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1. Introduction 

Most real world decision making and design 
problems are inherently multi-objective. Yet, 
many mathematical programming methods 
(e.g., goal programming, analytical hierarchy 
process) require the decision maker (DM) to 
assign physically meaningless weights to 
express his (her) preferences. Physical 
programming (PP) avoids the weight 
assignment by providing preference functions. 
In PP, DM determines a suitable preference 
function and specifies ranges of different 
degrees of desirability (desirable, tolerable, 
undesirable, etc.) for each criterion. There are 
eight preference functions classified into 8 
classes, 4 soft and 4 hard.   

Soft Classes: 

Class 1S (smaller-is-better, i.e., minimization) 
Class 2S (larger-is-better, i.e., maximization) 
Class 3S (value-is-better) 
Class 4S (range-is-better) 

Hard Classes: 

Class 1H (must be smaller)  
Class 2H (must be larger) 
Class 3H (must be equal)  
Class 4H (must be in range)  

It must be noted that selection of hard or soft 
classes depends on the sharpness of the 
preference defined by the DM. The properties 
of class functions are listed below Kongar and 
Gupta [14]: 

 A lower value of a class function is 
preferred over a higher value thereof. 

 A class function is strictly positive. 

 Class function is continuous, piecewise 
linear and convex. 

 The value of a class function, zu, at a given 
ranges-intersection (say, desirable–
tolerable) is the same for any class-type. 

After defining class functions for each 
objective, the following minimization is 
performed for soft classes: 
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subject to 

fi (x) ≤ fi5  (for Class 1S objectives) 

fi (x) ≥ fi5  (for Class 2S objectives) 

fi5L ≤ fi (x) ≤ fi5R (for Class 3S objectives) 

fi5L ≤ fi (x) ≤ fi5R (for Class 4S objectives) 

and for hard classes, invoke constraint 

fi (x) ≤ fiM  (for Class 1H objectives) 

fi (x) ≥ fim  (for Class 2H objectives) 

fi (x) = fiv  (for Class 3H objectives) 

fim ≤ fi (x) ≤ fiM (for Class 4H objectives) 

x jm ≤ x j ≤ x jM (for design var. constraints) 

where fim, fiM, xjm and xjM represent minimum and 
maximum values, fiv helps define the equality 
constraints; the range limits are provided by the 
designer (see Figure 1), and nsc is the number of 
soft objectives that the problem comprises. The 
above problem model conforms to the 
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framework of most nonlinear programming 
codes, with possible minor rearrangements. 

The purpose of this paper is to provide an 
overview of the PP literature. The literature is 
organized into four main areas: methodological 
papers, industrial engineering applications, 
mechanical engineering applications and other 
applications. Papers are classified into 
subcategories in each main area. Section 2 
presents the papers which make methodological 
contributions by modifying the original 
physical programming methodology. The 
papers investigating the application of PP to 
Industrial Engineering and Mechanical 
Engineering related problems are discussed in 
Sections 3 and 4, respectively. Section 5 
reviews the other application papers. Finally, 

some concluding remarks and future research 
directions are presented in Section 6. 

2. Methodological Papers 

Different variants of PP were developed by 
researchers by modifying original PP 
algorithm. In this section we present general 
characteristics of these methods.   

2.1 Linear physical programming 

Linear Physical Programming (LPP) developed 
by Messac et al. simplifies physical 
programming procedure since preference 
functions in LPP are piecewise linear [39], 
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Figure 1. Soft class functions for physical programming 
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[27]. The following four steps are followed 
while applying linear physical programming: 

1. One of the four classes is specified by 
decision maker (DM) for each criterion. 

2. The limits of the ranges of differing 
degrees of desirability (see Figure 2) are 
defined by DM for each criterion.  

3. Based on the DM preferences defined in 
steps 1 and 2, LPP weight algorithm is used 
to calculate incremental weights as follows: 

I. Initialize: 

1.1  ; 1 0qw  , 1 0qw  , 2z = small positive 

number (say, 0.1) q = 0; s =1, nsc = number of 
soft criteria. 

II. Set q = q + 1 
III. Set s = s + 1 

Evaluate, in sequence,                     

, , , ,s
qs qs qs qsz t t w w     , qsw , qsw , minw      

If minw  is less than some chosen small positive 

number (say, 0.01), then increase , and go to II. 
IV.  If s   5, go to III. 
V. If i  nsc, go to II. 

where q is the index for the soft criteria,   is a 
convexity parameter, p is the index for the hard 

criteria, s is the index for the range, qsw and 

qsw are positive and negative weights, 

respectively, for criteria q  in the sth range; zq is 
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Figure 2. Soft class functions for linear physical programming 
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the class function for criteria q; sz is the change 
in qz that takes place as one travels across the 

sth range, qst  and qst  are the lengths of the sth 

ranges on the positive and negative sides of the 

qth criteria, qsw and qsw are positive and 

negative normalized weights, respectively, for 
criteria q in the sth range, minw is the minimum 

of qsw and qsw .  

4. A total score (J) for each alternative is 
calculated as a weighted sum of deviations 
over all ranges and criteria as follows:  

5

, , 1 2

min ( )
sc

qs qs

n

qs qs qs qs
d d x q s

J w d w d
 

   

 

     
 

2.2 Fuzzy physical programming 

A technique called fuzzy physical 
programming was developed by Tian et al. [68] 
by integrating the fuzziness into the physical 
programming structure. As shown in Figure 3, 
with certain parameters, X, the design objective 
value of determinate system is a certain value, 

( )ig X , while the design objective value of 

fuzzy system is a fuzzy set, ( )ig X , which is 

represented using normal membership function 
as follows:  

2
( )

( ) ( ) , 0
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i
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Figure 3: Fuzzy Design Objective Value 

Function ( ( ))i ifp g X  is used to represent the 

preference function associated with fuzzy set, 
( )ig X . ( ( ))i ifp g X  takes the following form: 
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The fuzzy aggregate objective function, fp(X), 
is formulated by synthesizing the fuzzy 
preference functions for all the design metrics: 

10
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1
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Using this aggregate objective function, the 
fuzzy physical programming model can be 
written as follows: 
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2.3 Global physical programming 

A variant of PP was developed by Sanchis et 
al. [63] by making the following two 
modifications in the original PP methodology: 

 Preference functions are constructed using 
a simpler algorithm. 

 The optimizer is replaced by a genetic 
algorithm that avoids possible local  
minima problems. 

Preference functions are constructed 
considering the following two principles: 

 The best result for each objective is 
translated into the solution of a 
minimization problem.  

 The limits of each preference range present 
the same image in the class function for all 
objectives of the multi objective 
optimization problem. This ensures that the 
same preference in each objective will have 
the same image in all class functions. In 
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other words, each preference range will 
weigh the same in the single aggregate 
objective to be optimized. 

The images k  at the range boundaries gik are 

calculated as follows: 

0

1

1

0

, 0

(1 )
ini ini

k k objsN k N


  
  


 

   

 

where Nobjs is the number of design objectives 
that the problem comprises and N is the number 
of preference ranges that the designer wants to 
manage for the whole multi-objective problem. 

It must be noted that these values are equal for 
all the class functions defined. Hence, the 
preference intervals defined for each objective 
gi(x) always produce the same k  image 

change in their associated class function. 

Based on the above assumptions, they define a 
new definition for class functions, as 
polynomials in gi(x) as follows: 

Class 1S function 

There are N+1 extreme range points, k
ig , which 

are used for the quantification of the preferences 
associated with the design objective. Each 
objective function will be divided into N 
intervals with an associated preference. The 

extreme points k
ig  are specified in ascending 

order and the first point 0
ig  is the best value for 

the design objective.  

At the generic interval k (k  [1,2, . . . ,N]), the 
class function takes the following form: 

1

1 1
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where  1k k k       and n>0 expresses the 

degree of desirability that the solution reaches 
the range extremes in the objective space. 

As a result, for the ith objective the class 1S 
function can be defined as 

      

1 1
i
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Class 2S function 

In this case, points k
ig  will be specified in 

ascending value too. However, lower 
preference for the first values and greater 
preference for the later values are expressed. 
For the generic interval k, the class function at 
this interval takes the form 
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And, for the ith objective the class 2S function 
can be defined as 
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Class 3S function 

In this case, 2N+1 values are specified. 0
ig  is 

the ideal value and there are N left and right 

ranges with the values kL
ig  (left) and kR

ig  

(right) for k[1,2,…,N]. Class function 2S 
represents the left ranges represent while a 1S 
function represents the right ranges. Hence, the 
3S class function is written as follows:  
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Class 4S function 

The extreme points 0 0and L R
i ig g  represent the 

ideal range. In addition, N left (Class 2S) and 
right (Class 1S) ranges are defined. Thus, the 
4S class function is written as follows:  
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where x px  are the vector of design 
variables, Nobjs is the number of objective 
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functions, hj(x) is the jth inequality constraint, 

and the pth variable varies in the range [ m
px , 

M
px  ]. All class function images (equally 

weighted) are added to obtain the cost index.    

2.4 Interactive physical programming 

An interactive physical programming 
framework was proposed by Tappeta et al. [67] 
which considers decision maker’s preferences 
during the optimization process and allows for 
the efficient design exploration around a given 
Pareto point. Pareto sensitivity information, a 
second-order Pareto surface representation, an 
iterative decision making strategy and a Pareto 
visualization tool assisting tradeoff analysis and 
decision making are the functionalities 
provided by this framework. In the iterative 
decision making strategy, the decision maker 
learns about the existing Pareto designs and 
iteratively modifies his/her preferences until 
satisfied. 

Another interactive physical programming 
approach was developed by Huang et al. [9]. In 
this approach, an initial Pareto design is 
obtained using physical programming. Based 
on this solution, the designer specifies which 
objectives need to be improved and which 
objectives can be sacrificed. For each new 
preference structure, corresponding Pareto 
designs are obtained using physical 
programming.  Then these Pareto designs are 
visualized and one that best satisfies the 
designer's preference is selected. If the designer 
is satisfied with the selected Pareto design, the 
optimization process is terminated. Otherwise, 
based on the Pareto design selected, a new 
iteration of interactive physical programming is 
implemented, until the designer is satisfied with 
one of the obtained Pareto designs. It must be 
noted that visualization of a Pareto design is 
achieved by drawing a bar chart in the 
preference space. 

2.5 Other methodological contributions 

Hernandez et al. [5] develop an LPP-based 
procedure for the formulation of compromise 
decision support problem in order to help a 
designer avoid the inefficient and ineffective 
process of setting preferences in the deviation 
function, while exploiting a designer's 
understanding of the problem. Messac [36] 
investigates the shortcomings of weight-based 
methods using analytical and numerical means. 

He also shows the superiority of physical 
programming over weight-based methods 
through analytical, graphical and computational 
means. Messac et al. [45] provide a theoretical 
examination of the Pareto optimality of 
solutions obtained using PP. They conclude 
that all solutions obtained using PP are Pareto 
optimal. The issue of stability of optimal 
solutions with respect to user input parameters 
to express preferences is also investigated in 
this study. The conclusion is that PP yields an 
evenly distributed set of solutions for an evenly 
distributed set of preference input parameters. 
Messac and Mattson [44] develop a physical 
programming based Pareto frontier generation 
(PPPF) method. They showed that the 
effectiveness of the PPPF method is 
comparable to the Pareto frontier generation 
method based on the NBI method and superior 
to those based on the weighted sum and 
compromise programming methods. Sroka and 
Long [65] use a similar method to the one 
described in Messac and Mattson [44] for 
generating an even distribution of Pareto 
points. Messac and Chen [38] develop an 
optimization visualization approach by 
exploiting the formulation paradigm of PP. 
This approach allows for real-time decision 
making due to its ability of providing 
information on the status of the optimization 
process. Li et al. [20] develop a novel 
methodology based on the integration of LPP 
and non-dominated sorting genetic algorithm 
(NSGA-II) for multiobjective robust 
collaborative optimization. A collaborative 
multiobjective optimization methodology 
involving four main steps (viz., formulation, 
optimization, simulation and selection) is 
developed by Baril et al. [2]. LPP is integrated 
into the optimization step of this methodology. 
Baril et al. [2] propose a collaborative 
interactive multi-objective algorithm by 
integrating several concepts involving the 
payoff table, physical programming, non-linear 
goal programming, the stability sets and sets 
subtraction algorithm. 

3. Industrial Engineering Applications 

Industrial engineering applications of PP can be 
classified into five main categories: forward 
supply chains, reverse and closed-loop supply 
chains, production planning, reliability and 
maintenance and quality function deployment.   
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3.1 Forward supply chains 

Melachrinoudis et al. [33] use LPP to solve the 
relocation problem of a 
manufacturing/distribution facility. They 
consider a multitude of factors including cost, 
access to customers, access to suppliers, access 
to transportation infrastructure, tax incentives, 
labor quality and labor-management relations. 
Melachrinoudis et al. [32] develop an LPP 
model to reconfigure a warehouse network 
through consolidation and elimination. The 
factors considered in the study include 
relocation/consolidation costs, inbound and 
outbound transportation costs, warehousing 
costs, relocation costs, customer delivery time, 
and intangible factors, such as labor quality, 
labor-management relations and tax incentives. 
The LPP-based supplier selection model 
proposed by Mirakhorli et al. [48] considers 
four criteria (viz., purchasing price, 
transportation cost, quality, lead time and 
demand coverage).   

3.2 Reverse and closed-loop supply chains 

A reverse supply chain involves a series of 
activities for the retrieval of used products from 
consumers and remanufacturing or recycling 
them to recover their left-over market value. 
The combination of forward (traditional) and 
reverse supply chains is called a closed-loop 
supply chain Nukala and Gupta [53]. 
Researchers developed PP-based 
methodologies for two reverse and closed loop 
supply chain related issues:  Network design 
and disassembly to order systems.  

3.2.1 Network Design (ND) 

Pochampally et al. [57] use LPP to identify 
potential facilities in a set of candidate recovery 
facilities operating in a region where a reverse 
supply chain is to be established. They model 
total cost involving transportation cost, cost of 
labor, inventory cost and fixed cost as a Class 
1S criteria. The following criteria were 
modeled as Class 2S: 

 Increment in quality of products at 
recovery facility. 

 Ratio of throughput to supply of used 
products. 

 Multiplication of throughput by 
disassembly time. 

 Customer service rating of the recovery 
facility. 

Pochampally et al. [58] propose a three-phase 
LPP approach for designing a reverse supply 
chain. Phase I involves the selection of 
economical products to re-process from a set of 
candidate cores. Total collection cost per 
period, total reprocessing cost per period, total 
disposal cost per period, periodical worth of 
loss-of-sale cost, periodical worth of 
investment cost are modeled as Class 1S while 
Class 2S criteria involve total reuse revenue per 
period and total recycle revenue per period. In 
phase 2, potential recovery facilities are 
identified by using the criteria and classes 
defined in Pochampally et al. [57].  In phase 3, 
the right mix and quantities of products (used 
as well as re-processed) to be transported 
across the reverse supply chain is determined. 
Total retrieval cost per period is defined as 
Class 1H while total transportation cost per 
period, total re-processing cost per period and 
total inventory cost per period are formulated 
as Class 1S. 

Nukala and Gupta [53] develop an LPP model 
for the strategic and tactical planning of a 
closed loop supply chain. The model when 
solved identifies simultaneously the most 
economical used-product to re-process in the 
closed-loop supply chain, the efficient 
production facilities and the right mix and 
quantity of goods to be transported across the 
supply chain. They model various cost criteria 
(viz., collection/retrieval cost, processing cost, 
transportation cost and disposal cost) as Class 
1S while revenue criteria (viz., reuse revenue, 
recycle revenue and new product sale revenue) 
are modeled as Class 2S. Pochampally et al. 
[61], [62] and Ilgin and Gupta [10] present 
similar models.  

Pochampally et al. [60] integrate quality 
function deployment (QFD) and LPP to 
measure the “satisfaction level” of a 
reverse/closed-loop supply chain with respect 
to various performance measures (viz., 
reputation, innovation and improvement, public 
participation, facility potentiality, 
responsiveness, delivery reliability) and 
respective enablers. A similar model is 
presented in Pochampally et al. [62]. 

Pochampally and Gupta [59] apply LPP to the 
collection center selection problem. First, they 
define the following eight criteria: sigma level 
(SL), per capital income of people in residential 
area (PR), utilization of incentives from local 
government (UG), distance from residential 
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area (DR), distance from highways (DH), 
incentives from local government (IG), space 
cost (SC), labor cost (LC). Then, for the sake of 
convenience, the similar criteria are combined 
into appropriate classes as follows: SC + LC 
(Class 1S), DR + DH (Class 1S). All remaining 
criteria (SL, PR, UG, IG) are considered 
individually and classified as Class 2S.   

3.2.2 Disassembly-to Order Systems (DTOS) 

The importance of product disassembly has 
increased in recent years due to its critical role 
in all product disposal options (e.g., recycling, 
remanufacturing). Disassembly process must be 
planned in an efficient way so as to increase the 
profitability of product recovery operations. 
Disassembly to order problem, an important 
disassembly process planning issue, involves 
the determination of the number of EOL 
products to process to fulfill a certain demand 
for products, parts and/or materials under a 
variety of objectives and constraints. Kongar 
and Gupta [13] develop an LPP model to solve 
a disassembly to order problem. The model 
provides the number of items to be 
disassembled for remanufacturing, recycling, 
storage and disposal. They consider nine 
criteria. Average customer satisfaction, average 
quality achievement, resale revenue, recycling 
revenue, total profit and number of recycled 
items are defined as Class 2S type. Average 
environmental damage and average 
environmental benefit are considered as Class 
4S type. Number of disposed items is defined 
as Class 1S type. A similar model is presented 
in Lambert and Gupta [19]. Kongar and Gupta 
[14] model a DTO problem with five goals 
using LPP. Number of disposed items is 
classified as Class 1S, total profit and number 
of recycled items are defined as Class 2S and 
environmental damage and customer 
satisfaction are modeled as Class 4S. 
Imtanavanich and Gupta [12] solve a multi-
period DTO problem using LPP based on four 
objectives, namely, profit (Class 2S), 
procurement cost (Class 1S), take-back cost 
(Class 1S), disposal cost (Class 1S). 
Imtanavanich and Gupta [11] integrate genetic 
algorithms and LPP to solve a DTO problem. 
LPP is used to calculate the fitness values in the 
GA process. Massoud and Gupta [30] develop 
an LPP-based solution approach to multi-period 
DTO problem by considering four objectives, 
namely maximization of profit (Class 2S), 
minimization of procurement cost (Class 1S), 
minimization of purchase cost (Class 1S), 

minimization of disposal cost (Class 1S). 
Ondemir and Gupta [54] use LPP to determine 
the optimum disassembly, refurbishment, 
disposal, recycling and storage plans in a 
demand-driven environment which utilizes the 
life-cycle data collected, stored and delivered 
by sensors and RFID tags. 

3.3. Production planning 

The first application of LPP in production 
planning was presented by Messac et al. [37]. 
Their LPP model minimizes cost and 
manufacturing time, while maximizing 
production rate. Maria et al. [28] apply LPP to 
production planning of a generic production 
system by considering machine yield rate and 
machine efficiency. Gulsun et al. [4] develop 
an LPP model for aggregate production 
planning. They determine the most appropriate 
plan by minimizing total production costs and 
the effects of hire/layoff decisions on the 
workforce motivation level. Both of these 
objectives were defined as Class 1S. 

3.4. Reliability and maintenance 

Redundancy allocation is the most frequently 
studied reliability problem in PP literature. 
Huang et al. [9] apply interactive physical 
programming to the reliability and redundancy 
apportionment of a five-stage over-speed 
protection system for a gas turbine. Tian and 
Zuo [70] use LPP to develop a multi-objective 
optimization model for redundancy allocation 
for multi-state series–parallel systems 
considering utility, cost and weight. In the LPP 
framework, the utility objective has Class-2S 
class function (maximization), while the cost 
and weight objectives have Class-1S class 
functions (minimization). Genetic algorithm 
(GA) is used to solve the proposed optimization 
model. The LPP-based multi-objective 
optimization model proposed by Tian et al. 
[71] jointly determines the optimal component 
state distribution and optimal redundancy for 
each stage based on two objectives, cost (Class 
1S) and system utility (Class 2S). Kumar et al. 
[17] present a PP and conjoint analysis-based 
redundancy allocation model (PPCA-RAM) for 
a multistate series–parallel system. They define 
utility maximization as the 2S class function 
and the cost, weight, and weight–volume 
minimization within the 1S class. Tian et al. 
[69] use PP in condition-based maintenance 
optimization considering two optimization 
objectives, cost (Class 1S) and reliability (Class 
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2S). Li et al. [23] propose a PP-based multi-
objective optimization model for multi-state 
weighted series-parallel system optimal design. 
The model which is solved using a genetic 
algorithm maximizes system reliability and 
expected performance utility while minimizing 
investment system cost simultaneously.   

3.5. Quality Function Deployment 

Lai et al. [18] use LPP in quality function 
deployment (QFD) optimization by proposing a 
two-step approach. In the first step, the 
information required for LPP is collected 
through the use of traditional QFD approach 
and house of quality is constructed. Qualitative 
analysis of the design problem is also 
completed in this step. The second step 
involves mathematical modeling using LPP. 
The approach was applied to a software   
design problem. 

4. Mechanical Engineering Applications 

Mechanical engineering applications of PP can 
be classified into two main categories: design 
and control.  

4.1. Design 

Design of a complex system requires the 
simultaneous consideration of many constraints 
and conflicting objectives (design metrics). In 
PP, the designer can specify ranges of different 
degrees of desirability for each design metric 
rather than specifying optimization weights. 
Due to this unique feature, PP has been used in 
many design optimization studies.  

Chen et al. [3] apply PP to aircraft propulsion 
system design. Kovach et al. [16] integrate 
response surface methodology (RSM) and PP 
for the robust design of a tablet manufactured 
by a pharmaceutical company. The design 
characteristics considered include tensile 
strength, disintegration time and weight. 
Response functions for the mean and standard 
deviations of the design characteristics are 
estimated using RSM. Then, the attributes of 
each of the quality characteristics are classified 
and the designer’s preferences are specified. A 
PP-based methodology is developed by Zhang 
[75] for 2D turbine airfoil design. Pressure loss, 
leading edge radius and trailing edge radius are 
defined as Class 1S while the preference 
function for outflow angle is Class 3S. Tong et 
al. [72] optimize the design of gas-generator 

engines by considering two objectives, specific 
impulse of the engine (Class 2S) and thrust to 
weight ratio (Class 2S). Zhang [76] uses PP for 
aircraft conceptual parameter design. Li et al. 
[20] apply their multiobjective robust 
collaborative optimization technique to the 
design of a speed reducer. 

PP was also used for multidisciplinary design 
optimization (MDO) which is a concurrent 
engineering design tool for large-scale system 
design that typically approaches the design 
problem by decomposing the system into its 
constituent subsystems. There is an intrinsic 
linkage between these subsystems through 
design, function and performance. McAllister 
et al. [31] integrate PP and collaborative 
optimization (a popular MDO framework) 
through the use of compromise decision 
support problem (DSP). In this integration, PP 
allows designers to formulate the problem 
using physically meaningful parameters to 
describe customer specified requirements while 
collaborative optimization is used to define the 
hierarchical design problem in a formulation 
that is reflective of the functional structure of 
system design problems. Optimization 
mechanics is provided by DSP. A race car 
design example is employed to illustrate the 
proposed framework. This example consists of 
two subsystem level analyses - force and 
aerodynamics - and incorporates two system-
level objectives: (1) minimize lap time and (2) 
maximize normalized weight distribution. 
Minimization of rear wheel down force is also 
considered in the aerodynamics subsystem as a 
secondary objective. Li and Zhang [22] develop 
an MDO framework by integrating LPP and 
collaborative optimization. 

Patel et al. [56] develop an approach to obtain 
sets of subsystem combinations that would 
perform successfully with the newly developed 
components. In this approach, PP is used to 
model the designer’s preferences for both the 
local measures of merit (characteristic of a 
given subsystem) and the global measures of 
merit (characteristic of the entire system). A 
discrete programming algorithm, called the kth 
shortest path algorithm, is integrated with PP to 
find the best subsystem design combinations. 

Suleman and Gonicalves [66] propose a multi 
objective optimization problem of an adaptive 
composite beam with piezoelectric actuators 
bonded to its surface. They optimize the size 
and placement of the actuator pairs by 
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considering three concurrent objectives, 
namely, maximization of the actuation 
performance, minimization of the mass of the 
actuators and keeping the required actuation 
energy/voltage below specified values. The 
first objective is considered in two different 
ways. In the first, actuator performance is 
measured based on the maximization of the 
average vertical displacement at the free end of 
the cantilever beam. In this case, class of the 
preference function is 2S. In the second, they 
investigate the average vertical displacement at 
y=W/2 and related it to the average vertical 
displacement at y=W such that the former is 
maximized (Class 2S) and the latter is 
minimized (Class 1S). The class of the 
preference function associated with the second 
objective is 1S while the third objective’s 
preference function is defined as Class 1H. 
Wilson et al. [74] design a vibration isolation 
mount using PP. All design preferences (viz., 
minimization of the peak transmissibility, 
minimization of the transmissibility at 3 Hz, 
minimization of the transmissibility at 10 Hz, 
minimization of the settling time and 
minimization of the peak actuator force) are 
modeled as Class 1S. Baril et al. [1] apply their 
collaborative multiobjective optimization 
methodology for designing product and apply 
the design for Six Sigma approach.    

Luo et al. [26] present an application of PP to 
spacecraft rendezvous trajectory design with 
three objectives, namely, minimization of the 
time of flight (Class 1S), minimization of the 
total velocity characteristic (Class 1S) and 
maximization of the trajectory safety-
performance index (Class 2S). They combine 
PP and simulated annealing. After converting 
the multi-objective functions into a single-
objective function using PP, a feasible iteration 
optimization model is formulated using a 
Lambert algorithm. Then a simulated annealing 
algorithm is employed to locate the 
unperturbed two-body solution. 

Martinez et al. [29] focus on the application of PP 
to the multi-criteria wing spar design optimization 
problem by considering four design metrics, 
namely, minimization of weight (Class 1S), 
minimization of cost (Class 1S), minimization of 
tip deflection (Class 1S), minimization of strength 
of components (Class 1S).  

Huang et al. [6] develop an alternative 
interactive PP approach to the interactive PP 
approach proposed by Huang et al. [9]. In this 

approach, the preference ranges for each 
objective are fixed during the interactive PP 
procedure. After a Pareto solution is generated, 
a preference offset is added to the class 
function of each objective considering whether 
the designer would like to improve this 
objective or sacrifice the objective so as to 
improve other objectives. These preference 
offsets can be interpreted as the designer's 
tradeoff on the design objectives. The 
preference offsets are adjusted during the 
interactive physical programming procedure 
and an optimal solution that satisfies the 
designer's preferences is supposed to be 
obtained by the end of the procedure. 

Huang et al. [7] present an application of fuzzy 
physical programming in optimal design of 
conic-cylindrical gear reduction unit. A pair of 
conic gears is used as high-speed gears, while a 
pair of cylindrical gears is used as the low-
speed gears. The objective is to minimize 
volume (Class 1S) and minimize difference of 
power delivered between high-speed gear and 
low-speed gear (Class 1S). Genetic Algorithms 
is applied to solve the formulated fuzzy 
physical programming model. 

Messac and Hattis [40] apply PP to the 
preliminary design of the high speed civil 
transport (HSCT) plane. Design metrics include 
tank volume ratio (Class 1S), recurring cost per 
passenger seat (Class 1S), initial cost per 
passenger seat (Class 1S), propellant mass ratio 
(Class 2S), fuselage-length/wing-root-length 
ratio (Class 4S), engine inlet area (Class 4S), 
wing sweep-back angle (Class 4S) and number 
of passengers (Class 4S).  

An application of the interactive fuzzy physical 
programming is presented by Zhang et al. [77] 
for the design of the spindle of internal grinder. 
They consider two design objectives, namely, 
minimization of the static bending deflection of 
the grinding wheel spindle extension (Class 1S) 
and the minimization of the weight of the entire 
spindle (Class 1S). 

Another design issue considered by PP 
practitioners is the product families which are 
groups of related products derived from a 
product platform for the simultaneous 
consideration of economies of scale and 
satisfaction of a variety of customer 
requirements. Messac et al. [42] present a 
single-stage approach for simultaneously 
optimizing a product platform and the resulting 
family of products based on one or more 
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scaling variables - variables that are used to 
instantiate the product platform by 
‘‘stretching’’ or ‘‘shrinking’’ it in one or more 
dimensions to satisfy a variety of customer 
requirements. The proposed approach is 
benchmarked considering the design of a 
family of ten universal electric motors from 
Simpson et al. [64]. The scaling parameter in 
this example was assumed to be motor stack 
length following the example in Simpson et al. 
[64]. However, determination of scaling and 
common variables is not a trivial task since it 
requires the consideration of the tradeoff 
between commonality and performance within 
a product family. Messac et al. [43] improve 
the methodology proposed by Messac et al. 
[42] by helping designers in the selection of 
common and scaling parameters in an efficient 
and effective way. They propose a product 
family penalty function to determine which 
parameters should be common throughout the 
product family and which should be the scaling 
variables. Applying this methodology to the 
design of a family of ten universal electric 
motors, they determine the radius as the scaling 
parameter. They showed that using radius as 
the scaling parameter provides significant 
improvement over using length.  

Messac and Ismail-Yahaya [41] develop a PP-
based method for robust design optimization 
(RDO) which seeks to maintain design 
feasibility under input variations. The 
following three objectives are considered in PP:  
1. Minimization (Class 1) of the design metrics 
in order to maximize performance. 2. 
Maximization (Class 2) of the allowable 
variations of each design parameter in order to 
minimize manufacturing cost. 3. Minimization 
(Class 1) of the variations in design metrics in 
order to have robust performance in the face of 
the design parameter variations. 

Mullur et al. [49] propose the use of LPP in 
decision matrix construction process. After 
applying this new approach to concept 
selection problem, they note the following 
advantages over the classical decision matrix 
construction: designers can obtain solutions on 
the non-convex regions of the Pareto frontier 
and there is no need for the specification of 
physically meaningless weights and ratings. 

Huang and Tian [8] integrate neural networks 
and PP. The proposed methodology involves 
four steps: 1. A PP problem is solved to obtain 
the initial Pareto design f * and the 

corresponding design variables 2. The first-
order Pareto surface approximation around f * 
is obtained through the sensitivity analysis of 
the Pareto surface at f *. The neural network 
model of the Pareto surface is built. 3. The 
candidate Pareto designs are generated, 
visualized and evaluated through the interactive 
decision making process. The neural network 
model of the designer’s local preferences is 
built. 4. The Pareto design that best satisfies the 
designer’s local preferences is obtained using 
genetic algorithms. Finally, the final design is 
obtained by solving a corresponding 
compromise programming problem.  

Li et al. [21] integrate physical programming 
and analytical target cascading (ATC). In this 
approach, the preference function of PP is used 
to determine the deviation between response and 
linking variables in ATC. Wang et al. [73] 
integrate linear physical programming and ATC 
by using the aggregate preference function in 
LPP as the objective function of ATC.  

4.2. Control 

Messac and Wilson [47] apply PP to synthesize 
a controller that solves the two-mass 
benchmark problem. They show that the use of 
PP leads to a controller that meets all the 
aspects of the benchmark problem: nominal 
and worst-case settling time, nominal and 
worst-case controller effort, and noise 
amplification. Messac [35] investigates the use 
of PP in control-structure integrated design.   

5. Other Applications 

Nagrath et al. [50] and Nagrath et al. [52] 
present an LPP approach for analyzing the 
multi-objective flux analysis of metabolic 
networks. The developed framework was first 
applied to compute a set of multi-objective 
optimal solutions for various pairs of objectives 
relevant to hepatocyte function (urea secretion, 
albumin, NADPH and glutathione syntheses) in 
bio-artificial liver systems. Next, simultaneous 
analysis of the optimal solutions for three 
objectives was carried out. All four objective 
functions are maximized. Hence, they are 
defined as ‘‘Class-2S’’. 

Tian et al. [68] propose a fuzzy PP approach 
for the optimization of through passenger train 
plan. Genetic algorithms is used in solving the 
fuzzy physical programming model 
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Kongsuwan and Sangmun [15] develop a four-
step LPP-based methodology to achieve a 
trade-off between the quality and limited 
resources in the development of information 
security systems. The first step involves the 
selection of quality factors relating to the 
product development cycle. In the second step, 
for each quality factor, relative amount of 
resources required to achieve 100 percent of 
quality levels, objectives, and design 
preferences are determined. LPP is used in the 
third step to find the optimum quality levels for 
all quality factors based on the information 
from Step 2. In the last step, the optimum costs 
for all quality factors are calculated by utilizing 
the quality-to-cost transformation. 

Ma and Dong [27] apply LPP to web service 
selection problem which involves the selection 
of proper candidate web service from each web 
service classes to satisfy the request of a user. 
They consider four criteria related with service, 
namely, price, duration(s), reliability and 
availability. Class functions of price and 
duration are 1-S while reliability and 
availability belong to 2-S class functions. 

Nagrath et al. [51] develop a PP–based multi-
objective framework for linear gradient 
chromatography. In the first step of this 
methodology, a set of Pareto solutions are 
generated for model protein separations for 
both bi-objective (production rate and yield) 
and tri-objective (production rate, yield, and 
product pool concentration) scenarios. The 
second step involves the application of PP for 
the quantitative evaluation of the optimal 
solutions for tertiary protein mixtures. Design 
metrics considered include production rate 
(Class 2S), production rate times yield (Class 
2S), product pool concentration (Class 2S), 
solubility constraint (Class 1H), yield (Class 2S 
and Class 2H) and purity (Class 2H). 

Messac et al. [46] integrate Genesis and PP for 
the optimization of large-scale rigidified 
inflatable structures for housing. An iteration of 
the proposed methodology involves the 
following steps: 

 Step 1: Genesis performs structural 
analysis and optimization and generates 
responses (e.g., stress, buckling load factor, 
volume, etc.).  

 Step 2: The response values are passed as 
design objectives to PP, where the 

aggregate objective function (AOF) value 
is computed.  

 Step 3: The resulting AOF value is passed 
back to Genesis, where it is minimized.  

The iterations are repeated until an optimal 
solution is found.  

Lin et al. [25] integrate a topology optimization 
method—solid isotropic material with 
penalization (SIMP) with PP for the multi-
objective optimization of compliant 
mechanisms in the field of continuum-type 
topology optimization. The feasibility of the 
proposed methodology is demonstrated by 
presenting two widely studied examples, 
namely the compliant force inverter and the 
compliant gripper. 

Onut et al. [55] employ LPP to allocate energy 
resources among subgroups of Turkish 
manufacturing industry. They consider the 
following objectives: minimization of cost, 
maximization of system efficiency, 
maximization of employment, minimization of 
carbon, sulphur and nitrogen emissions, 
maximization of the reliability of energy 
resources, maximization of total convenience 
degree and maximization of the utilization of 
locally produced energy resources.  

Li et al. [24] solve the software release time 
problem using physical programming based on 
three objectives (viz. cost, reliability and risk).  

6. Conclusions 

In this study, we presented a review of the state 
of the art literature on physical programming. 
After presenting an introduction to physical 
programming, the papers from the PP literature 
were reviewed by considering four categories 
(viz., methodological papers (MP), industrial 
engineering applications (IEA), mechanical 
engineering applications (MEA) and other 
applications (OA)). Table 1 shows the cited 
references organized into appropriate 
categories. Figure 4 presents the number of 
publications in each category. 
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Figure 4. Number of publications in each category 

Based on this review, we can present the 
following general points on the current and 
future research directions in physical 
programming: 

 Majority of the studies is on the application 
of PP to a specific multi criteria decision 
making problem.  

 Design of products or structures is by far 
the most frequently studied MCDM 
problem considering the mechanical 
engineering related applications of PP. 
Figure 5 presents the number of papers in 
design (D) and control (C). 

 
Figure 5.  Number of publications in each area of 

mechanical engineering 

 In theoretical papers, the common objective 
is the simplification of PP algorithm and 
optimization process by modifying the 
preference functions.     

 Among the variants of original PP algorithm, 
Linear Physical programming is the most 
popular one. Figure 6 presents the number of 
publications in each variant of PP. 

 
Figure 6. Number of publications in 

each variant of PP 

 The applications of PP in industrial 
engineering are limited to forward supply 
chain (FSC) and reverse and closed-loop 
supply chain (RCLSC) design, production 
planning (PP), reliability and maintenance 
(R&M) and quality function deployment 
(QFD). In some of these areas, there are 
only a few publications. Hence, PP should 
also be applied to other areas in IE (viz., 
quality management, facilities and layout 
planning, project management etc.). In 
addition, more studies should be carried out 
in the existing application areas in order to 
fully understand the potential and 
applicability of PP in these areas. The 
number of publications in each area of 
industrial engineering is presented in 
Figure 7.  

 

Figure 7: Number of publications in each area of 
industrial engineering 

 The formulation and solution of PP models 
requires mathematical programming 
knowledge. In addition, programming 
languages or optimization software must be 
employed to determine the optimal 
solution. The development of user-friendly 
programs which can construct the 
mathematical programming model based 
on the preferences defined by the user and 
carry out the optimization process 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 4, December 2012 362 

automatically may minimize the need for 
mathematical programming and computer 
programming expertise.  

Table 1. Classification of references based on 
problem domain 

Category References 
MP   34, 39, 36, 67, 38, 5, 45, 

44, 68, 9, 63, 2, 20, 1, 65  
IEA FSC  33, 32, 48 
 R&CLSC ND 37, 58, 53, 60, 62, 59, 10 
  DTOS 13, 19, 12, 11, 14, 30, 54  
 PP  37, 28, 4 

R&M  9, 70, 71, 17, 69, 23   
QFD  18 

MEA D  66, 74, 3, 40, 29, 42, 43, 
41, 56, 49, 7, 6, 8, 31, 72, 
77, 16, 26, 75, 2, 25, 76, 
20, 73, 22 

 C  47, 35 
OA   68, 46, 51, 27, 15, 50, 25, 

55, 52, 24 
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