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1. Introduction 

Normal graphs form a superclass of perfect 
graphs and can be considered as closure of 
perfect graphs by means of co-normal 
products [9] and graph entropy [8]. Perfect 
graphs have been characterized as those 
without odd holes and antiholes as induced 
subgraphs (Strong Perfect Graph Theorem, 
[5]). Korner and de Simone [6] observed that 

C5,C7, 7C  are minimal, not normal graphs. As 
a generalization of the Strong Perfect Graph 
Theorem, Korner and de Simone conjectured 

that every {C5,C7, 7C }-free graph is normal 
(Normal Graph Conjecture, [11]). Wagler 
[15] proved the conjecture for the class of 
circulant graphs.  

The entropy [10] of a graph is a functional 
depending both one the graph itself and on a 
probability distribution on its vertex set. 

In [4] we find a recent survey of results on 
combinatorial optimization problems in 
which the objective function is the entropy of 
a discrete distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In [8], the authors prove that a graphs is 
perfect if and only if it “splits graph entropy”. 
Using this derive the following strengthening 
of the normality of perfect graphs: 

Let G be a perfect graph. Then G contains a 
family A of independent sets and a family B 
of cliques with the following properties: 

i)   |A|+|B|=k+1; 

ii)  the sets in A (B) cover all vertices; 

iii) the incidence vectors of sets in A (B) are 
linearly independent; 

iv) every AA  intersects every BB. 

The class of perfect graphs is important 
because many problems of interest in practice 
but intractable in general can be solved 
efficiently when restricted to the class of 
perfect graphs [6]. 

Partitionable graphs contain all the potential 
counterexemples to Berge’s famous Strong 
Perfect Graph Conjecture ([3]) which was 
proved by Chudnovski, Robertson, Seymour, 
and Thomas in [5]. Partitionable graphs ([7]) 
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are one of the central objects in the theory of 
perfect graphs due to the following theorem 
of Lovasz: A graph is perfect if and only if 
(H)(H)n(H) for every induced subgraph 
H of G. 

In this paper we find a class of partitionable 
graphs that are not perfect, but are normal. 
We prove Normal Graph Conjecture for the 
class of O-graphs and give a recognition 
algorithm for O-graphs.  

Throughout this paper, G=(V,E) is a simple 
(i.e. finite, undirected, without loops and 

multiple edges) graph [2]. Let G  denote the 
complement graph of G. For UV let G(U) 
denote the subgraph of G induced by U. By 
G-X we mean the graph G(V-X), whenever 
XV, but we often denote it simply by G-v 
( V), when there is no ambiguity. If vV 
is a vertex in G, the neighborhood NG() 
denotes the vertices of G-v that are adjacent 
to v. We write N(v) when the graph G appears 
clearly from the context. The neighborhood 
of the vertex v in the complement of the 

graph G is denoted by N (). For any subset 
S of vertices in G, the neighborhood of S is 
N(S)=SN()-S and N[S]=SN(S). A clique 
is a subset of V with the property that all the 
vertices are pairwise adjacent. The clique 
number (density) of G, denoted by (G) is 
the cardinal of the maximum clique. A clique 
cover is a partition of the vertices set such 
that each part is a clique. (G) is the cardinal 
of a smallest possible clique cover of G; it is 
called the clique cover number of G. The 

stability number of G is (G)= ( )w G ; the 

chromatic number of G is (G)= )(Gw . 

By Pn, Cn, Kn we mean a chordless path on 

n3 vertices, the chordless cycle on n3 
vertices, and the complete graph on n1 
vertices. If e=xyE, we also write x~y; we 

also write x≁y whenever x, y are not adjacent 
in G. A set A is totally adjacent (non 
adjacent) with a set B of vertices (AB=) if 
ab is (is not) edge, for any a vertex in A and 

any b vertex in B; we note with A~B (A≁B). 
A graph G is F-free if none of its induced 
subgraphs is in F.  

A graph G is called -partitionable if  

(G)=(G) holds.  

A graph G is perfect if (H)=(H) (or, 
equivalent, (H)=(H)) holds for every 
induced subgraph H of G, i.e. every induced 
subgraph is -partitionable.  

We call matching a set FE such that the 
edges in F are not adjacent.  

A [p,q,r]-partite graph is a graph whose set 
of vertices is partitioned in p stable sets 
S1,S2,…,Sp, each of them consisting of exactly 
q vertices and every subgraph induced by 
SiSj consists of exactly r independent edges, 
for 1i<jp. 

A circulant Ck,n  is a graph with nodes 1,...,n 
where ij is an edge if i and j differ by at most 
k(mod n) and ij. 

The subset AV is called a cutset if G-A is not 
connected. If, in addition, some vA is adjacent 
to every vertex in A-{v}, then A is called a star 
cutset and v is called the center of A.  

The paper is organized as follows. In Section 
2 we give sufficient conditions for a graph to 
be normal. In Section 3 we give a recognition 
algorithm for O-graphs.  

2. The Normal Graph Conjecture 
is True for O-graphs 

Definition 1. A graph G is called normal if G 
admits a clique cover C and a stable set 
cover S such that every clique in C intersects 
every stable set in S.  

In this section we address the problem of 
finding another class of -partitionable 
graphs that are not perfect, but are normal.  

Definition 2. A graph G is partitionable if 
(G)=(G) and (G)=(G).  

Definition 3. [13] A graph G is O-graph if 
there exists a coloring of G and a coloring of 

G , the complement of G, such that any class of 

colors of G intersects any class of colors of G .  

Sufficient conditions for a graph to be normal 
are set by the following result. The equivalent 
conditions, (i) with (ii) and (i) with (iii), are 
stated and [12]. 

Theorem 1. Let G by a graph with n vertices, 
m edges, stability number  and density. 
Then the following conditions are equivalent:  

(i) G is O-graph;  
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(ii) G is partitionable and n=;  

(iii) V can be partitioned in -stable set and 
-cliques;  

(iv) G is [,,]-partite.  

Proof. Let G an O-graph. We show that G 
fulfills condition (ii). Let (G)=p, 

(G)=( G )=q, S=(S1,…,Sp) a p-coloring of G 

and Q=(Q1,…,Qp) a q-coloring of G  such that 
SiQj, for i=1,...,p and j=1,...,q hold. Then 

1

1

( ) ( )

( ) ( )

q
i j i j

q

i jj

G S S Q

S Q

q G G



 





   

 

  

  

for all i=1,...,p. Therefore:  

( ) ( )( ( ) ( ) ( ) ( ))G G G G G G         ; 

|Si|=(G), i=1,...,p; q=(G);  

|Qj|=(G), j=1,...,q; p=(G); 

1
| | ( ) ( )

p

ii
n S G G 


  . 

Suppose that G satisfies condition (ii) and we 
show (i). Because (G)=(G) (=) and 
n=(G)(G), there exists an optimal 
colouring of G with  stable sets S1,…,S 
with |Si|= ((G)), i=1,...,. Similarly, there 

exists an optimal colouring Q1,…,Q of G  
with |Qj|=, j=1,...,. Obviously SiQj for 
all i=1,..., and j=1,..., , which means that G 
is O-graph.  

It is clear that (ii) is equivalent to (iii). 

Let G be O-graph. We show that (iv) holds. 
Let {S1,…,S} a partition of G in -stable 
sets, and {Q1,…,Q} a partition in -cliques 
with SiQk for all i=1,..., and k=1,...,. 
The subgraph induced by SiSj (i,j=1,...,, 
ij) admits a matching with  elements, 
which obviously is maximal. Indeed, let 
{ i

kx }=SiQk. For k1 we have i i
k lx x  

because QkQl=. So Si={ 1
ix ,…, ix }, , 

i=1,...,. Because { i
kx , j

kx }Qk it follows 

that ( )i j
k kx x E G , for k=1,...,, i,j=1,..., 

with ij. Consequently, the set of edges 
{ i

kx , j
kx |k=1,…,} is a matching in G(SiSj) 

for i,j=1,..., with ij. Because G  is an O-

graph with (G) (G)    and ( ) ( )G G   

it follows that G  is [,,]-partite.  

Suppose that G satisfies (iv). We prove that 
(i) holds.  

As G is [,,]-partite, it follows that there 
exists a partition of V in S={S1,…,S} -

stable sets and, as G  is [,,]-partite it 
follows that there exists a partition of V in 
C={Q1,…,Q} with Qi cliques and 
|Qi|=(1i), which means that G is an O-
graph and this completes the proof.  

Corollary 1. If G is a graph that satisfies one 
of the conditions (i), (ii), (iii) or (iv) in the 
above theorem, then G is a normal graph.  

Remark 1 ([12]). For an O-graph G with n 
vertices, stability number and density , the 
number of edges, m, verifies the following: 

2( 1) / 2 ( 1) / 2m        .  

Proof. Because the disjoint reunion of -
cliques is O-graph of minimal length it 
follows that (=1)/2m. Because for an 
-colouring {S1,…,S} with -stable sets of 
the O-graph G and because for two non-
adjacent vertices xSi and ySj (ij) the 
graph G'=G+xy is an O-graph with the same 
n, ,  it follows that the -partite, complete 
graph K,…, is an O-graph of maximal 

length, that is 2m ( 1) / 2    . 

3.  An Algorithm for                     
O-graph Recognition 

At first, we recall the notion of weakly 
decomposition. 

Definition 4. ([13], [14]) A set AV(G) is 
called a weakly set of the graph G if 
NG(A)V(G)-A and G(A) is connected. If A is 
a weakly set, maximal with respect to set 
inclusion, then G(A) is called a weakly 
component. For simplicity, the weakly 
component G(A) will be denoted with A. 

Definition 5. ([13], [14]) Let G=(V,E) be a 
connected and non-complete graph. If A is a 
weakly set, then the partition            
{A,N(A),V-AN(A)} is called a weakly 
decomposition of G with respect to A. 
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The name of "weakly component" is justified 
by the following result. 

Theorem 2. ([13], [14]) Every connected and 
non-complete graph G=(V,E) admits a 
weakly component A such that 

( ) ( ( ) ( ( ))G V A G N A G N A   . 

Theorem 3. ([13], [14]) Let G=(V,E) be a 
connected and non-complete graph and AV. 
Then A is a weakly component of G if and 

only if G(A) is connected and ( ) ~ ( )N A N A .  

The next result, based on Theorem 2, ensures 
the existence of a weakly decomposition in a 
connected and non-complete graph. 

Corollary 2. If G=(V,E) is a connected and 
non-complete graph, then V admits a weakly 
decomposition (A,B,C), such that G(A) is a 
weakly component and G(V-A)=G(B)+G(C). 

Theorem 3 provides an O(n+m) algorithm for 
building a weakly decomposition for a non-
complete and connected graph. 

Algorithm for the weakly 
decomposition of a graph ([13]) 

Input: A connected graph with at least two 
nonadjacent vertices, G=(V,E).  

Output: A partition V=(A,N,R) such that G(A) 

is connected, N=N(A), A≁ ( )R N A .  

begin  
    A:= any set of vertices such that 

AN(A)V 
    N:=N(A)  
    R:=V-AN(A)  
    while (nN, rR such that nrE ) do  
       begin  
          A:=A {n}  
          N:=(N-{n})  (N(n) R)  
          R:=R-(N(n)  R)  
       end 
    end  

In [13] some applications of weakly 
decomposition have been depicted. In the 
following proposition we present two of 
those applications.  

Proposition 1. Let G=(V,E) be connected, 
non-complete graph and (A,N,R) a weakly 
decomposition, with A the weakly component. 
The following hold:  

a) G is P4-free iff A~N~R and G(A), G(N) and 
G(R) are P4-free;  

b) G is K1,3-free iff R and N(n)A are cliques, 
nN and G-A and G-R are K1,3-free. 

Each of the above results lead to recognition 
algorithms for the corresponding graphs.  

Proposition 2. Let G=(V,E) be connected, non-
complete graph and (A,N,R) a weakly 
decomposition, with G(A) the weakly component.  

G is triangulated iff:  

1) N is a clique and  

2) R and G-R are triangulated.  

Proof. We note the fact that N is a minimal 
cutset, because N is the set of neighbours of A 
and N~R. Then there exists a P3:anr, for every 
nN, with aA and rR. Because G is 
triagulated, N is a clique. Graphs G(R) and G-
R are triangulated. Conversly, let G a graph 
that satisfies conditions 1) and 2). Let Ck (k4) 
a cycle induced in G. As N is a clique, it 
follows that |NV(Ck)|2. If NV(Ck)= then 

CkG-N, contradicting 2) or A≁R does not 
hold. If |NV(Ck)|=1 then Ck(NR) and 
Ck(NR) and CkG(AN). So V(Ck)A. 

Furthermore, |V(Ck)R|=1. Because A≁R, we 
obtain a contradiction. If |V(Ck)R|=2, as 
N~R, it follows that CkG-R, contradicting 2).  

Remark 2. Let G=(V,E) be connected, non-
complete graph and (A,N,R) a weakly 
decomposition, with G(A) the weakly 
component. Then we have: 
(G)=max{(G(A))+(G(R)), (G(N[A])) .   

Proof. Any stable set of maximum cardinal 
either intersects R and so it has the cardinal  

(G(A))+(G(R)) or it does not intersects R 
and so it has cardinal (G(N[A])). 

Proposition 3. Let G=(V,E) be connected, 
non-complete graph and (A,N,R) a weakly 
decomposition, with G(A) the weakly 
component. If G is triangulated then we have: 
(G)=(G(A))+(G(R)). 

Proof. We will use the formula given in 
Remark 2. Let TAN=N[A] such that T is 
stable and |T|=(G(N[A])). As N=N(A) is a 
clique it follows that |TN(A)|1. If 
TN(A)= then T{r} is a stable set in 
G(AR). If TN(A)={n0} then (T-{ n0}){r} 
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is stable in G(AR) (rR). It follows that, in 
the expression of (G), the maximum is 
always obtained by the first component.  

Every non-empty graph has a triangulated 
induced subgraph since every graph on three 
or fewer vertices is triangulated.  

Balas and Yu ([1]) developed a polynomial-
time algorithm to find a vertex-maximal 
triangulated induced subgraph of a given 
graph, and devised a branching strategy that 
has been used in many subsequent research 
efforts (see also [16]).  

We give a recognition algorithm for O-
graphs, based on the branching strategy by 
Balas and Yu, but using Proposition 2 and 
Proposition 3 to determine a stable set of 
maximum cardinal for a triangulated graph.  

Procedure Stable-O-graph(G) 

 Input: A connected graph with at least two 
nonadjacent vertices, G=(V,E).  

Output: An answer to the question: is G an 
O-graph ? 

begin  
0. While G do 
1. find a maximal induced subgraph 

H=G(T) such that H is triangulated  
2. build in H a stable set S of maximum 

cardinal 
3. build in H the disjoint cliques K1,…,K|S| 
4. let U= | |

1
S
i Ki 

5. let V-U={x1,…,xk} 
6. for every i from 1 to k: Vi= 

 ( ) |Gi i jV N x x j i    determine a 

stable set Si in G(Vi) using Stable-O- 
graph (G(Vi))  

7. let S0 a maximal stable set   
       (one of S or S1{x1} or …Sk{xk})  
8. GG-S0 
9. If all sets S0 have the same cardinal then 

G is an O-graph.  
(G)=| S0|; (G)=n/(G); 
(G)=(G); (G)= (G) 
end  

In what follows, we give some remarks on 
the algorithm. 

Step 1 is O(m+n), according to [1]. 

Step 2 is the following: 

begin  
  S    
  { }L H  // L is a list of graphs  

  while (L ) do  
   begin  
     extract an element F from L  
     if (F is complete) then  
       Return: { }S S v  , vV(F)  
     else  
        begin  
           determine a weakly decomposition (A,N,R) 
             for F  
             put in L the subgraph induced by A 

and the connected component of the 
subgraph induced by R 

         end  
   end 
end  

where: 

S={s1,…s|S|} 

The test "F is complete" is done as follows: if 
there exists a vertex v in F whose neighbor 
list (or the degree of v) is not V(F)-{v} 
(corresponding to |V(F)|-1) then F is not 
complete. 

Step 2 is O(nm). 

Step 3 is the following: 

   begin  
     for 1i   to |S| do  
      begin  
        { }i iK s   
        for every v in T-S do  
          if {}~Ki then 
           { }i iK K v    

       iT T K   
     end 
end 

Step 3 is O(n3). 

In Step 4 we have:  

1 | |,..., SK K  is a covering with cliques of G(U) 

and (G(U))=(G(U))=|S| 

In Step 5 we have an arbitrary order of the 
vertices in V-U. 

In Step 6 we use Stable-O-graph for G(Vi). 

In Step 7, either S or 1 1{ },..., { }k kS x S x   is 
a maximum stable set for G ([16]). 
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It follows that the complexity of the 
recognition algorithm for O-graphs is O(n3). 

4. Conclusions and Future Work 

In this paper we have proved that the normal 
graph conjecture is true for O-graphs and we 
have presented a recognition algorithm for 
these graphs.  

Our future work will verify the conjecture on 
classes of graphs characterized by means of 
forbidden subgraphs. 

REFERENCES 

1. BALAS, E., C. S. YU, Finding a 
Maximum Clique in an Arbitrary 
Graph. SIAM Journal of Computing 15,  
1986, pp. 1054-1068. 

2. BERGE, C., Graphs, North-Holland, 
Amsterdam. 1985. 

3. BOROS, E., V. GURVICH, S. 
HOUGARDY, Recursive Generation of 
Partitionable Graphs, http://www2. 
informatik.hu-berlin.d/~hougardy/paper 
/BGH-JGT.pdf, 2002. 

4. CARDINAL, J., S. FIORINI, G. JERET, 
Minimum Entropy Combinatorial 
Optimization Problems, Lecture Notes 
in Computer Science, 2009, pp. 79-88. 

5. CHUDNOVSKI, M., N. ROBERTSON, 
P. D. SEYMOUR, R. THOMAS, Strong 
Perfect Graphs Theory, Annals of 
Mathematics 164, 2006, pp. 51-229. 

6. CHUDNOVSKI, M., N. ROBERTSON, 
P. D. SEYMOUR, R. THOMAS, 
Progress on Perfect Graphs, 
Mathematical Programming Ser. B 97, 
2003, pp. 405-422. 

7. CONFORTI, M., G. CORNUEJOLS, G. 
GASPARYAN, K. VUSKOVIC, Perfect 
Graphs, Partitionable Graphs and 
Cutset, Combinatorica 22(1), 2002,       
pp. 19-33. 

8. CSISZAR, I., J. KORNER, L. LOVASZ, 
K. MARTON, G. SIMONYI, Entropy 
Splitting for Antiblocking Corners and 
Perfect Graphs, Combinatorica 10, 
1990, pp. 27-40. 

9. KORNER, J., An Extension of the Class 
of Perfect Graphs, Studia Scientiarum 
Mathematicarum Hungarica 8, 1973,      
pp. 405-409. 

10. KORNER, J. K. MARTON, Graphs that 
Split Entropies, SIAM J. Discrete Math. 
Volume 1, 1988, pp. 77-79. 

11. KORNER, J., C. DE SIMONE, On the 
Odd Cycles of Normal Graphs, 
Discrete Applied Mathematics 94, 1999, 
pp. 161-169. 

12. OLARU, E., M. TALMACIU, A Class 
of Partitionable Graphs, Bull. Math. 
Soc. Sc. Math. Roumanie, Tome 48(96), 
No. 3, 2005, pp. 313-317. 

13. TALMACIU, M., Decomposition 
Problems in the Graph Theory with 
Applications in Combinatorial 
Optimization - Ph. D. Thesis, University 
"Al. I. Cuza" Iasi, Romania, 2002. 

14. TALMACIU, M., E. NECHITA, 
Recognition Algorithm for Diamond-
free Graphs, INFORMATICA, Vol. 18, 
No. 3, 2007, pp. 457-462. 

15. WAGLER A. K., The Normal Graph 
Conjecture is True for Circulant 
Graphs. Tehnical Raport ZR, 2004,     
pp. 04-06, ZIB. 

16. WARREN, J. S., I. V. HICKS, (2006) 
Combinatorial Branch-and-Bound for 
the Maximum Weight Independent Set 
Problem, http://ie.tamu.edu/People/ 
faculty/Hicks/jeff.rev.pdf, working paper, 
accesed July 10, 2009. 



Studies in Informatics and Control, Vol. 18, No. 4, December 2009  355

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The increasing demand for usable interactive 
systems in the context of a limited project 
budget and strict deadlines creates an extra 
pressure for evaluators and designers. This 
reveals the need for faster and cheaper 
evaluation methods. 

Depending on the purpose and the moment 
when it is done, usability evaluation could be 
formative or summative (Scriven, 1991). 
Formative usability evaluation is performed 
in an iterative development cycle and aims at 
finding and fixing usability problems as early 
as possible (Teofanos and Quesenbery, 2005). 
The sooner these problems are identified, the 
less costly the effort to fix them is.  

Formative usability evaluation can be carried 
on by conducting an expert-based usability 
inspection and / or by conducting user testing 
with a small number of users. In this last case, 
the evaluation is said to be user-centered, as 
opposite to expert-based formative evaluation.  

Heuristic evaluation is a kind of inspection 
method which typically involves a small 
number of evaluators that are testing the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
interactive system against a set of usability 
principles called heuristics. This method 
proved to be cost effective and is widely used 
by the usability practitioners’ community 
(76% according to UPA Survey, 2005).  

Heuristic evaluation provides with two kinds 
of measure: quantitative (number of usability 
problems per severity level) and qualitative 
(detailed descriptions of individual usability 
problems). 

The quality of usability problem description is 
critical for the usefulness of a usability report. 
On the other hand, there is a lot of work to be 
done in order to properly describe each 
usability problem. A way to increase the 
efficiency of any evaluation method is to 
provide evaluators with suitable tools able to 
assist them during the evaluation process. As 
shown by Hvannberg et al. (2007), not only 
these problem registration tools are improving 
the immediate management of usability 
problems but they are also supporting a 
structured usability problem reporting.  

This paper presents a software tool for 
usability evaluation which provides several 
facilities to conduct a heuristic evaluation: 
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