z c

XZe e

YWe e




 

 



 (30) 

where   is the barrier parameter. Observe 

that this is a system with 2 2n m  equations 
in 2 2n m  unknowns. The only nonlinear 
expressions in these equations are simple 
multiplications like i ix z  and .i iy w  The 

presence of these extremely simple 
nonlinearities makes the subject of linear 
programming nontrivial. Now, if a primal 
feasible set has a nonempty interior and is 
bounded, then for each 0   there exists a 

unique solution ( , , , )x w y z     to (30). The 

path  ( , , , ) : 0x w y z       is called the 

primal-dual central path. Our aim is to solve 

(30), i.e. to find ( , , , )x w y z     such that 

the new point ( , , , )x x w w y y z z         
lies on the primal-dual central path at the 
current point ( , , , )x w y z    . The Newton 

method, after dropping the nonlinear terms 
leads to the following system 

1

1

1

1

T

zXZ I

yA I

xI A

wI YW

Z e x

W e y















    
      
   
       

  
 
 
 
 

  

 (31) 

where b Ax w     and Tc A y z     
are the primal infeasibility and the dual 
infeasibility , respectively. This is known as 
the Karush-Kuhn-Tucker system (KKT 
system). Solving this system subject to z  
and w  as 

1( )z X e XZe Z x      

1( ),w Y e YWe W y      

then (31) reduces to 

1

1

1

1

T

T

yY W A

xA X Z

b Ax Y e

c A y X e












   
     

  
    

 (32) 

which is a symmetric system known as the 
reduced KKT system [14] 

2.9 Affine scaling interior point method 
for linear inequality constraints 

For the problem 

min ( )f x , (33) 

,Ax b  
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where nx R  and mb R  Coleman and Li 
[5] presented a trust region and affine scaling 
interior point method where ignoring the 
primal and the dual feasibility constraints as 
usual in interior point methods the first order 
necessary optimality conditions can be 
expressed as 

( ) 0,Tf x A     (34a) 

( ) 0.diag Ax b    (34b) 

Denoting ( ) ( )D x diag Ax b   and 

( )k kD D x , then the Newton step ( , )d   

for (34) satisfies 

2 ( )

( )

( )
.

T
k

k k

T
k k

k k

df x A

diag A D

f x A

D






    
   

  
  

  
 

 (35) 

Far away from the solution the Newton step 
d  may not be a descent direction for the 
function ( ).f x  Therefore, a globalization 

consists of replacing ( )kdiag   by 

( ).k kdiag    With this the modified 

Newton step satisfy 

2 ( )

( )
.

T
k

k k

T
k k

k k

df x A

A D

f x A

D






    
      

  
  
 

 (36) 

But from (36) 1
k k kD Ad      . 

Therefore, the modified Newton step d  is a 
minimizer of the augmented quadratic  

2 11
( ( ) )

2

( )

T T
k k k

T
k

d f x A D A d

f x d

  


 (37) 

which can be considered as a quadratic 
convex regularization of (33). Thus a trust 
region subproblem can be defined as 

2 11
min ( ( ) )

2

( )

n

T T
k k k

d R

T
k

d f x A D A d

f x d




  


 

1/ 2; .k kd D Ad    

Considering 0   the Lagrange multiplier of 
the above subproblem we get the following 
necessary optimality conditions 

2 1

1

( ) ( ( ) )

( ) 0,

T
k k k k

T
k

f x f x A D A d

I A D A d





    

  
 (38a) 

1/ 2( ; ) 0k kd D Ad     (38b) 

Now, defining  

1( )k k kD Ad Ad         (39) 

(38a) can be rewritten as 

2 ( )

( )
.

T
k

k k

T
k k

k k

df x I A

A A D

f x A

D







     
       

  
  
 

 

The extension to nonlinear inequality 
constrains was given by Yuan [16] 

2.10 Simple bounded optimization 

For the simple bounded problem 

 min ( ) :f x l x u   (40) 

where , nl u R , the interior point method 

introduces the slack variables , nv w R , 

0,v  0,w   in a barrier term, thus 
obtaining the following problem 

1 1

min ( ) log log
n n

i i
i i

f x w v 
 

    (41a) 

,x w l   (41b) 

,x v u   (41c) 
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where   is the barrier parameter. Using the 
Lagrangean 

1

1

( , , , , ) ( ) log

log ( )

( )

n

i
i

n
T

i
i

T

L x w v p q f x w

v p x w l

q x v u









  

    

  



  

where , np q R  are the Lagrange 
multipliers, then the first order optimality 
conditions are 

( ) 0,f x p q     (42a) 

( ) 0,X L Pe e    (42b) 

( ) 0.U X Qe e    (42c) 

After some algebra, the Newton method leads 
to the following linear symmetric system 

2

1
1

1
2

1

1

( )

( )

( )

( )

( )

( )

k

k k

k k

k k k

k k

k k

f x I I d

I P X L

I Q U X

f x p q

X L e P e

U X e Q e

















 

   

 

  

   

  

   
   
   
     
 
 
 
  

 (43) 

2.11 Celis-Dennis-Tapia (CDT) method 

For equality constrained optimization the 
subproblem corresponding to the CDT 
method is 

1
min

2
T T
k kg d d B d  

subject to (44) 

2 2( ) ( ) ,T
k kh x h x d    

,kd    

where 2  is a parameter between 

min ( ) ( )
k

T
k kd h x h x d   and ( )kh x , 

(see [4], [12]). The solution kd  of the CDT 

subproblem is obtained through the 
optimality conditions for (44) as: 

( ( )

( )) 0,

T
k k k k k k

k

B d g d h x d

h x

    

 
 (45a) 

( ) 0,k kd     (45b) 

 22 ( ) ( ) 0,T
k kh x h x d      (45c) 

where 0   and 0   are the Lagrange 
multipliers. Considering  

( ( ) ( ))T
k kh x d h x     , 

the following system is obtained 

( )

( )

( )
.

k k
T

k

k

k

B I h x d

h x I

g

h x






 

  



   
     

 
  
 

 (46) 

If 0,   than (46) can be rewritten as 

( )

1
( )

.
( )

k k

T
k

k

k

B I h x
d

h x I

g

h x






  
         

 
  
 

 (47) 

3.  Quadratic Internal           
Model Principle 

Therefore, using the Newton machine for 
every method for solving a continuous 
constrained optimization problem a linear 
algebraic system can be associated in a most 
natural way. All the linear systems 
corresponding to different methods are 
similar in form and can be expressed as: 

1

2

( , ) ( )

( )

( )
,

( )

k T
k k k

k k

k

k

dW x T h x

h x S

f x

h x







    
      

  
   

 (48) 
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where 

2 2

1

( , ) ( ) ( )
m

k k
k k i i k

i

W x f x h x 


     is 

the Hessian matrix of the Lagrange function 

( , ) ( ) ( ),TL x f x h x    n n
kT R   is a 

symmetric matrix, m m
kS R   is a null or a 

diagonal matrix whose elements are 

nonpositive, 1
nR   and 2

mR   are two 

vectors. In (48) d  is the searching direction 
and   is an auxiliary vector which for some 
methods could be the Lagrange multiplier. In 
the following we shall consider two cases. 

1) Let us assume that 0.kS   Therefore, 

from (48) we get   

1

2

( , ) ( )

( ) 0

( )
,

( )

k T
k k k

k

k

k

dW x T h x

h x

f x

h x







    
      

  
   

 (49) 

It is easy to see that the system (49) 
corresponds to the Newton method for 
optimization with equality nonlinear 
constraints or to the sequential quadratic 
programming method. The augmented system 
(49) can be considered as the necessary 
condition for d  to be a solution of the 
following quadratic programming problem 

1

1
min ( ( , ) )

2

( ( ) )

T k
k k

T
k

d W x T d

f x d







  
 

subject to (50) 

2( ) ( ( ) ) 0.k kh x d h x      

It is well known that if ( ( , ) )k
k kW x T   is 

positive definite on the null space of ( )kh x  

and ( )kh x  is a full-rank matrix, then the 

quadratic problem (50) has a unique global 
solution .d  This solution can be obtained by 
solving the augmented system (49), where d  
is the solution of the problem and   is the 
Lagrange multiplier associated to the equality 
constraint. The problem (50) is the quadratic 

internal model of problem (1) associated to 
the methods involving the linear system (49) 
(with 0kS  ).  

For example, the quadratic internal model of 
the problem (1) corresponding to the Newton 
method is: 

1
min ( , ) ( ( )

2

( ) )

T k
k k

k T
k

d W x d f x

h x d





 


 

subject to (51) 

( ) ( ) 0.k kh x d h x    

2) Let us suppose that 0.kS   Normally kS  

is a diagonal matrix, whose diagonal 
elements are all negative. In this case it is 
easy to see that the system (48) corresponds 
to the following methods: the augmented 
Lagrange function, the inverse barrier 
function, the log-barrier function, the interior 
point algorithms, the path-following methods, 
the affine scaling interior point methods etc. 
From (48) we get 

1 1 1
2( ) ( ) .k k k k kS h x d S h x S         (52) 

Therefore, using (52) in (48) it follows that 

1

1 1
2

1

( , ) ( ) ( )

( ) ( ) ( )

( ) .

k T
k k k k k

T T
k k k k k

k

W x T h x S h x d

h x S h x h x S

f x









 

  

  

 

  
 (53) 

But, (53) is equivalent with the following 
quadratic problem 

1

1

1
2 1

1
min ( , )

2

( ) ( )

( ) ( )

( ) ( )

T k
k k

T
k k k

T
k k k

TT
k k k

d W x T

h x S h x d

h x S h x

h x S f x d



 







 

  
 

   

 (54) 

which is called the quadratic internal model of 
problem (1) associated to the methods 
involving the linear system (48) (with 0kS  ). 
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Therefore, an optimization algorithm for 
solving (1) must encapsulate a procedure for 
solving (in an iterative way) the quadratic 
internal model (54), which represents the 
essence of the problem from the view point of 
the algorithm involving (48).  

Observe that the quadratic internal model of 
(1), as expressed by (54), is dependent on the 
algorithm we consider for solving the 
problem (1). In particular, for example, the 
quadratic internal model of problem (1) 
corresponding to the augmented Lagrange 
function method, in which the augmented 
Lagrange function is 

2

2

( , , ) ( ) ( )

1
( ) ,

2

TL x f x h x

h x

  



 


 (55) 

where mR  is the Lagrange multiplier and 
0   is the penalty parameter, is: 

1
min ( ( , ( ))

2

( ) ( )) ( ( )

( ) ( ( ))) .

T k
k k

T
k k k

T k
k k

d W x h x

h x h x d f x

h x h x d





 

    

 

 (56) 

In this case mR  is given by 

( ) ( ).k kh x d h x      

It is worth saying that for the unconstrained 
problem ( 0m  ) the Newton step can be 
obtained by solving the following quadratic 
problem 

21
min ( ) ( )

2
T T

k kd f x d f x d   (57) 

which is the quadratic internal model of the 
problem min ( )f x  corresponding to the 
Newton method. Of course, the Newton step 

2 1( ( )) ( )k kd f x f x     is obtained by 

solving the linear system 
2( ( )) ( ),k kf x d f x    but as we know, it 

comes from the quadratic problem (57). 
Similarly, we can say that for the 
unconstrained problem the quasi-Newton step 
can be obtained by solving the following 
quadratic problem 

1
min ( )

2
T T

k kd B d f x d  (58) 

which is the quadratic internal model of the 
problem min ( )f x  corresponding to the 

quasi-Newton method, where kB  is a positive 

definite matrix satisfying the quasi-Newton 
equation 1 1( ) ( ) ( ).k k k k kB x x f x f x      

4. Conclusion 

To solve a mathematical programming 
problem an algorithm must encapsulate in an 
implicitly or explicitly manner a quadratic 
internal model of the problem. This is the 
quadratic internal model principle in 
mathematical programming. This quadratic 
internal model reflects the ingredients of the 
algorithm and represents its essence. The 
philosophical support of this principle is 
coming from the Noether Theorem which 
expresses the equivalence between the 
conservation laws and symmetries which can 
be represented by quadratic forms. These 
quadratic forms are the fundamentals of 
every line search optimization algorithm. 
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