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Abstract: This paper presents a novel impedance control approach for a robot manipulator and analyzes its stability.
In order to achieve desired impedance for the robot manipulator subject to applied force on the end-effector, a hybrid
position/force control in the task space is developed. For this purpose, the both cases of known and unknown bounds
of uncertainties are considered to design the nonlinear robust controller. It is proven that the closed loop control
system shows global exponential stability under known bounds of uncertainties. In the second case, an adaptive
controller is used to estimate the bounds of uncertainties. It is then proven that the closed loop system has a global
asymptotically stability. The case study is a two-link elbow manipulator which is simulated. The simulation results

confirm good performances of proposed control approaches.
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1. Introduction

In addition of moving through free space,
industrial robots involve their environments
while operating special tasks such as
assembling, polishing, deburring, pushing
and power-assisting [1-5]. So, the force and
position control must put on simultaneously.
In spite of that, in the most researches in
position control of robots it is supposed that
the robot does not involve to operation
environment and significantly, small position
error, fast response and  practical
implementation are concerned in the controller
design. In such control systems, a simple
contact with working surface may lead notable
problems; because the system dynamics
change and in consequence, the closed loop
system stability is not guaranteed anymore.

Hybrid position/force control and impedance
control are the most noticeable methods that
used to control of robots which involve their
environments [6-7]. In the hybrid control, the
task space is partitioned into two distinct
position and force subspaces by selection
matrix .S, such that the position control is
accomplished in the position space, and force
control is accomplished in the force space.
Despite of considering distinguish between
position and force control in the hybrid
method, the desired impedance of robot
manipulator and dynamical behavior of
environmental reaction force are not taken
into account.

In the impedance control one can control the
environment reaction through the end-
effector path as well as position control at the
same time and further, there is no need to
selection matrix §'. The main drawback of
this method is that it employs identical design

parameters for both position and force
control. As a result, the controller
performance in dealing with dynamical

behavior of environment reaction force and
end-effector position is the same [7].

After  presenting  these
researchers focused their studies on
concurrent position/force control. Hybrid
impedance control was proposed based on the
concepts of the internal and external control
loops where the position and force control
achieved simultaneously by using of the
exact model of system dynamics [8].
Although, the access of exact dynamical
model assumption is not fulfilled in the
presence of structured and unstructured
uncertainties as load variation, friction,
disturbance and un-modeled dynamics and on
the other hand, these uncertainties produce
restrictions in measurement techniques. The
uncertainties affect on controller
performances and closed loop system
stability and, in much cases cause the closed
loop system becomes unstable.

approaches,

Adaptive control has been used to overcome
parametric uncertainties in the dynamical
model of robot manipulator and to achieve
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desired impedance [9-10]. By noting to the
result of these studies it can be seen that
adaptive control has effective performance
against parametric uncertainties but these are
only parts of all uncertainties in a real system.
Another method which is proposed to deal
with structured and unstructured uncertainties
in impedance control of robot manipulator is
sliding mode control [11]. The control law is
designed such that the position is controlled
when the robot is in free space and the force
is controlled when the robot involves. This
control law is very simple and in order to
avoid discontinuity of control input, the
system could have only uniformly bounded
stability. In [12] the desired impedance
attained based on relation between position
tracking error and force tracking error by
employing sliding mode control. Stability
analysis shows that the closed loop system
has uniformly bounded stability.
Additionally, there are other effective works
in the field of robust impedance control [13-
16]. But these controllers are designed based
on the dynamical model of robot manipulator
in task space and therefore the computation
magnitudes are high and they need fast
processors in implementation phase. It is
worth mentioning that the fuzzy method is
also used to model-free impedance control of
robot for quick tasks [17].

2. Robot Dynamics in Joint Space

Dynamical equation of an n-link robot
manipulator is as follows [18]:

M(q)j+V,,(q.4)q +Glg)+ Fy4 + F,(q)
+T; +7,= 1(!)

(1)

Whereq(r), ¢(¢) and ¢(t) are nx1 vector of
position, velocity and angular acceleration of
robot joints, respectively. M(q) is nxn
inertia matrix, 7,(¢,¢)§ is nx1 vector
including Coriolis and centrifugal forces and
G(q) is nx1 gravity vector. Also, F; denotes
nxn diagonal matrix of dynamic friction
and F, denotes nx1 vector of static friction.
Finally, T,, 7, and z(t) are nx1 vector of

disturbance and un-modeled dynamics,
environment torque and joint input torque,
respectively. The relation (1) has following
properties [19].

Property 1.
The inertia matrix of M(g) is symmetric

positive definite and for any geR" is
uniformly bounded as

mI<M(q)<ml  or pm<|M(g)<wm, (2)

Where ||o denotes the two norm and 4 and

M, are positive constants.
Property 2.

The matrix of M(q)-2V,,(¢.¢) is skew-
symmetry.

yM(g)y=2y"V,(q.9)y . Vv.q.geR"  (3)
Property 3

In equation (1) the matrices Mm(q) and ¥,,(4.4),
and the gravity vector G(g) are linear in the

parameters of P=[P P, ... Pm]T. So, it
concludes:

M(q)i+V,(q.9)q +Glq)=W(q.4.4)p 4)

Where p is mx1 vector of robot manipulator
parameters and W(q,4,4) is nxm matrix
including known functions of the position,
velocity and acceleration of joints which is
called regression matrix. In most applications,
the end-effector path is determined in task
space and following relation is used to map it
into joint space [20-22].

X =hlg) )

In which, X is nx1 position vector of end-
effector and h(g) presents nonlinear

transmission function from task space to joint
space. The end-effector velocity in task space
is expressed by

X =Jlg)g (6)

Where J(g) is nxn Jacobian matrix and X

is nx1 vector of end-effector velocity in task
space. thus,

g=Jg) ' X 7)

Where J(g)™!

Jacobian matrix. For validation of equation
(7), the desired trajectory in task space must
design in such a way that it be smooth and
does not pass from the singular points of

indicates the inverse of
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robot manipulator. At this condition, the
inverse of Jacobian matrix is derivative and
has full rank throughout the trajectory.
derivating of (6) respect to time, gives:

X =J(g)i+J(a) (3)
Then, the joint acceleration is obtained as:
j=Jq)" X -J(q) " gk ©)

For transferring control vector from task
space into joint space, one can use[22]:

o()=7"(9)r(0) (10)
Where f(¢) is nx1 force vector in task space.

2.1. Robot dynamics in task space

In most investigations, the task space model
is employed to impedance control plan [11-
13] which is achieved from (1), (7), (9) and
(10) as:

M (@)X +7V, (¢.9)X +N,(¢.9)+ F, =F

M (q)=J(q) " M(gh(q)"

V, a.4)=J(a)" v, —Mlghr(q)" J(q) (1
+F)Jqg)"

N,(¢.4)=J(q)" Glg)+J(a) " F(g)
+J(q) T,

2.2. Desired impedance of
robot manipulator

Since, the chief goal of impedance control
method is the dynamical behavior control of
robot manipulator one should define a desired
impedance for robot manipulator as control
object and then find a relation between
acceleration in task space, desired impedance
and environment reaction to aim it [7-8]. So

. d |, 1l

X__Xd_r m(S)*Fe

dt
. (12)

Z,,,(S):MS+B+E

in which, X, is nxl vector of desired
velocity in task space, Z,(s) shows the

Laplace transform of desired impedance, the
sign of * denotes convolution operator, S is
Laplace transform variable, I'"! indicates
inverse Laplace transform and finally, M , B
and K ar e nxn diagonal constant matrix.

As stated by conventional method in robust
impedance control, a controller is designed

such that the relation (12) remains valid [7-
8]. Eliminating known dynamics is one of the
preferred approaches which utilized for
designing controllers. But according to
equation (11), it can be found that using task
space  model leads to tremendous
computation amount. So, implementing these
kinds of controllers needs high speed
processors. On the other hand, these
controllers accompany computational errors
as a result of computing position, velocity
and acceleration from equations (5), (6) and
(8). Succeeding section presents a strategy to
overcome these difficulties.

3. Transforming Impedance
Control into Position/Force
Control

Taking Laplace transform from (12) yields:

S7n8)= 5 ) x)

Thus the relation between position and force
in the task space is obtained as:

X, —X=F‘l{éz_l(S)}*Fe (14)

m
Now, if one designs the position tracking

system such that X could track X, with
following equation,

X=X, - F‘l{éz,#(S)} “F, (15)

Then in exact tracking, it concludes X, = X

and consequently (14) would be valid and
desired impedance of robot manipulator
would be achieved. Therefore, the necessary
condition that realizes this goal is

“)?d —X“ =0 (16)

In the presence of uncertainties, satisfying
(16) contribute to success provided that the
tracking need to be fast or in the other words
the robust position/force tracking controller
out to be designed in a way that it guarantees
the global asymptotic stability of closed loop
system in a short period of time.

1imH)?d - X“ -0 (17)

—>
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An assumption should be considered in
robust controller design is that the new
trajectory need to be bounded. According
(15) and the facts that the desired trajectory
in task space ( X, ) is bounded and also, from

passivity of workspace design and
boundedness of F,, it is concluded that this

assumption is always valid. Thus, designing
robust impedance controller is converted to
designing robust position/force tracking
controller in task space.

4. Robust Position/Force
Tracking in Task Space

In order to design robust controller consider
following assumptions

[Fay+ EO)= g, +ExlbA S vv e R

I7a]< &

o I B

Where &, &,, & and p are positive

constant and P is mx1 vector of the
estimation of robot manipulator parameters.
The sliding surface is defined in task space
as follows:

X, =al¥,-x)r ¥, (18)

Sy=X, -X=a(X,-X)+(X,-X) (19

Where a is a positive constant and Sy denotes
nx1 vector of sliding surface in task space.
Establishing position error as X, — X =e¢ and

velocity error as X 4 —X =é,yields
Sy =ae+eé (20)

Equation (7) is used to transfer X p» into joint

space as:
i, =" (9)X, @
Differentiating (21) respect to time gives:

ip=J" @)X, +7 7 (g)X, (22)

Sliding surface is defined in joint space as:

Sq :qp_q (23)

By multiplying Jacobian matrix in both sides
of above relation and using (6) and (19) yields

J(q)Sq=J(Q)‘2p_J(‘I)‘./=Xp_X=SX (24)

Sliding surface in task space is associated to
one in joint space by equation below.

Sq=J"a)Sx (25)

For transferring control vector from task space
into joint space one may act as follows [23].

() =J"(q)f (0 (26)

According to (17), the robust control vector is
defined as:

(t)=M(q)i, +V,(q.9)q, +Glq)

+J ), +y Mgl (9)S s (27)
Yutu,
Where M(q), V,(¢.q) and G(g) are

Vulg,g) and Glg)
denotes

estimations of M(g),
respectively. F, estimation of
environment reaction force, y is positive

constant and u and u, are new control

vectors. It should be noted that F, is added

to robust control vector by a force sensor.
Since the sliding surface S, is associated

with the sliding surface Sy by (25), then
(27) could be expressed as:

T(t): M(‘])‘ip + I}m(qaq.)q.p + é(‘])
R . (28)
+J71(q)Fe +]/M(q)Sq +u+u,

Substituting above equation into (1) and
noting that Ad = F;q + F,(q)+ T, give

M(q)j+V,(q.)q+Glg)+7, +Ad=

Mlg)j, +V,(q.4)q, +Glg)+7 " (9)F, (29)
+7M(q)S, +u-+u,

From (23), (26) and (29) concludes
M(Q)C'I'+Vm(q,q')q+G(q)+AA=

M(g)$, +)+7,(0.0)s, +4) (30)
+ é(q)+ yM(q)Sq +u+tu,

Simplifying (30) yields
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(@), +7la.4)5, = (Mlg)-N1(q))
+0nla.0)- 7 (0.0 +(6la)-Gla) a1
~y M(g)Sy +(M—u, )-u
Using (4), equation (31) can be shown by
1()S, +7,(a.4)s, =W(g.q.d)P-P)

. (32)
—;/M(q)Sq +(AA—ur)—u

Above relation is simplified by defining
parameter error P— P =P as follows:

M(q)sq + I}m (q’C})Sq = W(q,q,q);)

. (33)
—yM(q)S, +(Ad—u,)-u

4.1. Stability proof

Following Lyapunov function candidate is
introduced for providing the stability proof of
the closed loop system.

1 7o
V()= ESqT M(q)s, (34)
Time derivative of (34) is

. T ne 1 pa

V(t)=5,M(q)S, +25 M(q)s, (35)
Substituting (33) into (35) gives

, V. (4:9)S, +W(q.4,G) P
P(0)=5! qu) , + 7 (4:4.4)
7 M(q)S, +(Ad~u,)=u) (36
1 X

From property 2, one can have

V(e)==2yV +S!W(q.4.4)P+S] (Ad—u,)

T
—Squ

(37

Since  Ad=Fyq+F,(q)+T;, by using

assumptions (1) and (2) from section 4,one
may have:

[t <, +¢pll+ <

38
1=, e il >
Now, u and u, are defined as:

WWTqu2
u= SqTW D+ g"Sq”e—ﬂ(t—lo) ”S"" 0 (39)
0 5=

Where ¢, A and B are positive constant.
Putting (39) into (37) and simplification yields
22 o Al=1)

Vi)<2yV+————
O e

efjs,sim]pe ) (40)

vl s

Whereas

o< <y waxy (41)
X+Y

One concludes from (40) and (41) that

P(0)s 277 + 0+ s, |Je ) (42)

In the above equation the exponential term
converges to zero when time goes to infinity
and so it is resulted that ¥ < 0. So, the closed
loop system with the proposed controllers has
global asymptotic stability.

4.2. Global exponential stability proof
The scalar function () is introduced as:

ol0)=7(0)+ 27V ()~ [+ efls,[Je ) 43)

Now, the Lyapunov function is obtained by
coming equation.

V()= )e 710 4
I i) P o Sq”)e—ﬂ(Q—zo) +plo)|do
From (42) and (43) it deduces that ¢(¢)<0. So,

V()< ¥ (ty)e 2710

(44)

sl o esenag  E
to

and after simplification,

V(e)< vty )e 270

+(ﬂVL"Sq")(e—ﬂ(t—to) _e_z},(t_[o)) (46)

2y=F
According to relations (2) and (46) and

continuity of ¥(¢) and it’s convergence to

zero one can use Barbalat’s Lemma [24] to
show that the closed loop system with the
proposed controllers is globally exponentially
stable for any initial conditions and any initial
time. The overall robust controller is
provided in below.

Studies in Informatics and Control, Vol. 19, No. 1, March 2010 9



7(t)=M()d, +V,(4:4)4,+G(q)
+J (q)FeerM(q)J’1 (q)SX +u+tu,

ww's, p’
— S1#0
8 e el
0 Is.[=0
Zn
(Il 2e 7))
Z=nS,

5. Adaptive Robust Controller

As mentioned in the previous section, the
structure of robust control is depended on
determining of bounded functions. The bound
of uncertainties must be therefore known for
designing this kind of controllers. In the most
robotic applications, bounds of parametric
uncertainties (e.g. load variations) are known;
but if the certain application of a robot is not
determined then recognizing bounds of the
unstructured uncertainties is very difficult
and making a mistake in evaluating them and
choosing them large unnecessarily leads to
design a high gain robust controller and it in
itself may cause saturating of actuators.
Whereas, the dynamics of the unstructured
uncertainties is approximately specified,
according to assumptions in section 4, and
only their parameters are unknown, this
problem could be solved by incorporating an
adaptive controller into the robust control
part. Briefly speaking, the adaptive controller
estimates these parameter bounds, and the
input gain of this adaptive robust controller is
therefore specified by these estimated
parameter bounds. So, according to
assumptions of section 4, it results from
equation (38) that

n=m"(q) (48)

Where W' (§) is 1xI vector of known
functions and ¢ is I/x1 vector of unknown
parameters. Consequently, these parameters
can be estimated by incorporating adaptive
control into robust control of section 4. For
this purpose, equation (47) is changed to

7(t)=M(q)i, +V(q.4)d, + Glq)
+ J_l(q)l*:'e + yM(q)J_l(q)SX +u+u,

ww's,p?
u={[sT WHp + s, e P00) 4]0 o
0 4] =0
Zh
u, = U‘Z“+ie_ﬁ(t_t°))
Z=7s,

Where Z and 7 are estimations of Z and
n, respectively.

5.1. Stability analysis

The estimation error of the unstructured
uncertainty parameters is defined as ¢—¢ =4 .
By employing the relation (50) as a Lyapunov
function candidate, one may obtain:

V()= S t(g)S, +597d (50)

V(0 =5{ 30, + 5570, 676 (1)
From (31), yields:

V(e)=-ySg M(q)S, +S4W(q.4.4)P
u,)-Slu-¢74

Using assumptions of the section 4 and
relations (38), (49) and (52) yields

(52)
+S7 (a4

V(e)<-ys]M(q)s, +|s]w(g.4.9)p

+(21-]2

Substituting » and u,

(53)

A

Je |27, ~s7u-374

from (49) into (53)

gives
Zlie -Bli—ty)
V(e)<-ySiM(q)s, +ﬁ_||l||[/1eﬁ’ =
s sifpe ;O

o s e 470

Jsrfo-efsqfe
From (41) and (54) concludes

V()< 7/STM( )S +(/1+g||S ") Bli-ty)
(55)
+|s,|mé 7o

The exponential term of the above equation
converges to zero. If one choose
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g=mls.| (56)

Then V()<0. So S, and in consequence

from (24), Sy converges to zero. Thus the

closed loop system with the proposed
controllers has global asymptotic stability.
The comprehensive adaptive robust controller
is provided in below.

7(t)=M(q)i, +V,(q.9)i, +Glq)
+J N g)F, +y Mg (q)Sx +u+u,

ww's, p?
u= S(ITW“/) + £||SZ|| e Al=to) ”Sq” *0 57
o sl
Zi
u, = (2 +/Iefﬁ(H°)i

Z=4s,
i=ws . d=ws)

6. Discussion

In the most of robot applications a trajectory
is considered in task space for tracking of
end-effector position. On the other hand, the
controllers are designed in joint space; for
this reason there is required to task space
trajectory converted to joint space one via
inverse kinematics. However, this conversion
goes with errors in the presence of
uncertainties and because all feedbacks are in
joint space, these errors are not observable
and so can’t be modified [19-23].
Accordingly, in this paper the proposed
controllers have been designed in task space
and also in view of the fact that the joint
space model is employed for designing these
controllers instead of the task space model.
From (11), one can result that the control
signal computations are reduced significantly.
Note that according to (14), the environment
reaction force will be zero when the
manipulator is not involved the surface and
the position/force control is hence reduced to
just position control. Therefore, versus other
position/force controllers this control strategy
does not need to change for achieving
position control exclusively.

7. Simulation Results

A two-link elbow robot depicted in Fig.1 is
considered as a case study here. Dynamical
equation of this robot is given by [25]:

{Mn Mlz}{% } J{/ﬁ(%é)} _ {”l(t)}
My My | Gy| |Mlg.q)] [ua()
Mll = (1227112 + 2]1]2 COS(q2)+ llz(ml +my ))
My, =My = (lzzmz +4lym; cos(gy ))

My =1 my

h, (qu): —-m,l,l, Sin(‘h )‘?22
=2m,l 1, sin(q2 )‘?1‘?2
+m,l,g cos(q1 +q2) (58)

+ (ml +m, )Ilg COS(% )
+Fdlq1 +FSI (ql)+ le

h, ((], q): (mzlzgcos(‘h +4q, ))
+<mzlllz sin(q2 )412)
+Fdzq2 +FSZ (42)+sz

Where /; and m;, are the length and the mass
of the i-th joint, respectively. g denotes
gravity acceleration, F, is static friction and
T, indicates disturbance and un-modeled

dynamics. Also u, is the input torques of the

i -th joint. Robot parameters are provided in
table 1 and controller parameters and
regression matrix elements are given in tables
2 and 3, respectively.

For adaptive controller design one may
choose the physical parameters as follows:

13:[13 m, Il m

by (o ey )
2 "2 172 "2 1 1 2

m [ g

T
Uy Uy Su (mu1 +mu2)lu1gu]

(59)

/
and g , respectively. The performance of the

position  controller and  position/force
controller are evaluated separately. In
inspecting of position control it is supposed
that the robot moves in free space. Desired
trajectory and initial conditions for this free
movement are given in table 4.

m, and g, are unknown part of /, m

u>o
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Eresironmesnt

Xzi i

Figure 1. Tow-link Elbow Robot Manipulator

Tablel. Robot Manipulator Parameters

=038 m lb=029 m
my =14 kg my =0.8 kg
g=98 leszZZO'S

F (¢)=F, (q,)=0.

Fy =Fy =05 (@)= F.(6) =05

Table 2. Controller Parameters

[ =048 m | =04 m |M=I
my =15 kg My, =09 kg | K=1001
£=0.01 ¥ =100 B =601
=05 a =250 A=15
£=9 p=0.1 n=2

Table 3. Regression Matrix

W = ijrl + ‘.I.rz
Wiy =2cos(g, )‘Ll +cos(q, )"I'r2
- Sin(‘]z )q2qrz -2 Sin(‘]z )‘?1%

Wiz =gy Wiy = cos(g) +45)
Wis = cos(qy) W =dy +4p,
Wy = cos(qs )iy
. .. Wy =0
+sin(q; )‘hqu
W4 = cos(g) +4>) Wys =0

Table 4. Desired Trajectory and Initial Conditions
in Free Space

X, =0.0284 X, =0.0403
+0.005sin(3¢) +0.005 cos(3¢)
X,(0)=0.0255 X,(0)=0.048

In order to evaluate the position/force control,
the environment, a vertical wall, is modelled
as a pure stiffness with no friction in Figure

1. Desired trajectory and initial conditions are
provided in table 5 for this case.

Table 5. Desired Trajectory and Initial Conditions
in Position/ Force Control

X, =026
X,(0)=0.2

Xy, =0.403+0.05cos(3r)

X,(0)=0.48

In this case, relation between position X; and
the environment reaction in direction of X
is given by

Fel (S)

X4,(8)-X1(8)=—5———
$2 4608 +100

Also one will have F, =0 since the working

environment is modeled as mentioned before.
In the simulation it is assumed X, =0.25

Centimetre and the wall is modeled as a
spring with following equation [24].

F, =1000(X, -0.25)

According to desired trajectory given in table
5 and relation (15) the beneath trajectory
should be tracked.

T
~ 4 1
Xg=| X4 -T [ZJ*FEI X,
§% +60S +100

Desired force F,,; in direction of X is equal

to 5 Newtons.

Simulation 1 - In this case, the robust
controller (47) is simulated for position
control in free space. As shown in figures 2
and 3, despite of presence of structured and
unstructured uncertainties, this controller
operates well and tracking errors converge
zero after around 0.5 seconds. According to
Figures 2 and 3, maximum tracking errors are
28 and 30 mm, respectively.

Simulation 2 - In this case, the adaptive
robust controller (57) is simulated for
position control in free space. This controller
operates well too and can drive tracking
errors to converge zero as depicted in figures
4 and 5. Maximum tracking error is 25 mm
and estimated unstructure uncertainty is 2.5
as shown in Figure 6.

Simulation 3 - In this case, the robust
position/force control (47) is simulated for
achieving desired impedance. As can be
found from Figures 7 and 8, tracking of X,

12 Studies in Informatics and Control, Vol. 19, No. 1, March 2010



and X, is obtained in a short duration of

time. Figure 9 shows the acceptable tracking
of the desired force F,, .

Simulation 4 - In this case, the adaptive
robust position/force control (57) is simulated
for achieving desired impedance. Figures 10
and 11 verify the satisfactory tracking of X

and X, in a small time. The environment

reaction force, the wall here, is depicted in
Figure 12. By noting the reasonable tracking
of force and position it can be concluded that
the desired impedance of robot manipulator
is realized.

0.27 T T T T T

.... Actual path
— Desired path

025¢ [ 1

0.26
0.24 §

I
1
1
1
1
i
023} i 1
1
I
.l
022}
1
1
1

Position X1(m) and Desired Position Xd1(m)

0.2 I I I I I I I
0 1 2 3 4 5 6 7 8

time(sec)

Figure 2. Tracking Error X,
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8. Conclusion

In this paper, in order to design robust
impedance control, a new trajectory was
defined for tracking control of robot in task
space based on dynamical behavior of
environment reaction force and desired
impedance of robot manipulator and also the
necessary condition for converting robust
impedance control into robust position/force
tracking control was developed.
Subsequently, a robust nonlinear tracking
controller was proposed by considering the
bounds of structured and unstructured
uncertainties that can satisfy this condition. It
is proved that the closed loop system with the
proposed controller has global exponential
stability. Since the bounds of structured
uncertainties as load variations are known but
the parameter bounds of unstructured
uncertainties remain unknown in the most
robot applications, an adaptive controller was
incorporated into robust controller for
estimating those bounds real time. It is also
proved that the closed loop system with
adaptive robust controller has global
asymptotic stability. The trajectory tracking
and the desired impedance of robot
manipulator and consequently the satisfactory
dynamical behavior of environment reaction
were achieved. A prominent advantage of the
proposed controllers is that in situation which
robot operates in free space and doesn’t
involve the surface, the position tracking is
obtained and there is not required to change
control system. In the other words, the
proposed controllers have the ability of
position/force control and position control
simultaneously. Mathematical analysis and
simulation results justified the efficient
performance of the controllers.
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