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1. Introduction 

With the rising expansion and continuous 
improvement in the complexity of the grid-
computing scale, the probability of system 
component failure, including software and 
hardware, continues to increase. Moreover, the 
grid-computing application executes a large 
volume of tasks that have long life cycles. In 
the case of non-fault-tolerant measures, system 
errors cause processes with long life cycles to 
restart, which consequently degrades the 
calculations made before the error occurred. 
Additionally, other error-free processes that are 
related to the erroneous process may have to 
restart to return the entire system to its original 
state, thus causing enormous losses. In some 
cases, a compromise between long periods of 
calculation and stable system operation  
remains a challenge. 

Thus, studying the fault tolerance of a grid-
computing system is of great significance. 
Designing an effective fault-tolerant 
mechanism can effectively prevent data loss. 
Such a mechanism can also prevent process 
from restarting after an error occurs. Thus, an 
effective fault-tolerant mechanism will aid in 
the construction of a reliable, consistent, 
continuous, low-cost, and high-end grid-
computing system. 

Linear equations are widely used in scientific 
and engineering computations. Such equations 
have long computing cycles and require large 
amounts of calculations, which can be solved 
by using a grid-computing platform. The 
conjugate gradient (CG) method [13, 16-18], 
also known as the conjugate vector method, is 

an iterative method for solving linear equations. 
This method is characterized by the capability 
to provide an approximate solution for high-
order equations. Such an approximate solution 
meets accuracy requirements only when the 
number of iterations is considerably smaller 
than the order. The fault-tolerance of the CG 
solver in a grid -computing platform is of great 
practical value. 

This paper primarily investigates fault tolerance 
based on the fault-tolerant message passing 
interface (FT-MPI) [2, 3] library and then uses 
checkpoint technology to realize the CG 
method. When failure occurs in a node of the 
grid-computing system during calculation, a 
checkpoint is reasonably set and checkpoint 
information is effectively encoded for the 
backup and migration of computing tasks. This 
process prevents the failure of a single node 
from causing the entire system to stop 
operating normally. 

The remainder of this paper is organized as 
follows: Section 2 describes related studies on 
the existing FT-MPI library. Section 3 provides 
a task migration and recovery model for a grid-
computing environment. Section 4 presents a 
Checksum checkpoint-based fault-tolerant CG 
solver, based on the given model and then 
discusses the related experimental results. 
Finally, the conclusion and plans for future 
work are presented. 

2. Related Works 

The international community has adopted 
different fault-tolerant mechanisms in studies 
of FT-MPI to achieve fault tolerance in grid 
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computing. Such mechanisms include Co-
Check MPI [4], Starfish MPI [5], MPICH-V [6], 
LA-MPI [7], MPI/FT [8], MPI-FT [9], and FT-
MPI. A number of studies have achieved FT-
MPI, but each MPI has its own advantages and 
disadvantages, and no standard can be 
uniformly accepted. FT-MPI is the more 
common among these mechanisms. Thus, we 
use FT-MPI as a platform to achieve a fault-
tolerant grid-computing system. 

Co-Check MPI was developed by the Technical 
University of Munich and is the first 
implementation of FT-MPI. This mechanism 
adopts check-point/roll back technology and is 
a complete application for the achievement of 
MPI fault tolerance based on the checkpoint of 
the Condor library. 

Starfish MPI was developed by the University 
of Illinois. This application can adapt to 
dynamic change and has a built-in checkpoint 
function. Starfish MPI combines strict atomic 
group communication technology and 
checkpoints/restart agreement as well as the 
support cooperation and non-cooperation 
checkpoint mechanism. 

MPICH-V was developed at the Innovative 
Computing Laboratory, University of 
Tennessee, Knoxville and uses different 
communication protocols (including Myrinet) 
to support fault-tolerant function. MPICH-V 
establishes distributed and non-cooperative 
checkpoints and takes advantage of the 
dynamic characteristics of checkpoint 
technology; for example, nodes can join and 
leave the grid environment at any time. 

LA-MPI originated from the Los Alamos 
National Laboratories and served to provide a 
reliable channel for messages between 
processes, but not to control process failure. To 

achieve this objective, the communication layer 
is divided into two parts: the memory and 
message management layer and the sending 
and receiving layer. 

MPI/FT was developed by the Columbia 
University through the introduction of central 
coordination and of a copy of MPI process 
mechanisms to conduct fault tolerance. 

MPI-FT was developed by Paraskevas 
Evripidou in Cyprus University. This 
mechanism supports a number of applications 
under the master-slave mode and enables all 
communication nodes constructed in the grid to 
include free processes. Once an error occurs, 
the free processes conduct initialization. 

3. Task Recovery Model  

3.1 Model 

In this model, a grid-computing task has n 
computing nodes, m backup nodes, k idle nodes, 
a master node, and a backup node of the master 
node, as shown in Figure 1. 

The functions of each node in fault-tolerant 
applications for grid computing are as follows: 

Master node: (1) stores a list of information 
regarding backup nodes including the number, 
identification, and the information storage 
capacity of nodes; regularly updates the list of 
information; and regularly monitors the 
condition of the backup nodes. (2) stores 
information on the idle node, including name, 
communication time, and load condition; sends 
regular queries to idle nodes for updates. (3) 
sends certain global information to the nodes, 
the backup and idle nodes; for example, the 
information table on idle nodes. (4) performs 
task scheduling in the master-slave mode. 

 

Figure 1. Grid computing task migration and recovery model 
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Backup node of the master node: (1) serves 
as real-time backup for master node data. (2) 
monitors the operational status of the master 
node. The backup node takes over the task the 
master node when the latter fails. 

Compute node: (1) performs computing 
application tasks. (2) establishes checkpoint 
information. (3) recovers the data and 
computing tasks of the node. 

Backup node: (1) calculates and updates the 
verification information of the checkpoint. (2) 
recovers the data and computing tasks of the 
failed node. 

Idle node: can be used as a replacement for 
failed compute or backup nodes. 

3.2 Checkpoint storage and information 
encoding algorithm 

The checkpoint is a fault-tolerant technology 
that is simple, efficient, and practical and has 
thus been widely applied in FT-MPI. The 
functional structure of the above model shows 
that a checkpoint is capable of saving data and 
restoring the status of the running program and 
is thus essential for the grid-computing system 
to achieve stable and effective fault tolerance. 

Checkpoint storage. Checkpoint storage is 
classified into two types: file checkpoint and 
diskless checkpoint [10]. 

(1) File storage checkpoints. Storage is usually 
achieved by saving checkpoint information 
onto a reliable media (such as a disk or disk 
array) as a file. The advantage of such 
checkpoints is high reliability provided that a 
local or backup checkpoint can be saved onto a 
relatively stable storage medium. The 
disadvantages are as follows: 

The time involved in setting up and in 
recovering a checkpoint is relatively long 
because reading and writing from the external 
medium is relatively slow. 

If file pointer information is not saved by the 
checkpoint, then the error would not be 
recovered when checkpoint setup fails. 

(2) Diskless checkpoint. Diskless checkpoint is 
a technology that is capable of storing a large-
scale computing state onto a distributed system; 
it does not depend on a stable storage device. 
Under such mechanism, the state of each 
computing process is saved in the memory of 
the local region. In addition, the checkpoint 

codes are stored in a memory that is unrelated 
to computing applications of the local area. 

When an error occurs, the state of each active 
process reverts to the previous checkpoint state; 
the state of the failed checkpoint can be 
recovered from processes that did not fail and 
from those that stored the checkpoint codes. 
Through redundancy in its memory, a diskless 
checkpoint eliminates the resource cost of the 
checkpoint mechanism in a common  
distributed system. 

The advantages of a diskless checkpoint are as 
follows: 

Storage is more convenient because only a few 
storage variables or data structures must be set 
up. 

Checkpoint setup and error recovery run at high 
speeds. The speed of memory reading and 
writing is faster compared with reading and 
writing through file storage. 

When failure occurs during checkpoint setup, 
the program can still recover properly based on 
the checkpoint. 

The disadvantages are as follows: 

Storing large amounts of checkpoint 
information is impossible. The memory 
capacity of a diskless checkpoint is 
significantly smaller than that of disk media, 
which certainly affects computations that 
require a large amount of memory. 

Reliability is relatively lower than that of a file 
checkpoint. The loss of all memory data is 
possible in case of a sudden power failure. 

Checkpoint information-encoding algorithm. 
Encoding a reasonable amount of checkpoint 
information not only saves storage space, but 
also increases the efficiency and of fault 
tolerance of the system. The most commonly 
used encoding algorithms are the Checksum 
[11] and Reed–Solomon algorithms [12]. 

(1) Checksum algorithm 

Checksum is a simple, efficient, and useful 
information-encoding algorithm. Checksum 
can effectively encode checkpoint information 
from multi-memory computing, thus achieving 
system redundancy fault-tolerance. 

Encoding is relatively simple when applying 
the checksum algorithm. Thus, less additional 
time is required in computing the coding value, 
making the efficiency of system recovery 
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relatively high. However, this method can only 
tolerate failure in a single node but not in 
multiple nodes. 

(2) Reed–Solomon algorithm  

The Reed–Solomon algorithm is an 
information-coding algorithm that is applied to 
multi-memory-distributed data. This algorithm 
can realize redundancy fault-tolerance in 
various failed equipment. Below is a complete 
proof for the Reed–Solomon algorithm’s fault-
tolerant feasibility. 

Definition: Write the function Fi (i=1, 2… m) 
as a linear combination of the data: 
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Theorem: When the number of failed 
equipment k (k <= m) and any arbitrary sub-
matrix in the check matrix are both non-
singular, the entire system can be successfully 
resumed by using the Reed–Solomon algorithm. 

Proof: Suppose 1k  data device and 2k  

calibration device errors, which indicates that 

1k  data words and 2k  checking words are 

unknown. Moreover, 1 2k k k  . Equation 

Group (2) then becomes an equation group with 
m equations and k unknowns. 

If k m , then the number of unknown 
quantities exceeds the number of equations. 

Thus, Equation Group (2) has no unique 
solution, and the missing data in the failed 
equipment cannot be restored. Thus, when the 
number of failed equipment exceeds the 
number of calibration equipment, the system 
cannot be restored. 

If k m , then the number of unknowns is less 
than or equal to the number of equations. 
Through the appropriate selection of the check 
matrix F, the equation can have a unique 
solution, and the missing data in the failed 
equipment can be restored. Thus, when the 
number of failed equipment is less than or 
equal to the number of calibration equipment, 
the system can be restored through the 
appropriate selection of the check matrix F. 

Without loss of generality, we suppose that data 
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Notably, correlation coefficient matrix is 
r

F for 

Linear Equation Group (3). If 
r

F  is a full 

column rank, then  
1

1, 2 ,
t

j
d t k   can be 

restored through Linear Equation Group (3), 

Table 1. Comparison with Checksum and Reed-Solomon algorithm 

Encoding Algorithm Checksum Reed-Solomon 

Fault Tolerance Tolerate multiple, single-node failure 
Tolerate at most m nodes failure 
at the same time several times 

Space Overhead Need a check node Need m check nodes 

Time Overhead 
Less computing time, 

Less communication time 
More computing time 

More communication time 

Difficulty of Achieving Relatively simple Relatively difficult 

Speed of Recovery Faster Slower 
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which can facilitate the restoration of 
 

2
1, 2, ,

t
i

C t k   through Linear Equation Group 

(4). Finally, the entire system can be restored. 

Therefore, the restoration of missing data on 
the failed node is based on whether the matrix 
Fr is a full-column rank. To enable the failed 
equipment to be restored, Fr can be any sub-
array of matrix F. Likewise, given that any sub-
array of the matrix F is nonsingular and that the 
number of storage device failures is k (k ≤ m), 
Fr is full-column rank. We can see that when 
any sub-array of the check matrix F is 
nonsingular with k (k ≤ m) storage device 
failures, the entire system can be restored. 

4. Implementation  

The fault-tolerant CG [13] solver comprises 
three modules: the initialization, calculation, 
and recovery modules. 

(1) Initialization module 

This module initializes the CG solver’s 
computing environment, which includes 
establishing the computing process and the 
backup process, obtaining matrix A, initializing 
each calculation variable, and so on. 

The steps are as follows: 

Step 1: The process, which may be a normal or 
a restarting process, is identified. If the process 
restarts, it is marked as a restarting process and 
then the recovery of computing data is 
initialized. However, if the process is normal, 
only the computing environment is initialized. 

Step 2: A computing workspace, comm_work, 
is created. 

check_proc = n; 

MPI_Comm_group(MPI_COMM_WORLD, 
&orig_group); 

MPI_Group_excl(orig_group, 1, &check_proc, 
&group_work); 

MPI_Comm_create(MPI_COMM_WORLD, 
group_work, &comm_work); 

Step 3: Matrix A is obtained. Matrix A is an 
m m sparse matrix that is stored in a file in 
the Harwell–Boeing format [14, 15, 19, 20]. 

Step 4: Vector b is initialized. We set 
b A L   (L is a given vector) to facilitate 
result verification. Finally, the result X=L is 
obtained through the CG solver. 

Step 5: The vector space is applied. 

All manuscripts must be MsWord 
Documents and must comply with publisher’s 
instructions. The paper should be in English 
and should have the following structure: 

(2) Calculation Module 

This module completes iteration computing. 
The Checkpoint function is specifically 
intended for the completion of the checkpoint 
setup process. During the calculation process, 
the system monitors each MPI function call. 
When a function call is found wrong, the 
module marks the process state as “Need to 
restore” and then instantly converts into the 
Recovery Module. 

(3) Recovery Module 

This module calculates the recovery process. 
First, the module calls the MPI statement to 
restart a process automatically to replace the 
failed process. Restarting the process is 
required to restore the computing environment 
and the calculating data. A normal process 
needs to restore its state to the checkpoint state. 

Table 2. Result of fault-tolerant CG operate normally 

Number of 
processes 

Number 
of 

iterations 

Number of 
checkpoints 

Normal 
computation time 

Normal 
Communication 

time 

Total 
time 

3 7825 40 0.536822 8.974775 9.619499 

4 7673 39 0.45834 13.2111 13.77294 

5 7832 40 0.485311 19.7759 20.36834 

6 7807 40 0.466285 21.21815 21.79224 

7 7605 39 0.433963 21.08805 21.62652 
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5. Experiments 

Initial conditions: The checkpoint step = 1 
checkpoint/200 iterations and calculation 
accuracy error = 1.0e-30. A process is 
arbitrarily killed to simulate a single-node 
failure situation and to test the recovery time. 

5.1 Normal execution 

We allowed the fault-tolerant CG Solver to 
operate normally in FT-MPI to test the time 
parameters. The test prerequisite is as follows: 
the checkpoint step should create one 
checkpoint every 200 iterations. The results are 
given below. 

Figure 2 shows a comparison among the 
computation, communication, and total times. 
Notably, the number of processes in Figure 2 is 
the same as the number of calculation processes, 
excluding the backup process. 

Figure 2 shows that the difference in 
calculation time between fault-tolerant CG and 
non-fault-tolerant CG is very small, and such 
difference can be attributed to the network 
status and machine status. For example, when 
the number of processes is three, the 
calculation time of fault-tolerant CG is less 
than that of non-fault-tolerant CG. This 
difference evidently results from the network 
and the machine status. However, when outside 
conditions are constant, the calculation time of 
fault-tolerant CG is definitely longer than that 
of non-fault tolerant CG because of the time 
required in setting up the checkpoint. 

Both communication times in Figure 2 are 
almost the same as those in Figure 3. Except 
for several singular points, the additional time 
cost of other fault-tolerant CGs is lower, and 
the results are satisfactory. 

 

Figure 2. Comparison of computing time between fault-tolerant and non-fault-tolerant CG 

 

Figure 3. Comparison of communication time between fault-tolerant and non-fault-tolerant CG  
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Figure 4 indicates no remarkable difference in 
total time between fault-tolerant and non-fault-
tolerant CG. Figure 5 illustrates the cost of 
setting checkpoints as rather low, at no more 
than 5% of the total time. In fact, checkpoint 
setup accounts for only 2.29% of total time on 
average. Such a result is calculated without 
special points and is obtained through the 
network conditions and machine workload. 
However, given that the network conditions 

and machine workload have already been 
included in the points used for computation, the 
cost should be less than 2.29% of total time. 
Considering these special points, by simply 
adding and averaging, we can obtain the ratio 
of the time required for checkpoint setup 
against total time, which is 1.61%. Compared 
with the costs involved in restarting and 
recounting, this cost is very low. 

Table 3. Testing result of the different checkpoints step when the number of processes is 8 

Number of 
processes 

Checkpoint 
step length of 

(Iteration 
times) 

Number of 
checkpoint

s 
Computing time(s) 

Communication 
time (s) 

Total 
time(s) 

8 

50 151 0.652597 23.55539 24.32476 

100 76 0.502503 22.90244 23.50767 

200 38 0.457846 22.89871 23.46044 

400 19 0.535683 22.64116 23.30269 

600 13 0.515328 22.84472 23.48475 

 

Figure 4.  Comparison of total time between fault-tolerant and non-fault-tolerant CG 

 

Figure 5.  Percentage of checkpoint setup time 
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5.2 Comparison among various  
checkpoint steps 

We then test each time parameter under various 
checkpoint steps when the number of processes 
is eight. Table 3 shows that as the number of 
checkpoints increases, the total time also 
increases, albeit in small increments. The 
desired number of checkpoints is related to the 
actual amount of computation. The experiments 
reveal the optimal checkpoint step to be 76 for 
fault-tolerant CG solvers, which indicates one 
checkpoint for every 100 iterations. 

5.3 Comparison among different 
checkpoint storage methods 

The storage method can be either in-memory 
storage or file-storage. In Figure 6, we ran a 
test on file-storage checkpoints and in-memory 
storage checkpoints. The test shows that file-
storage checkpoints have a higher time cost 
than in-memory storage. This finding is 
reasonable considering that the read/write 
speed of files for file-storage is significantly 
slower than that for in-memory storage. 

 

Figure 6.  Comparison of file-storage checkpoints 
and in-memory storage checkpoints 

5.4 Fault-tolerance test 

Table 4 shows that during the migration and 
restoration of computing tasks, restructuring in 
the communication domain has consumed most 
of the time, whereas the restoration of 
computing workspaces and data only consumed 
a small amount of time. Both restorations 
account for 7.89% of total time. By simply 
adding and averaging each percentage data, we 
can obtain the ratio of single restoration time 
against total fault-tolerance CG execution time 
as 5.41%. 

5.5 Test summary 

This chapter provides the detailed testing 
process for the computing, communication time, 
and total execution times of fault-tolerant CG 

solvers in normal execution. From these tests, 
the efficiency of establishing checkpoints can 
be retrieved, that is, establishing checkpoints 
requires 1.61% of the total execution time. 
Further, various checkpoint steps are tested, 
and the optimal checkpoint step for fault-
tolerant CG solvers is calculated. Tests 
comparing the parameters of in-memory 
storage checkpoints and file-storage 
checkpoints indicate that the latter require more 
time than the former. Finally, we tested the 
fault tolerance of fault-tolerant CGs, that is, the 
migration and restoration of computing tasks 
when a single process fails, under various 
numbers of checkpoints. We found that time 
costs mainly come from the copying task in a 
communication domain. We also proved that 
fault-tolerant CGs can tolerate any number of 
failures in a single process and that one 
restoration involves approximately 5.41% of 
total execution time. 

5. Conclusion 

In this article, we discussed the process for the 
migration and restoration of multi-storage 
computing tasks by using a checkpoint 
algorithm based on the FT-MPI library for 
implementation in fault-tolerant grid computing. 
We introduced the current FT-MPI library. We 
likewise presented a task migration and 
restoration model based on grid computing, 
wherein we analyzed and compared the 
checkpoint storage method and checkpoint 
information encoding algorithm. Furthermore, 
we presented a complete proof on the fault-
tolerance feasibility of the Reed–Solomon 
algorithm. Finally, a fault-tolerant CG solver 
was implemented based on the principle of this 
model. Test results prove that the fault-tolerant 
CG solver is redundancy fault-tolerant in single 
node failure for as many times as possible. 

Given that the checkpoint algorithm used for 
this fault-tolerant CG solver is Checksum, only 
tolerate the failure of one node can be tolerated 
at any given time. When multiple nodes fail 
simultaneously, the algorithm cannot 
implement fault-tolerance for the system. 
However, the use of the Reed–Solomon 
algorithm can mitigate this problem. Therefore, 
the next step is to implement fault-tolerant CG 
solvers based on the Reed–Solomon algorithm 
and then analyze and compare the results with 
that when the checksum algorithm is used. 
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In addition, the checkpoint steps and the failure 
characteristics of each node in the system 
directly affect the execution efficiency of fault-
tolerant systems. Hence, we will conduct 
further research on the relationship model of 
checkpoint set mechanisms as well as 
implement and study actual algorithms to 
improve the efficiency of fault-tolerant systems. 
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5 1.12095425 0.0215512 0.091045 1.23355045 20.36834 6.06 

6 1.1745138 0.021662917 0.072278 1.26845472 21.79224 5.82 

7 1.239471333 0.018257929 0.094061 1.35179026 21.62652 6.25 

8 1.275007857 0.016904188 0.077942 1.36985405 23.46044 5.84 

9 1.335297438 0.015148167 0.082352 1.4327971 28.32543 5.06 

10 1.389583444 0.01621565 0.082614 1.48841309 29.538541 5.04 

11 1.43583375 0.014203136 0.086411 1.53644789 34.137064 4.50 

12 1.509873 0.013151333 0.094145 1.61716933 35.191527 4.60 

13 1.571477875 0.014109846 0.097989 1.68357672 35.134292 4.79 

14 1.631156 0.013227571 0.130361 1.77474457 36.407385 4.87 

15 1.663123893 0.0137886 0.112573 1.78948549 38.639928 4.63 

16 1.6909015 0.013524719 0.132652 1.83707772 39.647513 4.63 
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