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1. Introduction 

As it was reported in several studies 60% of 
adult drivers have driven while felling 
drowsy in the past years, and 37% have 
actually fallen asleep while driving. For this 
reason, a technique that can detect the 
driver’s drowsiness in real-time is very 
important in order to prevent accidents 
caused by drowsiness. In cases of equipment 
operation there are no statistics published but 
the danger of accidents is also present. If 
drowsiness could be detected, incidents can 
be prevented by countermeasures in order to 
awake the driver or the operator. 

In order to analyze the state of awareness it is 
important to know the phases of sleep. Sleep 
cycle is divided into Non-Rapid Eye 
Movement (NREM) sleep and Rapid Eye 
Movement (REM) sleep, and the NREM 
sleep is further divided into four stages. 
Drowsiness is the first stage of sleep in the 
NREM domain [1, 2]. So the detection of 
awareness can be based, among others, on the 
distinction between first stage of NREM state 
and awake state. 

In the last years a large number of methods 
had been tested, based on the use of: heart 
rate variability, video monitoring of the eye 
movement and facial expression, EEG, EMG 
and ECG signals.  

The video monitoring approach analyzes the 
images captured by cameras to detect 
physical changes of driver’s image, such as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 eyelid movement, eye gaze, and head 
nodding. Some systems are using cameras 
and imaging processing techniques to measure 
the percentage of eyelid closure over time. 
Although this vision based method is not 
invasive and is not causing annoyance to 
drivers, the drowsiness detection accuracy is 
severely affected by the environmental 
backgrounds, driving or operating conditions 
and also requires the camera to focus on a 
relatively small area. 

The physiological signal detection approach 
is to measure the changes of driver or 
operator biological signals, such as the 
electroencephalography (EEG) and 
electrocardiogram (ECG). Since the sleep 
rhythm is strongly correlated with brain and 
heart activities (brain rhythms correlated with 
NREM first stage), these physiological 
signals can give more accurate drowsiness 
detection than video monitoring. The 
drawback of this method is that the electrode 
contacts and wires can make a discomfort for 
the driver or operator and also that the 
electrodes must be placed on the skull using a 
conductive gel which ensures a good contact 
with the skin. These difficulties can be 
overcome by using dry-contact, low-noise 
EEG sensors, as it is described in [3]. The 
dry-contact EEG electrodes were created by 
the authors [3] with micro-electrical-
mechanical system (MEMS) technology. 
Each channel of the analog signal processing 
front-end comes on a custom-built, small-
sized circuit board which contains an 
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amplifier, filters, and analog-to-digital 
conversion. As the authors describe daisy-
chain configuration between boards with bit-
serial output reduces the wiring needed and 
the system is capable to detect alpha-band 
rhythms and eye-blink signals.  

Also for driver awareness detection a number 
of methods were proposed which are based 
on the technique of embedding biosensors 
into steering wheel or in the seat of the 
vehicle in order to measure heart beat pulse 
signals [4]. Time series of heart beat pulse 
signal can be used to calculate the heart rate 
variability. As it is shown in [4], the 
frequency domain spectral analysis of heart 
rate variability shows that typical it has three 
main frequency bands: high frequency band, 
low frequency band and very low frequency. 
A number of psycho-physiological researches 
have found that the low and high frequency 
power spectral density ratio decreases when a 
person changes from waking into 
drowsiness/sleep stage, while the high 
frequency power increases associated with 
this status change. The authors in [4] show 
that this variability can be an effective 
method for the detection of driver drowsiness. 
The problem with this method is that the 
drowsiness detection equipment is not 
portable and it must be embedded in the 
vehicle parts which will limit its applicability. 

 

Analyzing the above mentioned approaches 
we decided to study algorithms which can be 
used for drowsiness/awareness detection 
when applying techniques based on EEG and 
EMG signals measurement. There are also a 
large number of studies which uses EEG 
signals for brain – computer interface 
applications [5, 6, 7, 8]. If the EEG device is 
built in the manner described in [3] this 
method has the advantage that is independent 
from the equipment, vehicle or situ where it 

is used, and can be applied both for drivers 
and equipment operators too. 

2. Experimental Setup and Method 

Subjects had to fulfil two different tasks. The 
first one is related to eye blinking and eye 
movement and the second task is related to 
reaching a highly relaxed state close to 
drowsiness, while monitoring the 
physiological signals. 

For the first task the subject had to blink the 
eyes in a specific rhythm (f1) for a specified 
number of times (n1) and then change the 
rhythm (f2) for another number of times (n2).  
An ideal diagram of eye-blink rhythms can be 
seen in Figure 1. A similar paradigm has been 
used for eye movement experiments. 

For example in Figure 1:  
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The second task is that of producing an EEG 
signal with a major alpha rhythm component 
by reaching a highly relaxed state. This had 
been done by requesting the subject to 
produce an alert (aware) state (for example 
being attentive to images recorded during a 
vehicle running on a road) and then in a 
different measurement session a totally 
relaxed state (eyes closed and empty minded). 

 

 

 

 

 

 

 

A usual diagram for alert state is shown in 
Figure 2, and a diagram of relaxed state is 
shown in Figure 3. 

 

Figure 1. Expected eye blink signal.  
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Figure 2. Expected shape of power spectral 
density (PSD) in aware state. 

 

Figure 3. Expected shape of power spectral 
density (PSD) in relaxed state. 

A total of five healthy male adults (aged 25–
48) participated in the study. None of the 
subjects had participated in such experiments 
before and the subjects had a short basic 
training for the task. The subjects were 
informed about the nature and purpose of the 
experiments and consented to participate.   

 

EEG signals were acquired using a BST112 
8-channel amplifier from VEB 
MESSGERATEWERK ZVONIZ and for 
A/D conversion and transmission of data to a 

PC, a National Instruments NI-USB 6251 
DAQ board has bean used. The accuracy of 
the DAQ board is of 15.259µV. The Ag-
AgCl electrodes were placed in the Fp1 point 
for the eye blinking and eye movement 
detection and in the F3 point on the skull for 
alpha rhythm measurement, using a 
conductive gel (Figure 4). As voltage 
reference, the A1 point was used (Figure 4) 
and the ground was located on the right leg. 
Data were sampled at a sample rate of 1000 
Hz and were transmitted through the USB 
port to a PC for storage and processing. The 
data acquisition and processing programs 
were written in MATLAB language. 

Every subject has made 3 training sessions to 
accommodate with the environment and the 
equipment and then 4 sessions which        
were recorded.  

3. Experimental Results 

The useful potentials measured on the skull 
are considerably low. In case of EMG (when 
measuring eye movement or blinking) is 
about from hundreds to a few thousands of 
micro volts. EEG potentials are much lower 
from a few to a hundred micro volts. The 
signal conditioning methods and equipments 
(amplification and filtering) has to be of a 
very good quality at these low levels of 
potential. Even so due to the electrical 
complexity of the human body, noises from 
different sources can alter the useful signals. 
One of the major noises which are present in 
these signals (but may be avoided if the 
system described in [3] is used) is the 50 Hz  

 

 

 

 

 

 

 

 

component which is due to the AC source of 
the EEG device. These noises are observable 
in Figure 5 and Figure 8 time diagrams. In 
Figure 8 the noise is much larger compared to 

 

Figure 4. Electrode placement used in the experiments (pointed out by the red dots).  
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the useful signal, because the eye movement 
signals are much lower than the eye blink 
signals. Another components which can be 
considered as noises are the heart beat (or 
pulse) signals which can not be always 
avoided. An example of such signals can be 
seen in Figure 10. Figures 6 and 9 show the 
Power Spectral Density of signals in Figures 
5 and 8. Studying the possibilities of filtering 
these signals we can assume that filtering eye 
blink and eye movement can be made using 
frequency domain filtering using the same 
filtering parameters both for eye blinking and 
eye movement signals.  

Regarding the EEG signals these were 
recorded both in aware and drowsy states as 
described in section 2. An example of aware 
state signal is shown in Figure 12 and an 
example of drowsy state signal is given in 
Figure 14. From these signals we can obtain 
the PSD using a simple FFT algorithm. The 
PSD Amplitude versus frequency diagrams 
are shown in Figures 13 and 15. Analyzing 
these diagrams we can observe (as it is also 
shown by different authors) that the peak 
representing the alpha rhythm (in the 
frequency domain of 8-12 Hz) clearly 
increases (almost doubles) in drowsy state 
compared to aware state.  

 

Figure 5. Eye blink time signal, showing 10 eye 
blinks at intervals of 1.5 seconds and 3 eye blinks 

at intervals of 2.5 seconds. 

 

Figure 6. Eye blink PSD amplitude versus 
frequency of the signal presented in Figure 5. 

 
Figure 7. Eye blink time signal from Figure 5, 

filtered with a low pass FFT filter in the              
0-6 Hz domain. 

 

Figure 8. Eye movement time signal, showing 6 
eye movements at intervals of 2 seconds and 2 eye 

movements at intervals of 3 seconds. 
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Figure 9. Eye movement PSD amplitude versus 
frequency of the signal presented in Figure 8. 

 

 

Figure 10. Eye movement and heart beat time 
signal from Figure 8, filtered with a low pass FFT 

filter in the 0-20 Hz domain. 

 

Figure 11. Eye movement time signal from 
Figure 8, filtered with a low pass FFT filter in the 

0-6 Hz domain. 

 

Figure 12. EEG signals recorded as described in 
section 2. Aware state. 

 

Figure 13. PSD amplitude versus frequency of the 
EEG signal presented in Figure 12, with the alpha 
rhythm peak in the 10-12 Hz frequency domain. 

 

Figure 14. EEG signals recorded as described in 
section 2. Drowsy state. 
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Figure 15. PSD amplitude versus frequency of the 
EEG signal presented in Figure 14, with the alpha 
rhythm peak in the 10-12 Hz frequency domain. 

 

 

4. Data Processing and Fuzzy 
Decision Algorithm. 

Our approach is based on the observation that 
the condition of drowsiness is on one hand 
the first stage of the NREM stage that involve 
the absence of any eye movement or eye 
blinking signal and on the other hand, the 
increasing PSD amplitude in the alpha 
rhythm (8-12 Hz) frequency band. We 
consider that these two features are sufficient 
to discriminate between the awareness and 
drowsiness conditions.  

 

The drowsiness detection system which we 
propose is presented in Figure 16. The eye 
blink and eye movement is detected by the 
same electrode and the acquisitioned signals 
are filtered in the same way for both blinking 
and movement, as described in section 3. 

Once the eye blink and movement are obtained 
in the form shown in Figures 7 and 11, these 
can be analyzed using a detection algorithm 
which computes the current value of the 
decision parameter P1 using the expression: 
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where: 

 A(s) – is the time signal amplitude at 
time s; 

 RMS(i) – is the root mean square of the 
time signal amplitude for the domain       
i [s-n, s]; 

The EEG signals are processed using the FFT 
algorithm and then the P2 parameter value is 
computed with the expression: 
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where: j = 8 Hz; m = 4; n = the number of 
samples on which the FFT is computed, and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Flow chart of the drowsiness  detection algorithm. 
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Re denotes the real part of the complex     
FFT value. 

Once the P1 and P2 parameters are computed, 
these parameters can be used as inputs in the 
fuzzy decision algorithm. Some fuzzy 
methods for time series prediction are given 
in [9], and for nonlinear systems in [10]. In 
order to further optimize the computation 
time simple fuzzy rules, easy to evaluate 
membership functions and inference methods 
are used. The proposed fuzzy system 
structure is given below: 

 

The actual fuzzy system parameters have to 
be determined in a calibration session of the 
whole system.  

The meanings of decisions which are made 
are as follows: 

 CALIBRATE – in this case there is a 
decisional conflict between the two 
parameters (a situation that theoretically 
could not happen). That is why the 
system will recommend the fulfillment of 
the calibration procedure. 

 CONTINUE MONITORING – the system 
continues to execute the algorithm; 

 BEEP, LOUD BEEP, ALARM – are 
three levels of sound intensity of the 
sound alarm system. 

5. Conclusions 

The proposed drowsiness detection system 
has to work in real-time conditions so the 
algorithm for data processing and decision 
making has to work fast. This is required by 
the need to alarm the driver or operator in a 
proper time.  

The computation of parameter P1 is relatively 
easy and the time required for computation is 
short enough to allow its use in real-time 
systems. The second parameter P2 is 
computed with the FFT algorithm which is 
also known to be fast especially when it is 
applied only to 256 samples, which is more 
than enough for the frequency range needed. 
Here the main issue is not the processing time 
(which is about the order of 10-4 seconds), but 
the need to detect a minimum of 8 Hz 
frequency with an acceptable accuracy. This 
time is evaluated to be about 0.14 seconds. 

The decision time using the presented fuzzy 
algorithm and considering the selected 
membership functions and inference 
method should not take more than a few 
tenths of milliseconds. This will lead to an 
overall processing time of about 0.2 up to 
0.25 seconds.  
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