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1. Introduction 

Switched system is one of the so-called hybrid 
systems which consist of a family of 
subsystems and a switching rule among them. 
The aspect of the switched system is found in 
various fields such as aircraft industry, mobile 
robot, animal world and Ethernet etc[3], 
[7].Further, the idea of switching has also been 
used to design intelligent control which is 
based on the switching between different 
controllers. An important problem in such 
switched systems is the stability problem with 
arbitrary switching and the stabilization 
problem via appropriate switching rule. Until 
now many results on stability and stabilization 
problems for various types of switched linear 
systems without input have been studied (e.g., 
[1],[2],[5], [6], [8]-[20]). 

In addition, it is also important to consider the 
case which contains the control input for 
practical applications. In particular, Deaecto et al. 
[4] gave some conditions for some equilibrium 
point to be globally asymptotically stable via 
state feedback switched rule. The conditions are 
related to continuous-time switched linear 
system with constant input. The results were 
applied to DC-DC converters control design. 
However, the same problems via switched 
observer which contains information of the 
outputs instead of the state for the switched 
systems have not been investigated. 

The objective of this paper is to study 
conditions under which equilibrium points are 
globally asymptotically stable via the switched 
observer. The conditions are related to 
continuous-time switched linear systems with 
constant input. In Section 2 the main results of 

this paper are given. In Section3two illustrative 
numerical examples are shown. Finally, 
concluding remarks are given in Section 4. 

2. Stabilizability Conditions  

At first, the following notations which will be 
needed throughout this study are given. 

Notations 
 max ( )Ml is the maximum eigenvalue of a 

symmetric matrix .n nM ´Î   

 M is the maximum singular value of a 

matrix n mM ´Î (i.e., 2 T
max ( )M M Ml= ). 

 For two matrices 1 2,M M , 1 2M M> implies 

that 1 2M M- is positive definite (i.e., 

1M - 2 0M > ). 

 1 2
1

: ( , , , ) | 1, 0 .
N

N i i
i

l l l l l l
=

ì üï ïï ïï ïL = = = ³í ýï ïï ïï ïî þ
å  

 1 2
1

: ,  ( , , , ) .
N

i i N
i

A Al l l l l l
=

= = ÎLå   

 : {1,2, }.N=   

 ( )arg min : min : mini j
ji

S i s s
ÎÎ

ì üï ïï ï= =í ýï ïï ïî þ
That is 

the minimum indexi such that si is equal to 
the smallest element of the ordered set 

1 2{ , ,S s s= , }.Ns  

Next, consider the following continuous-time 
switched linear system 
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where ( ) nx t Î is the state, ( ) mu t u= Î is the 

constant input, ( ) py t Î is the output,

ˆ( ) nx t Î is the state of the following switched 
linear observer. 

ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ( , )

ˆ ˆ ˆ( ) ( ) { ( ) ( )}

,

x t x t x t

x t

d
x t A x t L y t C x t

dt
B u

s s s
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= + -

+
 (1) 

where ˆ( , ) : nx ts +´    is the switching 

strategy which depends on the observer state x̂
and ˆ( , )x tLs is the observer gain. 

Now, consider the following closed-loop 
system 

sS
combined by the switched system 

sS and the switched observer (1). 

ˆ( , )

ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ( , ) ( , ) ( , )

: ( ) ( )

,
0

0
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d
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s
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s s s
S =

+

é ù
ê ú
ê ú-ë û

é ù
ê ú
ê úë û

  

 

where T T T( ) : [ ]ˆ ˆ( ) ( ( ) ( ))x t x t x t x t= - is the 
extended state vector. 

The following lemma will be used to prove our 
main results. 

Lemma1. [14] Suppose that 0,  0,e h> >

1 ( 0)n nP ´Î > is a positive-definite matrix and

,n p p nL Cs s
´ ´Î Î  .  

If 1:H P L Cs s s=- and 

2
max

,
Hs

sa
eh

Î>   

then the following matrix 

1
T

1

:
( )

I P L C
P

P L C I

s s
s

s s

e

ah

é ù-ê ú= ê ú-ê úë û


 

is positive-definite.  

Then, the following theorem can be obtained. 

Theorem 1. Suppose that a switched system

sS with constant input ( )u t u= is given. Let

n
ex Î be given. Suppose that the following 

two conditions (i) and (ii) are satisfied: 

(i) There exist ,lÎL  a positive-definite matrix 

1 ( 0 )P > and 0e> such that 

T
1 1 ,A P P A Il l e+ <-  (2) 

0.eA x B ul l+ =  (3) 

(ii)There exist a positive-definite matrix

2 ( 0)P > and n p
iY ´Î ( 1, , )i N=  such that 

T T T
1 2 2 1 1 1 1 1

T T T
2 2N N N N N N

A P P A C Y Y C I

A P P A C Y Y C I

h

h

ìï + - - <-ïïïïíïïï + - - <-ïïî

  (4) 

for some 0.h>  

Then lim ( ) e
t

x t x
¥

= for an arbitrary initial state

0
nx Î via the switching rule 

1
ˆ ˆˆ ˆ ˆ( , ) arg min ( ),  :i i e

i
x t P A x B u x xs x x

Î
= + = -


 (5) 

which depends on the state x̂ of switched 

observer (1) with observer gain matrices
1

2: ( 1, , ).L P Yi i i N-= =   

Proof. Define T T Tˆ ˆ: [ ( ) ] ( : )ex xx x x x x= - = -  

and a quadratic form ( )V x as
T( )V Px x x=   .Denote 1:H P L Cs s s=- and 

1

2

0
: ,

0

P
P

Pa

é ù
ê ú= ê úë û


 

where P is a positive-definite matrix.      
Suppose that 

2
max

( 0 ),
Hs

sa
eh

Î> >

 

Then, it follows from (2), (3), (4) and (5) that 
the time derivative of ( )V x  satisfies the 
following equations: 

1 1T T

2 2

T
1

T
2

0 0
( )

0 0

ˆˆ ˆ{ ( ) }

ˆˆ{( )( )} ( )

P P
V x x

P P

A x L C x x B u P
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s s s s
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x x x
a a

x

a x x

é ù é ù
ê ú ê ú= +ê ú ê úë û ë û

= + - +

+ - - -

     
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Since

2
max

( 0 ),
Hs

sa
eh

Î> > it follows from 

Lemma1 that 

1
T

1

:
( )

I P L C
P

P L C I

s s
s

s s

e

ah

é ù-ê ú= ê ú-ê úë û

  

is positive-definite. Hence ( ) 0
d

V
dt

x < which 

implies that ( )V x is a Lyapunov function for the 

extended switched system sS which implies  

ˆ ˆlim ( ) lim ( ( ) ) 0e
t t

t x t xx
¥ ¥

= - =  

and 

ˆ ˆlim ( ( ) ( )) lim ( ( ) ( )) 0.
t t

t t x t x tx x
¥ ¥

- = - =  

Thus, lim ( ) e
t

x t x
¥

= for an arbitrary initial state 

0
nx Î via the switching rule (2).This 

completes  the proof of Theorem1.      

The following theorem says that the state ex is 
asymptotically stable via the switched rule 
which is linear on x̂ if there exists a common 
solution 1 ( 0 )P >  satisfying Lyapunov 
inequalities for stable subsystems matrices 

( 1, , )iA i N=  . 

Theorem 2. Suppose that a switched system

så  with constant input ( )u t u= and n
ex Î  

be given. If the following two conditions (i) 
and (ii) are satisfied, then lim ( ) e

t
x t x

¥
= for an 

arbitrary initial state 0
nx Î via the     

switching rule 

1
ˆ ˆˆ ˆ( , ) arg min ( ), :i e i e

i
x t P A x B u x xs x x

Î
= + = -


 (6) 

which depends on the state x̂ of switched 

observer (1) with 1
2: .L P Ys s
-=  

(i) There exist ,lÎL  a positive-definite matrix 

1 ( 0 )P > and 0e> such that 

T
1 1 ,i iA P P A Ie+ <-  (7) 

0.eA x B ul l+ =  (8) 

(ii)There exist a positive-definite matrix 2P

( 0)> and n p
iY ´Î such that 
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for some 0.h>  

Proof.   Define T T Tˆ ˆ: [ ( ) ] ( : )ex xx x x x x= - = -  

and a quadratic form ( )V x  as 

1T

2

0
( ) , : ,

0

P
V P P

P
x x x

a

é ù
ê ú= = ê úë û

   
 

where P  is apositive-definite matrix and  

2

1

max
 ( 0 ), : .

H
H P L C

s
s

s s sa
eh

Î> > =-  

Then, it follows from (6), (7), (8) and (9) that the 
time derivative of ( )V x  satisfies the equations: 
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Hence, it follows from Lemma1 that 

( ) 0
d

V
dt

x < which implies that ( )V x is a 

Lyapunov function for the extended switched 
system .sS Thus, lim ( ) e

t
x t x

¥
=

 
for an 

arbitrary initial state 0
nx Î  via the 

switching rule (6).    

3. Illustrative Numerical Examples 

In this section, two numerical examples for 
Theorem1and Theorem2 will be shown. 

3.1 An example for Theorem 1 

Consider the two-dimensional switched linear 
system sS with constant input which consists of 
two subsystems and switched observer (1). 
Here, each subsystem’s matrices ,iA input 

matrices iB and output matrices ,iC are as 
follows. In this example, we note that  

1 2and A A  are unstable. 

[ ]

[ ]

1 1 1

2 2 2

1 2 3
, , 4 2

2 1 3

1 2 2
, , 6 1 .

2 1 1

A B C

A B C

é ù é ù-ê ú ê ú= = =ê ú ê ú-ê ú ê úë û ë û

é ù é ù- -ê ú ê ú= = =ê ú ê ú- -ê ú ê úë û ë û

 

Now, if we choose an input 1,u =  a positive 
definite matrix 1 2 , 1 / 2,P I e= =  parameters 

1 2 1 20.4, 0.6    ( 1 )l l l l= = + =  

and T[2 1] ,ex =  then the condition (i) of 
Theorem1 is satisfied. 

Next, if we choose the observer gain 

1 1
1 2 1 2 2 2: , : ,L P Y L P Y- -= =  
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where 1 2 1 2
3 5

,  : ,  :
2 1

P I Y Y
é ù é ù
ê ú ê ú= = =ê ú ê úë û ë û

and 1/ 8,h=

then the condition (ii) of Theorem1 is also 
satisfied. Thus, ex is globally asymptotically 
stable via the following switched rule 

1
{1,2}

ˆˆ ˆ( , ) arg min ( ).i i
i

x t P A x B us x
Î

= +  (10) 

In fact, for this example, if we choose an initial 

state T
0 [3 6]x = of the system sS and 0x =
T[3 5.5] of the switched observer (1), then we 

have  

0 1 1 0 1
0 0

0 1 2 0 2

ˆ ˆ( ) 26.7500 ˆ ˆ, : .
ˆ ˆ( ) 59.2500

e
P A x B u

x x
P A x B u

x
x

x

ìï + =ïï = -íï + =-ïïî
 

According to the switching rule ˆ( , )x ts  in (10), 

0ˆ( ,0) 2xs =  is chosen. Further, if we choose 
the number of subsystems according to the 
switching rule in the same way, then we can 
see the states ( )x t and ˆ( )x t go to ex as t tends to 

¥  (see Figure 1). 

3.2 An example for Theorem 2 

Consider the two-dimensional switched linear 
system sS with constant input which consists of 
two subsystems and switched observer (1). 
Here, each subsystem’s matrices ,iA  input 

matrices iB  and output matrices ,iC  are           
as follows. 

[ ]

[ ]

1 1 1

2 2 2

2 1 1
, , 1 2

0 3 7

1 0 3
, , 2 1 .

1 1 2

A B C

A B C

é ù é ù- -ê ú ê ú= = =ê ú ê ú-ë û ë û

é ù é ù-ê ú ê ú= = =ê ú ê ú- -ë û ë û

 

Now, if we choose an input 1,u =  a positive 
definite matrix 1 2 , 1 / 2,P I e= =  parameters  

1 2 1 20.2, 0.8 ( 1)l l l l= = + =  

and T[2  1] ,ex = then the condition (i) of 
Theorem2 is satisfied. 

Next, if we choose the observer gain 

1 1
1 2 1 2 2 2: , : ,L P Y L P Y- -= =  

 

Figure 1. State trajectories of ( )x t and ˆ( )x t  
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where 1 2 1 2
1 3

, : , :
0 1

P I Y Y
é ù é ù
ê ú ê ú= = =ê ú ê úë û ë û

and a parameter 

1,h= then the condition (ii) of Theorem2 is 

satisfied. Thus, ex  is globally asymptotically 
stable via the following switched rule 

1
{1,2}

ˆˆ( , ) arg min ( ).i e i
i

x t P A x B us x
Î

= +  (11) 

In fact, for this example, if we choose an initial 

state T
0 [6 3]x =  of the system sS  and 0x =
T[6 2.7]  of the switched observer (1), then     

we have  

0 1 1 0 1
0 0

0 1 2 0 2

ˆ ˆ( ) 9.2000
ˆ ˆ, : .

ˆ ˆ( ) 2.3000
e

P A x B u
x x

P A x B u

x
x

x

ìï + =-ïï = -íïï + =-ïî  

According to the switching rule ˆ( , )x ts  in (11), 

0ˆ( ,0) 1xs =  is chosen. Further, if we choose 
the number of subsystems according to the 
switching rule in the same way, then we can 
see the states ( )x t  and ˆ( )x t  go to ex  as t    

tends to ¥   (see Figure 2). 

4. Concluding Remarks 

In this paper, stabilizability for continuous-time 
switched linear systems with constant input via 
switched observer was investigated. Firstly, the 
conditions for equilibrium points related to the 
switched linear system with constant input to 
be globally asymptotically stable via switched 
observer were presented. Next, two numerical 
examples to illustrate the main results 
(Theorem 1 and Theorem 2) were also shown, 
respectively. As future studies we need to 
investigate parameter insensitive stabilization 
problems for switched linear systems, with 
constant input via switched observer. 
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Figure 2. State trajectories of ( )x t and ˆ( )x t  
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