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Abstract: This paper uses the concept of multiple models and the concept of switching controllers. The analog part of the
system is described by a finite set of continuous-time models with input delays. The continuous-time models include
unmodeled dynamics in the form of affine matrix family. By using suitable transformation, the models with input delay
are converted into delay free models. Then, by using the LMI tool, the class of robust LQ controllers with the prescribed
degree of stability is proposed and for every controller the upper bound for the performance index is given. The switching
logic is based on the selection of minimal upper bound from the collection of upper bounds. Finally, it is shown by means
of performance dominant conditions, that the resulting closed-loop is stable.
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1. Introduction

Hybrid systems describe the interaction
between software, modeled by finite-state
systems such as finite-state machines, and the
physical world described by differential
equations. The several key verification and
control synthesis results for hybrid systems,
guided by the concept of bisimulation, are
outlined in the reference [1]. From the classical
control theory point of view the hybrid systems
can be considered as a switching control
between analog feedback loops [2]. There are
numerous applications of switching systems.
For example, the reference [3] presents a vision
based cart-inverted pendulum system under a
hybrid feedback configuration. In [4] was
considered unicycle and constrained pendulum
as examples for switched control systems. The
reference [5] presents impedance control of a
robot manipulator using hybrid control.

Time-delay occurs in many dynamical systems
such as biological systems, process industry,
and long transmission lines in pneumatic
systems, hydraulic systems, and electrical
networks. It is frequently a source of the
generation of oscillation, instability and poor
performance. The effect of delay on the
stability properties of dynamical systems is
considered in [6]. Design of feedback control
law for time-delay systems, based on dynamic
programming, is presented in [7].

In this paper we use predictor like techniques
for systems with input delay. Such techniques
are considered in [8] and [9]. By using a
suitable transformation the original problem
can be described in the form of delay
free system.

A specific class of problems (robust switching
control in the presence of input saturation and
switching stochastic nonlinear systems) is
considered in [11] and [12].

In this paper we describe input delay systems
using the multiple-model concept. The model
includes unmodeled dynamics in the form of
affine matrix family. By using the LMI (linear
matrix inequalities) tool [13] the robust hybrid
LQ controller with the prescribed degree of
stability is proposed. It is formally proved that
such a switching closed-loop system is stable.

2. System Description by
Multiple Models

We assume that the process model is a member
of admissible process models

F= ;E;JP Fo, (1)
where P is matrix index set which represents

the range of parametric uncertainty so that for
each fixed peP the subfamily F, accounts

for unmodeled dynamics. Usually P is the
compact subset of finite-dimensional normed
vector space. The process with input delay will
be described in the following form
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where xeR", ueR™ and A (q), and B
are nxn and nxm matrices respectively. The
hi(i=12,..,r) is the input delay. The
dimensions of vectors u(t)i=12,..r)
correspond to the dimensions of matrices
BW (i=12,..r). The initial condition for
system (2) is x(t,) where t,
finite and known quantity.

>0is arbitrary

Remark 1: In relation (2) the matrices
A. , p=L2.,s ,i=01.r

p1

are known and
‘qpi‘<7p , 7p>0 for p=12,..,s

The maximum y, = for which robust

7p,max !
stability of affine family of matrices is provided
for  Vy, <7,mx, IS known as the stability

radius.

Relation (2) describes the continuous part of
the system. The event driven part can be
described in the following form

p*(t)= @ (p(t).olt)), (3)

where p(t) is a discrete event variable, o(t) is
a discrete input and ¢, (--) is a function which
describes the behavior of p(t). It is important
to note that

p*(t)=pltys) . PO)=Pt) . th <trs, (@)

A specific form of switching sequence will be
described in the next part of the paper.

3. Switching Control Systems

For complex processes the regulation problem
can be solved, by the family of controllers
from [14]

{ch q° e D}, (5)

where D is the index set. It is supposed that
the family is sufficiently rich so that every
admissible process model can be stabilized by

controller ch for some index g° e D. This
paper will consider the case

F=D, (6)

The supervisor (4) and (5), in this paper, is
different in comparison with the supervisor
described in [2] . Here, the main ingredient of
supervisor is the index of performance of
feedback control systems.

A transformation will now be formulated , for
system (2), which puts system (2) in the finite
dimensional form. It means that the
transformed system will be described by an
ordinary differential equation. That will be
given in the following lemma.

Lemma 1. System (2), by next transformation

t
y(t)=x(t)+ J.e_A"(q)(s_t)e_Ap([‘)hO B oU(s)ds +

t—h,

J.e B u(s)ds 4o+

t
+Ie AV u(s)ds
t-h,

obtains the form

i=0
p=12.,s,h,=0 =

Proof: By differentiation of the transformation
relation one can get

y(t)=x(t)+ e * B qu(t)- B,oult —hy)
t
+A,(q) Ie_Ap(q)(s_I)e_A”(q)h‘) B ou(s)ds +

t—k,

+e g u(t)— B, u(t—h, )+

j.e A g oru(s)ds,

t=h,

(")

Using relations (7) and (2) we obtain
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Lemma is proved -

Remark 2: The initial value for y(t) in Lemma
1is givenas

y(to )=x(t, ) +

: Jomo

t0 hy

@ho B ,ou(s)ds +

_[e /WA y(s)ds 4o +

to—hy

Ie”

for an arbitrary control u(-). We suppose that
u(-)=0 on intervals

[tO _hO'tO] ’ [tO _hl'to] 1oty [tO
It follows that
y(to): X(to)

Remark 3: For r=1 and hy=0 the transformation
is proposed in [9]. This approach is known as a
predictor-like technique.

B u(s)ds

_hr'to]

Remark 4: The general linear system with input
delay is considered in [8]. The delayed action is
generated by a Lebesque — Stieltjes integration
of the control.

We will now introduce the optimal LQ
controller with the prescribed degree of
stability o for fixed p and

[
quiA
i=1

In that case, relation (8) has the form

0 ' qpiEQ]_CRI! (9)

pOy Ze 'Bu (10)

The index of performance is given in [18] as

R R C R CLTCTEN

a>0

where Q and R are positive definite matrices.
The optimal controller is (for fixed p)

=-R"~ e B
(Z j ! (12)
mind} =e "y (t,)PIy(t, )
where matrix P; is a solution of the following

algebraic Riccati equation

PL(Ay +ad )+ (AT +ad P

r
_ 1 ’Apohl
o3
i=0

It is well known that for LQ controller (11)-
(13) the Lyapunov function

V(x)=yT(t)Pyy(t), (14)

In the presence of unmodeled dynamics, the
transformed closed-loop system has the
following form

510 A a0+ Yo B ul).  as)

13
BpiJRIP;+Q=o, &

)= S e, o)

p=12.,s , hy=0, (16)

where matrix P, is solution of algebraic Riccati
equation for system with unmodeled dynamics.

The next goal is to find matrix P, without the
help of Riccati equation. Instead, we shall use
the LMI tool. The result will be formulated in
the form of theorem.

Theorem 1. Let us suppose that for the closed-
loop system (15), (16) is satisfied

1° The pair of matrices

r
—Ajoh;
Ap+a , ) e ™'B,
i=0

is controllable
2° The matrices Q and R are positive definite
Then the feedback law has a form
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(t)R[zBJ b))

and the wupper bound for index of

performance is
Jp < e_zmo(p(7;)
for vqeQ, cR' and p=12.,s

where for Vy, >0

vy =argming(y, ), oly, )=

7p
=7yl 0, 0 ) yite)
and Yp(yp) is a solution of the
following LMI

(q)+al )Yp +Yp(Ap (q)+al )T +
Vo 2)(Zr:e‘Apohi BpiJ R—l(ie‘Apohi Bpi j,

1/2 1/2 1/2~1/2
D, Y,Q =y, Q7°Y, ,
Fo=-1,Y,>0, quQ,ch and
p=12,.,s =
Proof: Let us introduce the following
transformation:
g(t)=e“y(t) , G(t)=e"ult), (17

Now, from relations (15) and (17) we have

3(0)= Ay @)+t )

Ze Bt (18)

Using 1° and 2° conditions of theorem we
have, based on analogy with (16)

r . T
a(t)= —R‘{Z e o Bpi] P, (1), (19)
i=0

From the last two relations it follows that
§(t)=A,(@)9(t) . A,(a)= A (@)+al -

r T (20)
Apohi BpiJRl(zeApohi Bpij Pp!
i=0

Using observation (14) we have

V=2V () - on

=97 O[A; (@)P, + P, A, (@)l (1)

Condition V < 0 will be satisfied if

Al (a)P, +P,A,(q)<0, (22)
From (20) and (22) we have

(A, @)+ J P, +P, (A, (q)+al )-

r
- 2&[2 e B, ] (23)
i=0
. T
_1(Ze—Apohi Bpij Pp < 0,
i=0

Let us multiply the last inequality from the left
and right side with the matrix Y, =P,*. It

follows that, for Yp >0

(A, @)+l 'Y, +Y, (A (0)+ad )-

o BTN U )
=2/ > e ™ B, R Y e ™ B, | <0,
i=0 i=0

The matrix Y, is the solution of the inequality
(24). Having in mind that P, =Y,*, the

optimal performance index is (as in

relation (12))
J, = g% y' (to )Yp_l)'(to)
But, owing to the presence of unmodeled

dynamic, J, cannot be determined a priori

and, as a result, it cannot be used for supervisor
design. But, it is possible to determine the
upper bound for J ;. For that purpose, it will be

considered a stronger inequality in comparison
to (24).

Let us introduce the parameter y, >0 and
from (24) we have
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(A @)+ 'Y, +Y, (A (q)+al)

A fe{gen)

[[Ze 'Bp.jR (Ze—ApohiniJTJr(%)

i=0
+YpQYp} <0 , Y,>0,
Now we shall multiply the last inequality from

the left and right-hand sides with the
matrixY,*. It follows that

Ay (q)+al )-2v,;

(Ay(@)+a Y, 4y, ;

p

T
r r
[ze_Apohi Bpi jR—l[ze_Apohi Bpi]
i=0 i=0

.[ge-’*pohispi} Yp1+Q],

The last relation can be rewritten in the
following form

~ 1 N 1 1|~

g

Let us put
A=A, (q)=A,(q)+al -
T
r (28)
[Ze_A‘“’h‘BpJ ‘{Ze o' B j :
i=0
i=0
r T
i=0

From [15, Theorem 3, p. 142] it follows that

(26)

(27)

(29)

A (@)Z,+Z,A,(0)=
{Q +Yp‘1(ie"*p°“i B, JR‘l (30)
i=0
r T
'(Ze_APOhi BpiJ Yp_l]v
i=0
and
J,= g 2 y(to )T Z, y(to ) ) (31)

If we subtract relation (30) from relation (27)
we have

~ 1.
Ag(q)(—Ypl—ZpJ+
Vp

1. ~
J{—Ypl—ZpJAg(q)sO,

7o

(32)

By using [16, Proposition 4.4, p.140] one
can conclude

-1 -1

Y, Yo

——Z >0 and —>Z (33)

7p 7p

From (31) and (33) one can get
1 _ _

J,<—e 2o yT (to)Yply(to): (34)
7p

Inequality (25) can be rewritten in the

following form

(A (@)+at Y, +Y, (A @)+l )+ (y, —2)-

T
r r
. {ze—Apom Bpi ]R—l(ze—p\pohl Bpij + (35)
( 1/2YpQ1/2 1/2Q1/2Y )< 0, ¥,>0,

By wusing [16, Theorem 1.10, p.46] last
inequality will take the form

{Cp Dp}so
E, R

(36)

where Cp, Dp, Ep and Fp are defined in the
formulation of Theorem 1.
From inequality (36) one can find solution

Y, (yp ) After that, we can construct
the function
¢(7p):751yT (to)Yp_l(7p)Y(to)- (37)
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From the last relation it follows that

¥, =argmin (p(yp) , (38)

7p

Now feedback law has the form

:—R‘l[Ze g JT( a0, 39)

and the upper bound for index of performance is
3, <eglyr), (40)
Theorem is proved =

Remark 5: If A, (q) is the affine matrix family

and geQ, is a polygon it is enough to solve
matrix inequalities (36) for vertices V of set
Q,. It means that we must to solve the finite
number of matrix inequalities

{cp Dp}so
EP FP

Ch :(Ap(q")+ ol )TYD +Yp(Ap(qv)+al)T

et
D
F

1/2 1/2
O

The matrices A, (qV) are matrices for which
‘qpi‘qu , p=12,..,s , i=12..,1
For situation when the number of matrix

inequalities is large special iterative procedures
are developed in the literature.

4. Robust Stability of Switching
Control Systems

By using relation (15) and the fact that h, =0,
the system can be described in the form

qu. Ay y(t)

3P Bu(t)= Agy(D)+ Byult)  (41)
+ A(y(D). pO)u(D).0)

Y(t) pOy + Bpou

where

A(y(t), pt)u(t).q) =
- qui Apy(t)+ Zr:eA” g Lut)

whereby g, €Q cR'and p=12,.,s.

(42)

The switching controller has two components
A) The analog feedback

(>(zj (b )0
p=12,..,s,

whereby Yp(;/;) is the solution of LMI which
is defined in Theorem 1.

B) The discrete feedback is
mln( ( )) p=12,..,s

40(7 [T A o

Now we shall formulate a theorem which will
proved robust stability of the original
system (2).

Theorem 2. Suppose that for the dynamic
switching system (41)-(44) the following
is satisfied

1° The next two inequalities are satisfied

[[z} <vp<y;>>-l}y<t
“(y(t)Qy(t)+u(t)Ru(t)+c

<k 0%
nucnam (S
>1
R AR
Ky>0,¢>0 , p=12,.,s
[y(t)] < ko (™ (ORy(t)+ u™ (ORu(t)
kpp >0, |y(t) 21, p=12..s

3° The affine matrix family is
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I
_ApO +quiA
i=1
p=12,.5

the set Q, ¢ R' is a polygon and the set of
vertices " eV < Q, is

V:{q€Q| :‘qpi‘zﬂ/;}

4° r, €[0,)
where
ry = qegluEeMHA ), p(t)u(t).q)
M ={2,..,s}

5° The system without unmodeled dynamics
is controllable

{ 00+ Ze ""'B}

6° The best performance achievable by using
LQ non-switching control strategy is

o - min{%eZMO " <to)vp-l<7;;)y(to>}

p=12,..,s

Then the completely controllable system
(2) is stabilized by the control law

‘ -R{ze & }T< )

is a feedback gain matrix =

Proof: We shall first prove the boundedness of
index performance for a switched system. Let
us define the discrete state sequence

p=1p(t;), j=01..}, (45)

For any integer n> 0, the truncated switching
sequence is

P =1{p(ts) . pt) . -
Let us introduce

plt, )} (46)

T(t)=y" (E)Qy(t)+u" (t)Ru(t), (47)
Now, for the performance index we have

tl tn
3o = [T (t)dt+ .+ | €T ()t +

fo tha

o

+ [T (t)at =
In
tl tn

= [T (t)dt+ .+ [ T (t)dt+a,, < (48)

t0 tn—l
t1 tn

sjez"’tT (t)dt+..+j e?T (t)dt+

t0 tn—l

1 .
eyl (t,)Y ()()/p(tn))y(tn)’
V()

From switching criterion (44) it follows that

tl tn

3, < J'eZ“tT(t)dt bt J.ez"‘tT(t)dt +

t0 tnfl (49)

1 _ x
*—e Zat”’l yT (tn_l)Yp(]{nfl)(}/p(tnfl))y(tn_l)'

7p(t 1)

By using same procedure we finally have

J, < *i y' (to )Y;Iéo)(ﬁ(to))y(to ): Mo, (50)
7 plto)

noting that p(to) is determined according to (44).

Since the right-hand side of (50) is independent

of n, it follows that for the resultant
performance index J of the switching systems
J=IlimJ, <n,, (51)
n—oo

From relation (41) for any zeltt+1]
we obtain

y(t)=y(z)-

r T

- OI 1

I[A BpoR l[Ze 8 ]( (rp)Tsta
t

e)d9+jA 6)u(6),a)6,

The last relation yields

Studies in Informatics and Control, Vol. 20, No. 4, December 2011

http://www.sic.ici.ro 417



[yl =[y@)i+

T r T
I{Apo—spow[ze"*”“ism] (m%)ﬁ(e)]de
t i=0
+ [l (v(0) p(6) (o))

t

(53)

Let us introduce the following sets

={o et t+1]}, (54)
and
Q= {Qe[t,t+l] ;

, : (55)
_ X * \\1
Ao~ BpOR-{Ze Ao Bpi] (v, )1 y(# <1}
i=0

Now we will define the next set
Q,=0\Q,, (56)

From (51), (53) and condition 1° of theorem it
follows that

[yl <[ye)+ Id9+

J.( plezae( (Q)Qy( )+u" (8)Ru ))+C)ﬂ9+
+J B 10} pehule)alpe
<|y(e)+1+c+kyd(t)+r, < -

<|y(@)+1+c+kym+ry,

Condition 2° of the theorem implies for Vy(t)

ly(z)<
2o (yT (£)Qy(t)+u" (t)Ru(t))+1,

Relations (57) and (58) together give

(58)

t+1

Jy(t) < N|y(0)||+1+c+ Kou +1, HO <

t+1

< [l (y7 (0)0y(0) v (@)Ru(@)+ b0+
+1t+c+kpl77+rA$
ck,y [ (57 (0)09(0)+ 07 (O)Ri(o)H0+

t
+2+C+Kyn+r, <Kpn+2+c+kyn+r, =

:(kp2 +kp1)17+2+c+rA,
(59)

Let us introduce
k = maxik . +k

: ( pl pZ) (60)
p=12,.,5s,
From (59) and (60) it fallows that
Iy@), <kn+2+c+r,, (61)

Since the right-hand side is independent of t

[y, <=
p=12,..,s,

The transformation
compact form

y(0)= x(0)+
robo _ . (63)

Z Ie Ap(q)(s t)e_Ap(q)hl Bplu(s)dS,

i=1 t—h,

(62)

relation has the

From the last relation we obtain

(O <[y +> h, max [e*@”].
<y 2 max, o
[Baf 1<y @)

From relation (62) and (64) it follows that
Ix(), <o 5
p=12,..,s,

This concludes the proof of Theorem. =

Remark 6: Here we shall comment about the
conditions 1° and 2° of Theorem 2. Let us
consider the analog nonlinear system in state
space form

y(t)=(y(®)1),

(66)
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where y(t)e R" is state variable. Let us further

suppose that a performance measure for
the system.

)=

h(y(r),r)dr , h(y(T),T)ZO, (67)

- 38

In reference [19], the performance dominant
conditions are defined. The performance
measure J(t) is said to be dominant for the
system (66) if there exist constants c,k,,k, >0
such that forall t >0

[ £ (y(®) o) <k;hly(tht)+c
for ||f(y(t)t)>1

Iy®)<kh(y(@)t) . for [(y®) =1,  (69)

Relation (68) means that only finite escaping of
stales will show up in the performance
measureJ(t). Relation (69) means that large
persistent y(t) values must be detected in the
index of performance avoiding the situation in
which the tail of y(t) remains large even when
the index of performance J(t) is bounded.

Using relation (68) and (69), we can easily get
the assumptions 1° and 2° of Theorem 2.

(68)

Remark 7: Here we shortly consider design of
switching controllers for systems with output
delay. The system is described as

X(t)= A, (a)x(t)+B,uf(t), (70)
Z(t)=C x(t-h), (71)
p=12,..5s

In relation (70) h is the output time delay. Now
we introduce transformation (that is a special
case of Lemma 1) for the system (70) and (71).

2(t) = 7(t)+ C e~ >".

L 72
[e Ve, 72

t-h

The transformed system has the form

X(t)= A, (a)x(t)+B,uft), (73)
z(t)=C,x(t) , Cp:EpefA"(q)h, (74)
By using LMI methodology we can

get controller

u(t)=-K,z(t)=-K,C,x(t) , (75)

The supervisor (multi — estimator, monitoring
signal generator, and switching logic) has the
form as in the reference [2]. For the stability
analysis of switching system (73)-(75) it is
possible to use Theorem 2.

From the short consideration it follows that
stability analysis for switching systems with
input delay and switching systems with output
delay is the same.

5. Conclusion

This paper considers the problem of design of
switching LQ contrrollers for systems with
input time-delay. The problem is solved using
suitable transformation which converts original
time-delay systems into the form of delay free
systems. The paper uses the concept of multiple
models and switching controllers. The
switching strategy is determined by using upper
bounds for indices of performance. For
switching systems the asymptotic sability in the
sense of ow- norm is proved. Further
investigation is required for the situation when
the matrix B, also, has uncertainty.
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