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1. Introduction 

During the last two decades, two-time-scale 
sampled-data control of continuous-time 
plants has been studied in several papers 
dealing with both its theory and applications 
[1]-[5]. For instance, a sampled-data control 
scheme which control actions are scheduled 
at two different sampling rates (slow and fast) 
is suggested in [1]. This sampled-data control 
is in composite form and is computed as the 
sum of the slow and fast control signals. A 
two-time-scale digital controller is derived by 
using the singular perturbation theory and is 
applied for motor position servoing [2]. 
Recently, a robust two-time-scale control 
based on the singular perturbation method 
and time delay control is proposed for a 
pneumatic vibration isolator [4]. A 
decentralised two-time-scale motions control 
of linear time-invariant plants with unstable 
decentralised fixed modes (UDFM) is 
designed in [5]. The method used generalizes 
the sampled-data hold function introduced by 
Kabamba [6] to eliminate UDFM and to 
decouple the discrete-time plant model into 
independent input-output channels.  

An alternative approach for two-time-scale 
controller design is proposed in [3] using the 
theory of the sampled-data systems with 
piecewise functioning (SPF) [3]. The 
developed controller, however, needs full 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

information for the plant state which limits its 
practical application.  
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Figure 1. System to be controlled 

In this paper we deal with the case when the 
only available plant information is delivered 
from the plant output via a digital sensor 
introducing a delay eT  corresponding to the 
time needed to process the information (see 
Figure 1). Further on we consider that 

e eT qt , where et  is the sampling period. 
Such systems are frequently encountered in 
industry when digital technology is used for 
measurement (e.g. camera) and/or control [8]. 
Their dynamics can be described as  

( ) ( ) ( )x t Ax t Bu t   (1a) 
( )y Cx t  (1b) 

* *( ) ( . )e ey t T y t q t    (1c) 

where n nA  , n rB   and m nC  are 
constant matrices and * represents sampling 
operation with constant period et .  

To ensure efficient tracking control of the 
considered systems, we propose a new type 
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of SPF based two-time-scale sampled-data 
controllers (SDC) which use sampled and 
delayed plant output measurements.  

The paper is organized as follows. In Section 
2 the SPF theory and the existing full state 
information SDC are briefly presented. In 
Section 3 we develop SDC which use delayed 
state measurements and in Section 4 we 
generalize these controllers for the case when 
only delayed plant output measurements are 
available. The performance analysis of the 
new class of SDC by numerical simulation is 
presented in Section 5. Finally, in Section 6 
some concluding remarks are given. 

2. Sampled-data Systems and 
Controllers with Piecewise 
Functioning  

The basic concept in SPF theory is the two-
time scale illustrated in Figure 2 [3].  
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Figure 2. Sampled-data two-time scale 

The discrete instants k

i e et iT kt   are 
characterized by the indices:  

i - indicating the time scale relative to 
switching instants , 0,1, 2, ,eiT i    and 

k – specifying the time scale relative to the system 
evolution between two switching instants. 

Two successive switching instants 0

it  and 0
1it   

delimit an interval noted i . In i  the index  

i does not change while  k  increases from 0  
to q . One has 0

1
q

iit t  . 

A linear sampled-data system with piecewise 
functioning is a system whose dynamics can 
be described over all intervals i  as 

0 0
i s ix B v   (2a) 

1 , 0,1, , 1k k k
i d i d ix A x B u k q       (2b) 
k k
i iy Cx   (2c) 

where k n
ix   is the state vector, k r

iu   is 

the control vector in i , 0 s
iv   is the 

control vector at the switching instant 0

it  and 
k m
iy   is the output vector.  

Denote the time t  in the interval i  as 

eiT  , where [0, ]eT  . Thus we have 

( ) ( ) ( )e ix t x iT x      (3) 
( ) ( )iu t u    (4) 

and in i  the system (1) can be written as 

( ) ( ) ( )i i ix Ax Bu     (5a) 

( ) ( )i iy Cx   (5b) 
*

1 1( ) ( ) ( )e i iy t T y Cx     . (5c) 

Discretizing (5) we obtain the SPF 

1 , 0,1, , 1k k k
i d i d ix A x B u k q      (6a) 
k k
i iy Cx  (6b) 

1 1
k k
i iy Cx   (6c) 

with  

eAt
dA e , .( )

0
e e

t A t
dB e Bd    and k k

i iv x . 

Based on the SPF theory, a two-time-scale 
sampled-data controller (SDC) has been 
developed for plants with full state 
information realizing state trajectory tracking 
with one switching period of delay [3]. On 
the interval i , the SDC is defined as 

0 0
i s i    (7a) 

1 ,k k k

i i ia     0,1,..., 1k q   (7b) 
1k k

i iu    (7c) 

where k n

i   and k r

iu   denote 
respectively the SDC state and the output at 
the instant k

it , 0

i

   is the input at 

switching instants, and n n  , n r  , 
n

s
   and r n   are constant matrices 

with appropriate dimensions. The matrix   
is chosen so as to ensure the stability of SDC. 
For simplified SDC   is a zero matrix and   
is an arbitrary matrix. The SDC 
representation is given in Figure 3a and 
Figure 3b. Generally, 0

1

q

i i    which implies 
discontinuity at switching instants, as 
illustrated in Figure 3c.  
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Figure 3. Two-time-scale SDC 

a. Detailed representation 
b. Symbolic representation  
c. Evolution of the controller state 

Denote by ( )c t  the desired plant state 
trajectory. The tuning of simplified SDC 
consists of determining 0

i  and s  in order to 
ensure sampled trajectory tracking with one 
switching period of delay:  

0 0
1 0,1, 2,i ix c i       (8) 

From (6) and (7) one obtains  

0 0qq
i i idx A x M    (9) 

with 

0

1
1 2 0

1

, , ,q q
d d d dd d

q

M A B A B A B







 



 
 
     
 
  




. (10) 

Taking into account (8) one has 

0 1 0 0[ ]q
s i i idM c A x     (11) 

and thus  

1
s M  , 0 0 0q

i i idc A x   . (12) 

The SDC performances can be improved 
minimizing the oscillation effects as shown in 
[11], [3]. Define the cost function  

   
1

1 1
0

1

2

q Tk k k k k T k

i i i i i i
k

c x Q c x u RuJ


 


    
   (13) 

where n nQ   and r rR   are positive 

definite matrices. The minimization of J  
ensures the reduction of intersample ripples 
and the moderation of control magnitude. 
Denote the Hamiltonian of the optimal 
control problem (6a), (13) by  

   
1

1 1
0

1
( 1)

0

1

2

q Tk k k k kT k
i i i i i i

k

q
k T k k

i i i
k

d d

c x Q c x u Ru

l A x B u

H


 







   

 

    

  





 (14) 

where k n
il   is the Lagrange multiplier. 

Using the Pontryagin maximum principle one 
obtains the optimal control law  

1
1( )k T k T k k

i d i d i il A l A Q c x  
    (15) 

1 1k T k
i d iu R B l   (16) 

which can be realized by a SDC (7) with  

1, , ,k k T T T
i i d d dl A A Q R A          .  (17) 

In this case  

1
12s
   (18) 

0 0 0
11[ ]i i i hc x I     (19) 

where 

11 12

21 22

11 qT TT T dd d dd d d
TT

dd

B R B AA B R B A Q
AA Q

  



  
   

 
   

 (20) 

0
1

1
11 2 0

1
1

i

h iq q

b

q
i

c

I c
H K H K H KI

c



 




 
 

            
 
 




 (21) 

and  

1 1T T T T
d d d d d d d

T T
d d

A B R B A Q B R B A
H

A Q A

   

 

 
  
  

 (22) 

1 T T

d d d

T

d

B R B A Q
K

A Q

 



 
   

. (23) 
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In the next two sections we shall generalize the 
presented full state information SDC for the cases 
of delayed state and output plant information. 

3. Sampled Tracking with 
Delayed State Feedback 

In this section, we assume that for system (6) 
delayed state measurements 1

k

ix   are only 
available. To solve the sampled tracking 
problem in this case we propose a new class 
of SDC incorporating an estimator of k

ix  

based on the measurements 1

k

ix   and the 

control signals k
iu .  

Using the system equation (6a) the state 
vector k

ix  can be estimated as  

1
1 2 0

1

1

k q
i

k q
q q qk k i

i i d d d dd d d

k
i

u

u
x A x A B A B A B

u



 
 





 
 
      
 
 
 




 (24) 

Thus the sampled tracking with delayed state 
information can be realized by a controller 
consisting of a serial connexion of the 
estimator (24) and the standard full state 
information SDC (7).  

When simplified full state information SDC 
is used, the controller parameters are 
determined from (12) and the corresponding 
controller structure is represented in Figure 4. 

  

1M   

System to be controlled  

 

1 .k k

i i    
k

i  
0

i  0

i  0
ic  

( )et  
  

k

iu  

Estimator  q

dA  
1

k

ix 
 k

ix
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_  

k

iu  

( )eT  

 

Figure 4. Simplified SDC with delayed state 
information 

The controller performances can be 
optimized using the optimal full state 
information SDC presented in Section 2. In 
this case the controller parameters are 
determined from (17)-(24). The optimal 

controller structure is represented in Figure 5, 
where ( )   is defined by equations (21)-(23). 



( ) 

System to be controlled
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Figure 5. Optimal SDC with delayed                

state information 

4.  Sampled Tracking with 
Delayed Output Feedback 

Consider now the general sampled tracking 
problem when delayed plant output 
measurements 1

k
iy   are only available. This 

problem can be solved incorporating an 
observer in the SCD developed in Section 3 
in order to estimate the delayed plant state 

1

k

ix   based on 1

k

iy  . 

The 1

k

ix   estimation can be realized by using a 
discrete reduced-order Luenberger observer 
[12] with inputs 1

k

iy   and k

iu . Rewrite the 
equations (6) of the system to be controlled as 

k

1,i11 12 1k+1 k

i ik

2,i21 21 2

xf f h
x u

xf f h

    
     
    

 (26) 

k k

1 i-1 1,i-1

k

iy Cx x    (27) 

where k

1,i

mx   and k

2,i

n mx  . The vector 
k

2,i-1x  can be estimated by the reduced-

order Luenberger observer  
k+1 k k

i i 1, i

k

iz Fz Gx Hu     (28a) 
k k

i 2,i 1,
ˆ k

iz x Lx    (28b) 
k k

2,i i 1,
ˆ k

ix z Lx    (28c) 

where 

22 12( )F f Lf   (29a) 

22 12 21 11( ) ( )G f Lf L f Lf     (29b) 

22 12( )H f Lf    (29c) 



Studies in Informatics and Control, Vol. 19, No. 4, December 2010 http://www.sic.ici.ro 343

and the matrix ( )n m mL    is chosen in (29a) 
so that the matrix F  to have zero spectrum. 
Thus we obtain the estimate  

 1 1, 1 2, 1ˆ ˆ
Tk k k

i i ix x x      . 

Replacing 1

k

ix   by 1
ˆ k

ix   in (24) we can realize 
an output trajectory tracking with two 
switching period of delay:  

0 0

2 , 0,1, 2,i iy Cc i     . 

For simplified SDC with delayed plant output 
information, the controller parameters are 
determined as  

1d M  , 0 0 0ˆ[ ]q

i i d ic A x   . 

We can also replace k

ix  by ˆ k

ix in (15) and 
(19) obtaining thus an optimal SDC with 
delayed plant output information, which 
parameters are 

T
dA   

T
dA Q   
1 T

dR A    (30) 
1

12

d

i
    

1
ˆk k k

i i ia c x    
0 0 0

1 11
ˆ

i i i hc x I     . 

The corresponding controller structure is 
illustrated in Figure 6.  

( )   

  
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H  
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Figure 6. Optimal SDC with delayed                 

plant output information 

5. Numerical Simulations 

The performances of the proposed SDC have 
been analysed by numerical simulation for 
the second order plant model  

( ) ( ) ( )x t Ax t Bu t   (31) 
( )y Cx t  (32) 

with 
0 1

2 1
A

 
   

, 
0

2
B

 
  
 

,  1 0C  , and 

delayed output measurements 
* *( ) ( . )e ey t T y t q t   .  (33) 

The corresponding two-time-scale sampled-
data system is  

1 , 0,1, , 1k k k
i d i d ix A x B u k q      (33) 

1 1
k k
i iy Cx  . (34) 

The switching period 1e eT qt s   and 

2,4,20q  ; 0.5,0.25,0.05et   have been 
chosen corresponding to following sampled-
data system matrices:  

1) 2q  , 0.5et    

1.222 0.427

0.854 0.795
dA 

 
  

 
0.222

0.854
dB 

 
  

; 

2) 4q  , 0.25et    

1.058 0.226

0.452 0.832
dA 

 
  

 
0.058

0.452
dB 

 
  

; 

3) 20q  , 0.05et   

1.003 0.049

0.098 0.954
dA 

 
  

 
0.003

0.098
dB 

 
  

. 

The desired state trajectories has been 
defined as  

1

2

3 2

2

( ) 0.17 2.5 10 10

( ) 0.51 5 * 10
( )

c t t t t

c t t t
c t

   
 

  

  
      

. 

First, sampled tracking with delayed state 
measurements has been simulated for 
simplified and optimal SDC. The simplified 
SDC parameters were determined from   

2 8
exp( ),  

7 10et  
 

    
 

and  10 10  . 

The results obtained are given in Figure 7. 
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Figure 8. Optimal SDC with delayed               
plant state information 
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Figure 7. Optimal SDC with                     
delayed state information 
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Note that to facilitate the tracking 
performance evaluation, in Figures 7 – 10 the 
trajectory  

11

22

( 2 )( )
( )

( 2 )( )
e

e

c t Tw t
w t

c t Tw t

  
        

 

is presented instead of ( )c t .  

For the optimal SDC with delayed state 
measurements, 20.01Q I  and 100R   have 
been chosen and the controller parameters 
have been determined by (17)-(23). The 
corresponding simulation results are given in 
Figure 8.  

Then sampled tracking with delayed plant 
output measurements has been simulated for 
the optimal SDC. The controller parameters 
have been determined from (30) and (29) for 

20.01Q I  and 100R  . The simulation 
results are presented in Figure 9.  

From Figure 7 and Figure 8 it can be seen 
that the delayed plant state k

ix 1  follows 
perfectly the desired state trajectory in 
switching instants with two switching periods 
of delay. In turn, Figure 9 shows that the 
delayed plant output 1

k

iy   strictly follows the 

desired output trajectory 1( )c t  with two 
switching periods of delay. In the trajectory 
tracking using simplified SDC there exist 
oscillations between two switching instants 
except in the case where q is equal to the 
order of the system. In the trajectory tracking 
by optimal SDC both for delayed state and 
output measurements, these oscillations are 
significantly reduced. Figure 9 shows also 
that the observer state k

ix 1,2
ˆ

  tracks well the 

desired state trajectory 2 ( )c t  with two 
switching periods of delay.  

Finally, to analyse the robustness of the 
optimal SDC with delayed output 
information, the parameter variations in the 
plant model have been realized  as 

0 1

2 0.1sin(5 ) 1 0.2sin(10 )
A

t t

 
     
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(a) 2, 0.5 , 1 .e eq t s T s    

 

 

 

(b) 4, 0.25 , 1 .e eq t s T s    

 

 

 

(c) 20, 0.05 , 1 .e eq t s T s    
 

Figure 9. Optimal SDC with delayed            
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The corresponding trajectory tracking results, 
given in Figure 10, show the robustness and 
the efficiency of the proposed SDC. 

6. Conclusions  

In this paper, simplified and optimal two-
time-scale sampled-data controllers are 
proposed for trajectory tracking control of 
linear plants with delayed state or output 
measurements. These controllers can achieve 
perfect trajectory tracking in switching 
instants with two switching periods of delay 
and are sufficiently robust against variations 
of the plant parameters. The proposed 
optimal controllers enable also to minimize 
the oscillations between switching instants.  
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