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1. Introduction 

During the last few years, there has been a 
considerable amount of interest in the control 
of vision based underactuated mechanical 
systems forced by fewer actuators than 
degrees of freedom, presents a challenging 
problem. The interest comes from the need of 
supervision in remote control especially via 
Internet based network, more flexible 
contactless wiring and improved signal/noise 
ratio. Various models of vision based 
underactuated mechanical control have been 
reported in attempt to improve the visual 
servoing’s performance. 

Recalling [1] the visual servoing term is 
defined as using visual feedback to control a 
robot. For example visual (image based) 
features such as points, lines and regions can 
be used to enable the alignment of a 
manipulator/gripping mechanism with an 
object. Vision is a part of a control system 
providing feedback. However, traditionally 
visual sensing and manipulation are combined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in an open-loop configuration, ‘looking’ and 
‘moving’, or just for visualizations and 
animations purposes referring to pendulum 
control in remote control laboratory [2], [3]. 
Recently, visual supervision has been 
gradually combined in the closed control loop 
particularly for cart-inverted pendulum control 
such as in [4], [5]. Unfortunately there is no 
real successful application reported on 
controlling the cart’s position and 
pendulum’s angle by visual servoing till 
now. A fuzzy-logic based controller was 
reported in [6], but only for controlling a 
rotary pendulum near the unstable equilibrium 
zone not exceeding ±5°. For larger deviations, 
the system turned out to be too slow to 
compensate. This control was limited in time 
on a few seconds in keeping the pendulum 
upright. In [7] a just-in-time human simulated 
method was developed to stabilize a two-link 
Direct Drive Arm-pendulum system. The 
direction of the pendulum movement is 
restricted on tangential plane for the trajectory 
of the tip of second link. This human learning 
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and memory based fuzzy control can stabilize 
the inverted pendulum only for seconds (   16 
s) and with larger angular position oscillations 
±26°, just like humans. 

Analyzing the difficulties of previous vision 
based research works related to CIP control; 
it seemed that the camera signal has not been 
sufficiently exploited. The problem is that 
these sensors often deliver sampled and 
delayed signals due to their digital nature and 
computation-transfer time (image processing) 
respectively. Our challenge here is to 
consider the low cost CCD cameras as 
contact-less pendulum sensor to stabilize the 
CIP jumping from a big angular position with 
a big time delay.  

Our efforts have been focused on the 
development of an accurate observer using the 
theory of Piecewise Continuous Systems (PCS) 
[8]. This kind of systems are continuous 
controlled hybrid systems with independent 
switching and controlled input [8], [9]. 
Considering the sampled delayed camera’s 
measurements (pendulum’s angular position) as 
autonomous switching and controlled impulse, 
we estimate the present continuous pendulum’s 
angular position and angular speed. With the 
improved pendulum’s angular position and the 
estimated angular speed, we can construct our 
control methods. The research work presented 
here is an extension and development of the 
preceding works [8], [9], [10], [11]. 

The paper is organized as follows: sections 2, 
3 and 4 present the description and modelling 
of the real vision based CIP system, 
particularly the TSAI calibration method and 
the way to calculate the delayed and sampled 
pendulum’s angular position. In section 5 a 
hybrid control consisting of the Jumping-up 
control and the two causal stabilization loops 
under a logic-based switch mechanism is 
proposed. A Piecewise Continuous Reduced 
Order Luenberger Observer (PCROLO) is 
also developed. Simulation and experimental 
results are given in section 6.  

2. Experimental Setup 

The vision based cart-inverted pendulum 
experimental system illustrated in Figure 1, 
contains the following four parts: 

1) The mechanical system: The system is 
composed of an aluminium chassis, enabling 
only 48 cm displacement and a plastic 

inverted pendulum mounted on the mobile 
cart. Between the pendulum and the cart, an 
installed shock absorber prevents the 
pendulum from completely falling to 
horizontal position. It allows the pendulum to 
have a maximum angle 50° with respect to 
the vertical position.  

2) The controller: The controller is 
implemented on the dSpace based Digital 
Signal Processing card DS1103 via 
ControlDesk integrated with Matlab/ Simulink. 
We can model, supervise and develop directly 
control methods for the real-time system by the 
benefits of the access to the control card’s 
variables. The control signals are sent to a 
power amplifier via ± 10 V DAC. 

 
Figure 1. Vision based inverted pendulum setup 

3) The actuator: This part is composed of a 
AC servo motor (SANYO DENKI 
PY2A015A3-A3). It’s driven by a dSpace 
computer input/output card via the power 
amplifier supplied with 240 V. The AC motor 
delivers a nominal couple of 3.0 Nm with a 
power of 200 W. The platform returns the 
cart’s continuous position through a 8 µm 
resolution incremental encoders equipped 
with the AC motor. 

4) The vision system: Instead of using hi-tech 
digital cameras capable of higher sampling 
rates (up to 2000 frames/sec), higher spatial 
resolution (up to 4000 × 4000 pixels) and 
improved signal/noise ratio than their analog 
counterparts, we used a low cost IR CCD (Jai 
M50 IR) camera with a sampling rate of 25 
frames/sec and a low resolution of 640 × 480 
pixels in non-interlaced mode. It is linked to a 
vision computer which constitutes an image 
acquisition card ELTEC PC-EYE 4 and an 
image processing software TEKVIS. 
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3. Visual Measurement 
The presented vision system is used to 
determine the pendulum’s upper tip (xw, yw) 
image coordinates (in pixels) and transmits 
them to the control computer via the RS-232 
serial communication port. In order to 
synchronize the camera with the control 
algorithm, the camera is triggered by an 
external periodical pulse signal, generated via 
the dSpace card with a sampling period equal 
the acquisition-processing-transfer time. 
Measurements made from image frames are 
noisy in nature due to changes in the 
environment’s illumination, camera’s slightly 
oblique position, and the deformations caused 
by the camera’s wide angle lens. As soon as 
the control computer receives the pendulum’s 
image coordinates in pixels, a four step TSAI 
calibration method [12] is carried out in the 
control system to acquire the pendulum’s 
upper tip’s real position (xC, yC).  

3.1. Four step TSAI Calibration Method 

Step 1. Transformation from the calibration 
coordinate frame [ , , ]w w w wp x y z  to the 
camera coordinate frame 

s c w cp R p t   (1) 

where [ , , ]s s s sp x y z  is the point 

coordinates in camera coordinates, cR  and ct  
are the rotation (orthonormal 3x3 matrix) and 
translation (3x1 vector) between the 
calibration frame and camera frames. 

Step 2. Ideal perspective projection (xp, yp) of 
( , , )s s sx y z  to the image sensor 

s
p
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x
x f

z
 , s

p
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y
y f

z
  (2) 

where f is the focal length of the camera. 

Step 3. Lens distortion moves the actual 
location of the projection to 
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where ² ²
p p

r x y  , K1 and K2 are the 

coefficients of radial distortion, P1 and P2 are 
the coefficients of tangential distortion. 

Step 4. Transformation to image coordinates 

( ' ) /

( ' ) /

C x p x x

C y p y y

x N x c S

y N y c S

  

 
 (4) 

where Nx and Ny are the number of the 
effective image points in horizontal and 
vertical directions,   is the correction to the 
aspect ratio, Sx and Sy are the dimensions of 
the effective image sensor, (cx, cy) is the 
principal point that is identical to the center 
of radial distortion. 

Now, using the difference between the 
measurements and the model the camera 
parameters can be solved by minimizing the 
total squared error 

 
1

² ² ²
N

xi yi
i

e  


   (5) 

Before each use, the operators need to carry 
out a calibration work with a vertical fixed 
inverted pendulum. Then, this one will move 
according to a grid. For each point of the 
grid, the vision system will acquire the 
pendulum’s upper tip coordinates and 
compare it with the actual continuous value 
measured by encoders. With the presented 
method, the camera’s intrinsic parameters K1, 
K2, P1, P2, cx, cy,  , f and extrinsic 
parameters Rc and tc can be calculated. 

Figure 2 illustrates the referred TSAI 
calibration method to the vertical fixed 
pendulum system. Comparing to the 
continuous encoder measurements, the TSAI 
corrected results are very satisfactory to 
points with only the linear correction even in 
the border sides. It should be noted that the 
error is more important on the sides (about 
5mm). However, this is not very important, 
because these zones correspond to an 
unstable pendulum angle which isn’t used in 
the stabilization control (cf. section 5). 

 

Figure 2. TSAI calibration results 
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 3.2. Pendulum’s Angle Computation 

According to the used vision system, the only 
accessible information is the coordinate (xC, 
yC) of the pendulum’s upper tip projection on 
the x-y plane via the vision system and the 
cart’s continuous position x. In these 
conditions, according to Figure 1, θ can be 
computed as follows 

 1sin ( ) 2Cx x l    (6) 

In our case, only sampled and delayed 
measurements of the camera are available 

, ,( ), ( ) ( , )( )C e e C e e C k q C k qx kt T y kt T x y     (7) 

With te the camera’s sampling cycle, and Te=qte 
where k, q are integers, Te represents the delay 
time corresponding the time necessary for data 
acquisition, processing and transfer. In our 
vision system, te=40 ms and q=1. 

Finally, from (6) and (7), θk-1 is computed, 
the pendulum’s angle feedback obtained in a 
sampled and delayed format. 

4. Modelling of the Cart-Inverted 
Pendulum System 

By referring to the methods proposed in [13], 
[14], the cart-inverted pendulum can be 
modeled as  

( )m mx x k u      (8) 

22 sin cosn n K x            (9) 

where 2( )n mgl J ml    is the natural 

frequency, 2[2 ( )]r nB J ml    is the 

damping ratio, 2( )K ml J ml   is the gain, 

and u, km and m  are the control input 
tension, the overall gain and the time constant 

 

of the cart-motor system. Here θ is the angle 
of the pendulum with y-axis, l is the length 
from the pendulum’s center of gravity to the 
pivot, m is the mass of the pendulum, Br is 
the viscous damping constant between the 
pendulum and the cart, g is the gravitational 
acceleration, J=(ml2)/3 is the pendulum 
momentum of inertia and x is the cart’s 
position on x-axis. 

The modelling cart-inverted pendulum 
system is a unstable nonminimum phase 
system, because under the assumptions u=0 
and x=0, the system   

22 sin 0n n         (10) 

has a positive eigenvalue. According to [15], 
input-output feedback linearization dose not 
pre-stabilize but only pre-compensates the 
system dynamics.  

5. Robust Hybrid Stabilization Control 

The main vision based hybrid control 
architecture, which is illustrated in Fig. 3, 
consists a Jumping-up control and a two 
loops cascade stabilization control. The 
commutation between the Jumping-up 
control and the two loops stabilization control 
is switched under a logic-based switch 
mechanism. The stabilization two cascade 
loops includes the inner loop (a linearization 
and the stabilization control of the pendulum 
based on PCROLO), and the outer loop (a 
Lyapunov based control for the unstable 
internal system having lower dynamics than 
that of the pendulum).  

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Hybrid control architecture for vision based cart-inverted pendulum  
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5.1. Jumping up control 

Normally, the proposed two loops cascade 
stabilization control method is valid for a big 
inclined initial pendulum angle ( 50  ), but 
in the reason of the used motor’s limited 
torque support in our real CIP system, we 
have to add a Jumping-up (Bang-Bang) 
control. The energy based swing-up control 
used in [16], [17], [18], [19] or like [20] a PD 
position controller to swing up the pendulum 
from the downward position to upward 
position can not be used here. This is because 
these controllers introduce an oscillation 
effect to move the pendulum to upright. 
However, in our systems, because of the 
circular shock absorber, the pendulum’s 
angular position is limited above the 
horizontal plane. 

The proposed Jumping-up control’s main 
idea is simple. It comes from a basic 
everyday life example: considering a person 
leaned against a backward seat in a car, 
applying an appropriate accelerating 
( 1[0, ]t t ), null ( 1 2] , ]t t t ) and decelerating 

( 2] , ]t t T ) acceleration to the car, the 
person’s body will incline forward. Inspired 
from this experience, the cart of CIP system 
is considered as the car and the pendulum as 
the person's body on the car. To facilitate the 
balancing CIP system, the ideal situation at 
the end of the Jumping-up control is that the 
cart’s position ( ) 0x T   and speed ( ) 0x T   

under (0) 0x  . For a simplification sake, one 

notes 0 (0),x x ( )Tx x T  and sign( (0))x  . 

In (8) one introduces ( )m mv x k u     , 

which leads to 

x v  . (11) 

First step: 1[0, ]t t , with 0 0x   and 

, 0v M M   . By integration of x v  , 
one has 

1

2
0 1tx x Mt   and 

1 1tx Mt  . 

Second step: 1 2] , ]t t t , with 0v  . One has 

2

2
0 1 1 22tx x Mt Mt t     and 

2 1t tx x  . 

Third step: 2] , ]t t T , with 0Tx  , ,v M  

0  . One has the relations of  

1 2( )t T t   and  

2 2 2
0 1 2 1 2[ ( ) 2] 0M x T t t t t T         . 

By adjusting the parameters ( 0x , T ,  , 2t ) 
experimentally and considering the constraint 
on the position of the cart, the proposed 
strategy can jump up the pendulum to the 
unstable equilibrium zero under the 
pendulum’s maximum angular position. 

The switching is activated when the visual 
feedback shows that the pendulum is close to 
the upright position ( 1 0.2k   ). This logic-

based mechanism is realized by a RS trigger. 
The reason of choosing a big switch value for 
  is to compensate the camera sensor’s big 
time delay to produce a smoother switch under 
pendulum’s small angular position θ and speed 
 . This strategy has been tested successfully 
in the real vision based CIP system. 

5.2. Inner loop: PCROLO based 
stabilization control 

Under the assumption that the pendulum’s 
angular position θ and velocity  are well 
estimated via PCROLO from θk-1, a stable 
inverted pendulum dynamics can be imposed 
by introducing a new control v , a new gain 

2K , a new natural frequency n  and a new 
damping ratio   defined as  

2

2
2

2 sin cos

2

n n

n n

K v

K v

    

 

   

   

 


 (12) 

From (12), the following relation between v  
and v is obtained: 

2 2
22( ) sin

cos
n n n nv

K v

K

    



     




 (13) 

with 2.   

After the transformation, one gets 

2 2
22( ) sin

cos
n n n nx

K v

K

    



     




 (14) 

2

2
2

n n
K v         . (15) 

From (9) we obtain the linearized pendulum’s 
state space model  

( ) ( ) ( )t A t Bv t     (16) 

with 
2

0 1

2n n

A
 


 

 
 
  

, 
2

0
B

K

 
 
 

 and ( )
( )

( )

t
t

t





 
   

  
. 
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The problem is to estimate the continuous 
position ( )t and velocity ( )t  from θk-1. In 
order to solve this problem, we develop a 
specific PCROL observer. This observer 
combines a Reduced Order Discrete 
Luenberger Observer (RODLO) and two 
Piecewise Continuous Systems (PCS) as 
defined in [13]. 

A PCS ({kte}, A, B, C) is characterized by a 
first continuous input (t), a second input 
(t) sampled at discrete instants kte, three 
matrices A, B, C, a state vector x(t) and an 
output vector y(t). In these conditions, the 
functioning equations is defined as 

 

 
 

0

0

(0) ( ),      

( ) exp( ( ))

exp ( ) ( ) ,

( ) ( ).        

,( 1)

0,         

e

k e

k e

t

kt

k k

k e

k

e e

t

t

t

x x kt

x t A t kt x

A t B d

y t Cx t

kt

kt k t



   

 

 

 



  

 









  (17) 

In order to observe Θ(t), choose A and B as 
in (16) and C=I2  According to Figure 4, the 
PCROLO is constructed as follows: 

1k 

12k
km 

11k
km 

 kz
1kz 

G


1
ˆ
k 


1
ˆ

k
eAte

ˆ
k

2[{ }, , , ]ekt A B I
ˆ ( )t

01( )kM t

L F

1
k
kM 

v

2[{ }, , , ]ekt A B I




 



et se

L

Figure 4. PCROLO observer  

1) First step: PCS I. Using the PCS I with 
(t)=v(t) and (t)=0, one obtains 

1
( 1)

( ) exp ( ) ( )
e

t

k
k t

M t A t Bv d   
  . 

By sampling (Zero-Order-Holder) at each kte, 
one has  

1
( 1)

1 1

exp ( ) ( )

1 2

e

e

kt
k
k e

k t

Tk k
k k

M A kt Bv d

m m

   

 

  

   


. 

2) Second step: RODLO.  Θk-1 is estimated 
by a RODLO defined as 

-1 1 1 1( 2 1 )k k
k k k k kz Fz G m Lm       , 

1 1 1
ˆ

k k kz L      

where F, G and L are defined from 

11 12

21 22

exp( )
f f

e
f f

At     
 as: 22 12( )F f Lf  , 

22 12 21 11( ) ( )G f Lf L f Lf    , 

22 12( )L f f R   (maximizes RODLO’s 
convergence speed). 

Estimating 1k 
  by 1 1 1

ˆ
k k kz L    


, one gets 

1
ˆ

k  , then ˆ
k , by integration of (16) on the 

time interval [( 1) , [e ek t kt  

1 1
ˆ ˆexp( ) k

k e k kAt M     . 

3) Third step: PCS II. Using the PCS II, with 
(t)=v(t) and ˆ( )

kk
t   , one has 

ˆ ˆ( ) exp( ) exp ( ) ( )
e

t

k
kt

t At A t Bv d        (18) 

5.3. Outer loop: Lyapunov function 
based control 

The main idea here is to introduce an angular 
reference θref as an intermediate for the 
pendulum angular position in the aim of 
ensuring the stability of the vision based CIP 
system and coupling the control u. 

Referring to [15], [21], the quasi-steady state 
assumption in (8) and (9) is applied, the 
inverted pendulum system is brought to 

0    , and θ=θref. Thus the simplified 
dynamic system becomes 

2[ tan( )]n refx v K    , (19) 

2
2( )n ref Kv   . (20) 

Based on this internal simplified pendulum 
system, a Lyapunov candidate function is 
defined as follows 

2 2( , ) ( ) 2,V x x x x     with , 0.    

In order to ensure the Lyapunov derivation’s 
negativity 

( , ) ( ) ( ) 0V x x x x x x x v             , 

a particular function which stabilizes its non-
minimum internal dynamics is defined as  
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2 2( ) 2[1 ] , 0x xx v e x           . (21) 

Therefore, the negativity of the chosen 
Lyapunov function is assured, and from (20), 
one gets the control  

2 2( ) 2[ (1 ) ]x xv x e x          . (22) 

Replacing (22) in (19), the intermediate value 
θref  is computed, and then by substituting θref  
in (20), we have 

 2 21 ( ) 2 2 2
2tan [ (1 ) ] ( )x x

n nv K x e x K            

Finally from (8), (22), u can be calculated as 

 2 2( ) 2[ (1 ) ]x x
m m mu x e x k             . 

6. Simulation and Experimental Results 

In the experimental vision based system the 
mass of the cupreous pendulum is 560 g and 
its length is 32.4 cm, the viscous friction 
between the pendulum and the cart is 
supposed small. Therefore, according to the 
modeling procedure, the inverted pendulum 
is characterized by 0.0038   and 6.739n  . 
The cart-motor system is characterized with 

 

2.92mk   and 0.008m  , and for the stabilization 

controller part we choose 2
2 nK  , 1.2  , 

n n
  , 2.5  , 10   and 8  . 

6.1. Simulation results 

Figure 5 illustrates the two loops stabilization 
control under an initial condition (x0=0.5m, 

0
/ 3 rad  , 

0
0 m sx  , 

0
0 rad s  ). It is 

important to note that that the application of 
quasi-stationary assumption does not bring 
any restriction, no permanent oscillation 
appears, neither on the cart’s displacement, 
nor on the pendulum. The results of 
simulation illustrate perfectly that the 
proposed two loops control ensures the 
stability of the total CIP system.  

To facilitate the reading of the performances of 
the proposed observer, we make a zoom of the 
figures 5b (pendulum’s angular position) and 
5d (pendulum’s angular speed) on the time 
interval [0.2s, 2.5s], and theirs corresponding 
results are illustrated in figures 5c and 5e. The 
proposed observer estimates very well the 
pendulum’s continuous angular position and its 
angular speed by the delayed and sampled 
vision system’s measurements 1k  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Stabilization control without 
measurements errors 

Figure 6. Stabilization control under 
measurements and identification errors  

  
(a). Cart’s displacement 

  
(b). Pendulum’s angular positions  

  
(c). Zoom of (b) in interval of [0.2 2.5]  
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As in all mechanical systems, the uncertain 
identification and the variation of the 
parameters (especially the coefficient of friction 
Br) in function of ( )t  and ( )t , are inevitable.  

In order to study the robustness of the 
proposed method, we add simultaneously a 
parameter variation of 10 sin 2rB t  in the 
parameter Br and a measurement error 
0.02sin 2 t  on 1k  . The corresponding 
simulation results are shown in Figure 6  

It appears that, even in this case, the entire 
spherical pendulum system remains stable. 
The PCO still gives satisfactory estimations. 

6.2. Experimental results 

For the Jumping-up controller we select 
1  , 0.14T  s, 1 2 0.07t t  s and 

0 0.05x  cm, and for the stabilization 

controller part we choose 2
2 nK  , 1.2  , 

n n
  , 100  , 10   and 4  . 

Note that the initial pendulum angular 
position 0 0.873 rd 50    . So, we test the 
proposed control method on the real vision 
based CIP system under an initial condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0( , , , ) (0.05, 0,0.873, 0)x x    . 

The corresponding experimental results are 
given in Figures 7 and 8 which illustrate the 
Jumping-up and stabilisation control results and 
the stabilisation control results under manual 
perturbation. In both cases, the cart's position x, 
the pendulum's angular positions 1k   and 
ˆ( )t , and the control xu  are illustrated.  

Fig. 7a shows that there remain residual 
oscillations limited to ± 3° for the pendulum's 
angular position and ± 2 cm for the cart's 
position displacement. These oscillations are 
probably due to inaccurate identification of 
the viscous friction between the cart and the 
pendulum. Tests demonstrated that the cart-
pendulum system remains stable more than 
10 hours (we did not test it beyond).  

Fig. 8 illustrates the performances of the 
stabilization control under a manual 
perturbation. This perturbation which consists 
in trying to unbalance the entire pendulum 
system is applied at the pendulum's upper tip. 
It starts from about 4 s and ceases around 9 s. 
One notices that the cart, under the 
perturbation, moves so as to ensure the 
balancing of the entire pendulum system.  

Figure 5. Stabilization control without 
measurements errors 

Figure 6. Stabilization control under 
measurements and identification errors  

  
(d). Pendulum’s angular speeds 

  
(e). Zoom of (b) in interval of [0.2 2.5] 

  
(f). Applied Stabilization control 
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Moreover as soon as the perturbation ceases, 
the proposed control maintains the balance of 
the pendulum while bringing back the cart to 
its origin. 

The illustrative videos of these 
experimentations are available on http://www-
lagis.univ-lille1.fr/~wang/Research_eng.html.  

In spite of small oscillations, the experimental 
tests demonstrate that the proposed method is 
able to maintain the pendulum angular 
position upright, and keeping the cart’s 
position around zero for  ,t t  . 

7. Conclusions  

This article presents a direct and efficient 
method for controlling a vision based CIP 
system with a big time delay and a big 
inclined initial angular position. This is an 
underactuated mechanical system with 
nonlinear and nonminimum phase dynamics. 
The proposed control scheme is implemented 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the dSpace Digital Signal Processing card 
via ControlDesk integrated with Matlab / 
Simulink platform. The experimental results 
demonstrate the effectiveness and robustness of 
the proposed approach.  
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