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1. Introduction 

Hybrid systems describe the interaction 
between software, modeled by finite-state 
systems such as finite-state machines, and the 
physical world described by differential 
equations. The several key verification and 
control synthesis results for hybrid systems, 
guided by the concept of bisimulation, are 
outlined in the reference [1]. From the classical 
control theory point of view the hybrid systems 
can be considered as a switching control 
between analog feedback loops [2]. There are 
numerous applications of switching systems. 
For example, the reference [3] presents a vision 
based cart-inverted pendulum system under a 
hybrid feedback configuration. In [4] was 
considered unicycle and constrained pendulum 
as examples for switched control systems. The 
reference [5] presents impedance control of a 
robot manipulator using hybrid control. 

Time-delay occurs in many dynamical systems 
such as biological systems, process industry, 
and long transmission lines in pneumatic 
systems, hydraulic systems, and electrical 
networks. It is frequently a source of the 
generation of oscillation, instability and poor 
performance. The effect of delay on the 
stability properties of dynamical systems is 
considered in [6]. Design of feedback control 
law for time-delay systems, based on dynamic 
programming, is presented in [7].  

 In this paper we use predictor like techniques 
for systems with input delay. Such techniques 
are considered in [8] and [9]. By using a 
suitable transformation the original problem 
can be described in the form of delay            
free system.  

 

 

 

 

 

 

 

 

 

 

 

A specific class of problems (robust switching 
control in the presence of input saturation and 
switching stochastic nonlinear systems) is 
considered in [11] and [12]. 

In this paper we describe input delay systems 
using the multiple-model concept. The model 
includes unmodeled dynamics in the form of 
affine matrix family. By using the LMI (linear 
matrix inequalities) tool [13] the robust hybrid 
LQ controller with the prescribed degree of 
stability is proposed. It is formally proved that 
such a switching closed-loop system is stable. 

2.  System Description by     
Multiple Models 

We assume that the process model is a member 
of admissible process models 
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where P   is matrix index set which represents 
the range of parametric uncertainty so that for 
each fixed  Pp  the subfamily pF  accounts 

for unmodeled dynamics. Usually P  is the 
compact subset of finite-dimensional normed 
vector space. The process with input delay will 
be described in the following form 
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where  nRx , mRu  and  qAp , and piB  

are nxn  and nxm  matrices respectively. The 
 rihi ,..,2,1  is the input delay. The 

dimensions of vectors     ritu i ,..,2,1  
correspond to the dimensions of matrices 

   riB i
pi ,..,2,11  . The initial condition for 

system (2) is  0tx  where 00 t is arbitrary 
finite and known quantity.  

Remark 1: In relation (2) the matrices  

piA   ,  sp ,..,2,1   ,  ri ,..,1,0  

are known and 

ppiq    ,  0p   for   sp ,..,2,1  

The maximum max,pp   , for which robust 

stability of affine family of matrices is provided 
for  max,pp   , is known as the stability 

radius. 

Relation (2) describes the continuous part of 
the system. The event driven part can be 
described in the following form 

      ttptp  ,1 , (3) 

where  tp  is a discrete event variable,  t  is 

a discrete input and  ,1  is a function which 

describes the behavior of  tp . It is important 
to note that 
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  nnnn tttpttptp , (4) 

A specific form of switching sequence will be 
described in the next part of the paper.  

3. Switching Control Systems 

For complex processes the regulation problem 
can be solved, by the family of controllers   
from [14] 

 DqC c
qc : , (5) 

where D  is the index set. It is supposed that 
the family is sufficiently rich so that every 
admissible process model can be stabilized by 

controller cq
C  for some index Dqc  . This 

paper will consider the case 

DF  , (6) 

The supervisor (4) and (5), in this paper, is 
different in comparison with the supervisor 
described in [2] . Here, the main ingredient of 
supervisor is the index of performance of 
feedback control systems. 

A transformation will now be formulated , for 
system (2), which puts system (2) in the finite 
dimensional form. It means that the 
transformed system will be described by an 
ordinary differential equation. That will be 
given in the following lemma. 

Lemma 1. System (2), by next transformation  
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obtains the form 
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Proof: By differentiation of the transformation  
relation one can get 
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Using relations (7) and (2) we obtain  
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Lemma is proved  

Remark 2: The initial value for  ty   in Lemma 
1 is given as 
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for an arbitrary control  u . We suppose that 

  0u  on intervals 

 000 , tht    ,   010 , tht    , … ,  00 , tht r  

It follows that 

   00 txty   

Remark 3: For r=1 and h0=0 the transformation 
is proposed in [9]. This approach is known as a 
predictor-like technique. 

Remark 4: The general linear system with input 
delay is considered in [8]. The delayed action is 
generated by a Lebesque – Stieltjes integration 
of the control. 

We will now introduce the optimal LQ 
controller with the prescribed degree of 
stability   for fixed p  and 
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In that case, relation (8) has the form 
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The index of performance is given in [18] as 
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where Q and R are positive definite matrices. 
The optimal controller is (for fixed p) 
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where matrix 1
pP  is a solution of the following 

algebraic Riccati equation 
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It is well known that for LQ controller (11)-
(13) the Lyapunov function   

     tyPtyxV p
T 1 , (14) 

In the presence of unmodeled dynamics, the 
transformed closed-loop system has the 
following form 
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where matrix Pp is solution of algebraic Riccati 
equation for system with unmodeled dynamics.  

The next goal is to find matrix Pp without the 
help of Riccati equation. Instead, we shall use 
the LMI tool. The result will be formulated in 
the form of theorem. 

Theorem 1. Let us suppose that for the closed-
loop system (15), (16) is satisfied 
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is controllable 

2  The matrices Q and R are positive definite 

Then the feedback law has a form 
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From the last two relations it follows that 
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Using observation (14) we have 
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Let us multiply the last inequality from the left 

and right side with the matrix 1 pp PY . It 

follows that, for 0pY  
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The matrix pY is the solution of the inequality 

(24). Having in mind that 1 pp YP , the 

optimal performance index is (as in        
relation (12)) 
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But, owing to the presence of unmodeled 
dynamic, pJ  cannot be determined a priori 

and, as a result, it cannot be used for supervisor 
design. But, it is possible to determine the 
upper bound for pJ . For that purpose, it will be 

considered a stronger inequality in comparison 
to (24). 

Let us introduce the parameter 0p  and 

from (24) we have  
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Now we shall multiply the last inequality from 
the left and right-hand sides with the 
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The last relation can be rewritten in the 
following form 
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Let us put  
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From [15, Theorem 3, p. 142] it follows that 
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and 
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If we subtract relation (30) from relation (27) 
we have 
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By using [16, Proposition 4.4, p.140] one       
can conclude 

0
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


p
p
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
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p
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
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From (31) and (33) one can get 
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Inequality (25) can be rewritten in the 
following form 
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By using [16, Theorem 1.10, p.46] last 
inequality will take the form 

0








pp

pp

FE

DC
, (36) 

where pC , pD , pE  and pF  are defined in the 

formulation of Theorem 1. 

From inequality (36) one can find solution 
 ppY  . After that, we can construct               

the function 

       0
1

0
1 tyYty pp

T
pp   , (37) 
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From the last relation it follows that 
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p
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 , (38) 

Now  feedback law has the form 
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and the upper bound for index of performance is 

  *2 0
p

t
p eJ  , (40) 

Theorem is proved      

Remark 5: If  qAp  is the affine matrix family 

and  lQq  is a polygon it is enough to solve 
matrix inequalities (36) for vertices V of set 

lQ . It means that we must to solve the finite 
number of matrix inequalities 
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The matrices  qAp  are matrices for which  

ppiq    ,  sp ,..,2,1   ,  li ,..,2,1  

For situation when the number of matrix 
inequalities is large special iterative procedures 
are developed in the literature. 

4. Robust Stability of Switching 
Control Systems 

By using relation (15) and the fact that 00 h , 
the system can be described in the form 
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where 
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whereby  l
lp RQq   and  sp ,..,2,1 . 

The switching controller has two components 

A) The analog feedback 

      
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whereby  *
ppY   is the solution of LMI which 

is defined in Theorem 1.  

B) The discrete feedback is 
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Now we shall formulate a theorem which will 
proved robust stability of the original        
system (2). 

Theorem 2. Suppose that for the dynamic 
switching system (41)-(44) the following           
is satisfied 

1 The next two inequalities are satisfied 
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01 pk   , 0c   , sp ,..,2,1  

2           tRututQytyekty TTt
p  2

2  

 02 pk   ,    1ty , sp ,..,2,1  

3 The affine matrix family is 
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 the set  l
l RQ   is a polygon and the set of 
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(2) is stabilized by the control law  
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is a feedback gain matrix    

Proof: We shall first prove the boundedness of 
index performance for a switched system. Let 
us define the discrete state sequence 

  ,....1,0  ,   jtpp j  ,  (45) 

For any integer 0n , the truncated switching 
sequence is 
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Let us introduce 
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Now, for the performance index we have 
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From switching criterion (44) it follows that 
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By using same procedure we finally have 
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noting that p(t0) is determined according to (44). 

Since the right-hand side of (50) is independent 
of n, it follows that for the resultant 
performance index J of the switching systems 
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From relation (41) for any  1,  tt             
we obtain 
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The last relation yields  
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Let us introduce the following sets 
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Now we will define the next set 
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From (51), (53) and condition 1 of theorem it 
follows that 
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Condition 2 of the theorem implies for  ty  
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Relations (57) and (58) together give 
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 (59) 

Let us introduce 

 
,,..,2,1

max 21

sp

kkk pp
p




 (60) 

From (59) and (60) it fallows that 

  
 rckty 2 , (61) 

Since the right-hand side is independent of  t  

 
,,...,2,1 sp

ty




  (62) 

The transformation relation has the          
compact form 

   
       ,

1
 
 




r

i

t

ht

pi
hqAtsqA

i

ipp dssuBee

txty

 (63) 

From the last relation we obtain 

     

  ,  

max
1

0

tyKB

ehtytx

pi

r

i

qA

h
i

p

i



 






  (64) 

From relation (62) and (64) it follows that 

 
,,..,2,1 sp

tx




  (65) 

This concludes the proof of Theorem.       

Remark 6: Here we shall comment about the 
conditions 1 and 2 of Theorem 2. Let us 
consider the analog nonlinear system in state 
space form 

    ttyfty , , (66) 
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where   nRty   is state variable. Let us further 
suppose that a performance measure for          
the system. 

        0,    ,    ,  


 yhdyhtJ
t

, (67) 

In reference [19], the performance dominant 
conditions are defined. The performance 
measure  tJ  is said to be dominant for the 

system (66) if there exist constants 0,, 21 kkc  
such that for all 0t  

     
   1,for    

  ,   ,, 1





ttyf

cttyhkttyf
 (68) 

        1for      ,   ,2  tyttyhkty , (69) 

Relation (68) means that only finite escaping of 
stales will show up in the performance 
measure  tJ . Relation (69) means that large 

persistent  ty  values must be detected in the 
index of performance avoiding the situation in 
which the tail of  ty  remains large even when 

the index of performance  tJ  is bounded. 
Using relation (68) and (69), we can easily get 
the assumptions 1 and 2 of Theorem 2. 

Remark 7: Here we shortly consider design of 
switching controllers for systems with output 
delay. The system is described as 

       tuBtxqAtx pp  , (70) 

   htxCtz p  , (71) 

sp ,..,2,1  

In relation (70) h is the output time delay. Now 
we introduce transformation (that is a special 
case of Lemma 1) for the system (70) and (71).   

     

    




 
t

ht

htqA

hqA
p

dBue

eCtztz

p

p

,
 (72) 

The transformed system has the form  

       tuBtxqAtx pp  , (73) 

   txCtz p   ,  
 hqA

pp
peCC

 , (74) 

By using LMI methodology we can                
get controller  

     txCKtzKtu ppp    ,   (75) 

The supervisor (multi – estimator, monitoring 
signal generator, and switching logic) has the 
form as in the reference [2]. For the stability 
analysis of switching system (73)-(75) it is 
possible to use Theorem 2. 

From the short consideration it follows that 
stability analysis for switching systems with 
input delay and switching systems with output 
delay is the same. 

5. Conclusion 

This paper considers the problem of design of 
switching LQ contrrollers for systems with 
input time-delay. The problem is solved using 
suitable transformation which converts original 
time-delay systems into the form of delay free 
systems. The paper uses the concept of multiple 
models and switching controllers. The 
switching strategy is determined by using upper 
bounds for indices of performance. For 
switching systems the asymptotic sability in the  
sense of   norm is proved. Further 
investigation is required for the situation when 
the matrix B, also, has uncertainty. 
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