

Studies in Informatics and Control, Vol. 22, No. 1, March 2013 http://www.sic.ici.ro 51

1. Introduction

With the rising expansion and continuous
improvement in the complexity of the grid-
computing scale, the probability of system
component failure, including software and
hardware, continues to increase. Moreover, the
grid-computing application executes a large
volume of tasks that have long life cycles. In
the case of non-fault-tolerant measures, system
errors cause processes with long life cycles to
restart, which consequently degrades the
calculations made before the error occurred.
Additionally, other error-free processes that are
related to the erroneous process may have to
restart to return the entire system to its original
state, thus causing enormous losses. In some
cases, a compromise between long periods of
calculation and stable system operation
remains a challenge.

Thus, studying the fault tolerance of a grid-
computing system is of great significance.
Designing an effective fault-tolerant
mechanism can effectively prevent data loss.
Such a mechanism can also prevent process
from restarting after an error occurs. Thus, an
effective fault-tolerant mechanism will aid in
the construction of a reliable, consistent,
continuous, low-cost, and high-end grid-
computing system.

Linear equations are widely used in scientific
and engineering computations. Such equations
have long computing cycles and require large
amounts of calculations, which can be solved
by using a grid-computing platform. The
conjugate gradient (CG) method [13, 16-18],
also known as the conjugate vector method, is

an iterative method for solving linear equations.
This method is characterized by the capability
to provide an approximate solution for high-
order equations. Such an approximate solution
meets accuracy requirements only when the
number of iterations is considerably smaller
than the order. The fault-tolerance of the CG
solver in a grid -computing platform is of great
practical value.

This paper primarily investigates fault tolerance
based on the fault-tolerant message passing
interface (FT-MPI) [2, 3] library and then uses
checkpoint technology to realize the CG
method. When failure occurs in a node of the
grid-computing system during calculation, a
checkpoint is reasonably set and checkpoint
information is effectively encoded for the
backup and migration of computing tasks. This
process prevents the failure of a single node
from causing the entire system to stop
operating normally.

The remainder of this paper is organized as
follows: Section 2 describes related studies on
the existing FT-MPI library. Section 3 provides
a task migration and recovery model for a grid-
computing environment. Section 4 presents a
Checksum checkpoint-based fault-tolerant CG
solver, based on the given model and then
discusses the related experimental results.
Finally, the conclusion and plans for future
work are presented.

2. Related Works

The international community has adopted
different fault-tolerant mechanisms in studies
of FT-MPI to achieve fault tolerance in grid

Fault Tolerance for Conjugate Gradient Solver
Based on FT-MPI

Weizhe ZHANG1, Hui HE2

Harbin Institution of Technology,
92 West Dazhi, Harbin, 150001, China,
wzzhang@hit.edu.cn, hehui@hit.edu.cn

Abstract: Grid computing is characterized by high speed, large scale, large task quantity, and long cycles. Such
characteristics prevent the waste of large amounts of computing power and time that can be attributed to system errors.
Moreover, such features provide the fault tolerance of computing resource nodes in the structural system of grid
computing, which has become a key issue in the field. This paper describes the current fault-tolerant message passing
interface library, designs a grid computing-based task migration and recovery model, and then identifies the functional
architecture of each module of the mode. Further analysis and comparison were conducted on the storage mechanism of
the fault-tolerant checkpoint of the model as well as its information-encoding algorithm. Finally, the realization of a
Checksum algorithm-based fault-tolerant conjugate gradient solver shows the validity of the theory.

Keywords: fault tolerance; CG solver; FT-MPI; computational grid.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 1, March 2013 52

computing. Such mechanisms include Co-
Check MPI [4], Starfish MPI [5], MPICH-V [6],
LA-MPI [7], MPI/FT [8], MPI-FT [9], and FT-
MPI. A number of studies have achieved FT-
MPI, but each MPI has its own advantages and
disadvantages, and no standard can be
uniformly accepted. FT-MPI is the more
common among these mechanisms. Thus, we
use FT-MPI as a platform to achieve a fault-
tolerant grid-computing system.

Co-Check MPI was developed by the Technical
University of Munich and is the first
implementation of FT-MPI. This mechanism
adopts check-point/roll back technology and is
a complete application for the achievement of
MPI fault tolerance based on the checkpoint of
the Condor library.

Starfish MPI was developed by the University
of Illinois. This application can adapt to
dynamic change and has a built-in checkpoint
function. Starfish MPI combines strict atomic
group communication technology and
checkpoints/restart agreement as well as the
support cooperation and non-cooperation
checkpoint mechanism.

MPICH-V was developed at the Innovative
Computing Laboratory, University of
Tennessee, Knoxville and uses different
communication protocols (including Myrinet)
to support fault-tolerant function. MPICH-V
establishes distributed and non-cooperative
checkpoints and takes advantage of the
dynamic characteristics of checkpoint
technology; for example, nodes can join and
leave the grid environment at any time.

LA-MPI originated from the Los Alamos
National Laboratories and served to provide a
reliable channel for messages between
processes, but not to control process failure. To

achieve this objective, the communication layer
is divided into two parts: the memory and
message management layer and the sending
and receiving layer.

MPI/FT was developed by the Columbia
University through the introduction of central
coordination and of a copy of MPI process
mechanisms to conduct fault tolerance.

MPI-FT was developed by Paraskevas
Evripidou in Cyprus University. This
mechanism supports a number of applications
under the master-slave mode and enables all
communication nodes constructed in the grid to
include free processes. Once an error occurs,
the free processes conduct initialization.

3. Task Recovery Model

3.1 Model

In this model, a grid-computing task has n
computing nodes, m backup nodes, k idle nodes,
a master node, and a backup node of the master
node, as shown in Figure 1.

The functions of each node in fault-tolerant
applications for grid computing are as follows:

Master node: (1) stores a list of information
regarding backup nodes including the number,
identification, and the information storage
capacity of nodes; regularly updates the list of
information; and regularly monitors the
condition of the backup nodes. (2) stores
information on the idle node, including name,
communication time, and load condition; sends
regular queries to idle nodes for updates. (3)
sends certain global information to the nodes,
the backup and idle nodes; for example, the
information table on idle nodes. (4) performs
task scheduling in the master-slave mode.

Figure 1. Grid computing task migration and recovery model

Studies in Informatics and Control, Vol. 22, No. 1, March 2013 http://www.sic.ici.ro 53

Backup node of the master node: (1) serves
as real-time backup for master node data. (2)
monitors the operational status of the master
node. The backup node takes over the task the
master node when the latter fails.

Compute node: (1) performs computing
application tasks. (2) establishes checkpoint
information. (3) recovers the data and
computing tasks of the node.

Backup node: (1) calculates and updates the
verification information of the checkpoint. (2)
recovers the data and computing tasks of the
failed node.

Idle node: can be used as a replacement for
failed compute or backup nodes.

3.2 Checkpoint storage and information
encoding algorithm

The checkpoint is a fault-tolerant technology
that is simple, efficient, and practical and has
thus been widely applied in FT-MPI. The
functional structure of the above model shows
that a checkpoint is capable of saving data and
restoring the status of the running program and
is thus essential for the grid-computing system
to achieve stable and effective fault tolerance.

Checkpoint storage. Checkpoint storage is
classified into two types: file checkpoint and
diskless checkpoint [10].

(1) File storage checkpoints. Storage is usually
achieved by saving checkpoint information
onto a reliable media (such as a disk or disk
array) as a file. The advantage of such
checkpoints is high reliability provided that a
local or backup checkpoint can be saved onto a
relatively stable storage medium. The
disadvantages are as follows:

The time involved in setting up and in
recovering a checkpoint is relatively long
because reading and writing from the external
medium is relatively slow.

If file pointer information is not saved by the
checkpoint, then the error would not be
recovered when checkpoint setup fails.

(2) Diskless checkpoint. Diskless checkpoint is
a technology that is capable of storing a large-
scale computing state onto a distributed system;
it does not depend on a stable storage device.
Under such mechanism, the state of each
computing process is saved in the memory of
the local region. In addition, the checkpoint

codes are stored in a memory that is unrelated
to computing applications of the local area.

When an error occurs, the state of each active
process reverts to the previous checkpoint state;
the state of the failed checkpoint can be
recovered from processes that did not fail and
from those that stored the checkpoint codes.
Through redundancy in its memory, a diskless
checkpoint eliminates the resource cost of the
checkpoint mechanism in a common
distributed system.

The advantages of a diskless checkpoint are as
follows:

Storage is more convenient because only a few
storage variables or data structures must be set
up.

Checkpoint setup and error recovery run at high
speeds. The speed of memory reading and
writing is faster compared with reading and
writing through file storage.

When failure occurs during checkpoint setup,
the program can still recover properly based on
the checkpoint.

The disadvantages are as follows:

Storing large amounts of checkpoint
information is impossible. The memory
capacity of a diskless checkpoint is
significantly smaller than that of disk media,
which certainly affects computations that
require a large amount of memory.

Reliability is relatively lower than that of a file
checkpoint. The loss of all memory data is
possible in case of a sudden power failure.

Checkpoint information-encoding algorithm.
Encoding a reasonable amount of checkpoint
information not only saves storage space, but
also increases the efficiency and of fault
tolerance of the system. The most commonly
used encoding algorithms are the Checksum
[11] and Reed–Solomon algorithms [12].

(1) Checksum algorithm

Checksum is a simple, efficient, and useful
information-encoding algorithm. Checksum
can effectively encode checkpoint information
from multi-memory computing, thus achieving
system redundancy fault-tolerance.

Encoding is relatively simple when applying
the checksum algorithm. Thus, less additional
time is required in computing the coding value,
making the efficiency of system recovery

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 1, March 2013 54

relatively high. However, this method can only
tolerate failure in a single node but not in
multiple nodes.

(2) Reed–Solomon algorithm

The Reed–Solomon algorithm is an
information-coding algorithm that is applied to
multi-memory-distributed data. This algorithm
can realize redundancy fault-tolerance in
various failed equipment. Below is a complete
proof for the Reed–Solomon algorithm’s fault-
tolerant feasibility.

Definition: Write the function Fi (i=1, 2… m)
as a linear combination of the data:

 1 2 ,

1

, ,
n

i i n i j j

j

c F d d d f d


   , (1)

That is:

1,1 1 1, 1

,1 1 ,

n n

m m n n m

f d f d c

f d f d c

  

  








 



, (2)

Note that  ,i j m n
F f


 , referred to as Check

Matrix.

Theorem: When the number of failed
equipment k (k <= m) and any arbitrary sub-
matrix in the check matrix are both non-
singular, the entire system can be successfully
resumed by using the Reed–Solomon algorithm.

Proof: Suppose 1k data device and 2k

calibration device errors, which indicates that

1k data words and 2k checking words are

unknown. Moreover, 1 2k k k  . Equation

Group (2) then becomes an equation group with
m equations and k unknowns.

If k m , then the number of unknown
quantities exceeds the number of equations.

Thus, Equation Group (2) has no unique
solution, and the missing data in the failed
equipment cannot be restored. Thus, when the
number of failed equipment exceeds the
number of calibration equipment, the system
cannot be restored.

If k m , then the number of unknowns is less
than or equal to the number of equations.
Through the appropriate selection of the check
matrix F, the equation can have a unique
solution, and the missing data in the failed
equipment can be restored. Thus, when the
number of failed equipment is less than or
equal to the number of calibration equipment,
the system can be restored through the
appropriate selection of the check matrix F.

Without loss of generality, we suppose that data
devices

1 2 1

, , ,
k

j j j
D D D and checking devices

1 2 2

, , ,
k

i i i
C C C fail, which means that data words

1 2 1
, , ,

kj j jd d d and checking words

1 2 2
, , ,

ki i ic c c become unknown. Equation Group

(2) then becomes

1 1 1 1 1 12 2 1 1 2 2

1

1 1 11

1

, , ,

1

, , ,

1

k k k k k k t t

m m k m m t t

n

i j j i j j i i j j

t k

n

i j j i j k i i j j

t k

f d f d c f d

f d f d c f d

   

 

 

   

   



















 (3)

1 11

2 2 2

,1 1 ,

,1 1 ,1

i

k k k

i i i n n

i i i n

c f d f d

c f d f d

  

  













 (4)

Notably, correlation coefficient matrix is
r

F for

Linear Equation Group (3). If
r

F is a full

column rank, then  
1

1, 2 ,
t

j
d t k  can be

restored through Linear Equation Group (3),

Table 1. Comparison with Checksum and Reed-Solomon algorithm

Encoding Algorithm Checksum Reed-Solomon

Fault Tolerance Tolerate multiple, single-node failure
Tolerate at most m nodes failure
at the same time several times

Space Overhead Need a check node Need m check nodes

Time Overhead
Less computing time,

Less communication time
More computing time

More communication time

Difficulty of Achieving Relatively simple Relatively difficult

Speed of Recovery Faster Slower

Studies in Informatics and Control, Vol. 22, No. 1, March 2013 http://www.sic.ici.ro 55

which can facilitate the restoration of
 

2
1, 2, ,

t
i

C t k  through Linear Equation Group

(4). Finally, the entire system can be restored.

Therefore, the restoration of missing data on
the failed node is based on whether the matrix
Fr is a full-column rank. To enable the failed
equipment to be restored, Fr can be any sub-
array of matrix F. Likewise, given that any sub-
array of the matrix F is nonsingular and that the
number of storage device failures is k (k ≤ m),
Fr is full-column rank. We can see that when
any sub-array of the check matrix F is
nonsingular with k (k ≤ m) storage device
failures, the entire system can be restored.

4. Implementation

The fault-tolerant CG [13] solver comprises
three modules: the initialization, calculation,
and recovery modules.

(1) Initialization module

This module initializes the CG solver’s
computing environment, which includes
establishing the computing process and the
backup process, obtaining matrix A, initializing
each calculation variable, and so on.

The steps are as follows:

Step 1: The process, which may be a normal or
a restarting process, is identified. If the process
restarts, it is marked as a restarting process and
then the recovery of computing data is
initialized. However, if the process is normal,
only the computing environment is initialized.

Step 2: A computing workspace, comm_work,
is created.

check_proc = n;

MPI_Comm_group(MPI_COMM_WORLD,
&orig_group);

MPI_Group_excl(orig_group, 1, &check_proc,
&group_work);

MPI_Comm_create(MPI_COMM_WORLD,
group_work, &comm_work);

Step 3: Matrix A is obtained. Matrix A is an
m m sparse matrix that is stored in a file in
the Harwell–Boeing format [14, 15, 19, 20].

Step 4: Vector b is initialized. We set
b A L  (L is a given vector) to facilitate
result verification. Finally, the result X=L is
obtained through the CG solver.

Step 5: The vector space is applied.

All manuscripts must be MsWord
Documents and must comply with publisher’s
instructions. The paper should be in English
and should have the following structure:

(2) Calculation Module

This module completes iteration computing.
The Checkpoint function is specifically
intended for the completion of the checkpoint
setup process. During the calculation process,
the system monitors each MPI function call.
When a function call is found wrong, the
module marks the process state as “Need to
restore” and then instantly converts into the
Recovery Module.

(3) Recovery Module

This module calculates the recovery process.
First, the module calls the MPI statement to
restart a process automatically to replace the
failed process. Restarting the process is
required to restore the computing environment
and the calculating data. A normal process
needs to restore its state to the checkpoint state.

Table 2. Result of fault-tolerant CG operate normally

Number of
processes

Number
of

iterations

Number of
checkpoints

Normal
computation time

Normal
Communication

time

Total
time

3 7825 40 0.536822 8.974775 9.619499

4 7673 39 0.45834 13.2111 13.77294

5 7832 40 0.485311 19.7759 20.36834

6 7807 40 0.466285 21.21815 21.79224

7 7605 39 0.433963 21.08805 21.62652

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 1, March 2013 56

5. Experiments

Initial conditions: The checkpoint step = 1
checkpoint/200 iterations and calculation
accuracy error = 1.0e-30. A process is
arbitrarily killed to simulate a single-node
failure situation and to test the recovery time.

5.1 Normal execution

We allowed the fault-tolerant CG Solver to
operate normally in FT-MPI to test the time
parameters. The test prerequisite is as follows:
the checkpoint step should create one
checkpoint every 200 iterations. The results are
given below.

Figure 2 shows a comparison among the
computation, communication, and total times.
Notably, the number of processes in Figure 2 is
the same as the number of calculation processes,
excluding the backup process.

Figure 2 shows that the difference in
calculation time between fault-tolerant CG and
non-fault-tolerant CG is very small, and such
difference can be attributed to the network
status and machine status. For example, when
the number of processes is three, the
calculation time of fault-tolerant CG is less
than that of non-fault-tolerant CG. This
difference evidently results from the network
and the machine status. However, when outside
conditions are constant, the calculation time of
fault-tolerant CG is definitely longer than that
of non-fault tolerant CG because of the time
required in setting up the checkpoint.

Both communication times in Figure 2 are
almost the same as those in Figure 3. Except
for several singular points, the additional time
cost of other fault-tolerant CGs is lower, and
the results are satisfactory.

Figure 2. Comparison of computing time between fault-tolerant and non-fault-tolerant CG

Figure 3. Comparison of communication time between fault-tolerant and non-fault-tolerant CG

Studies in Informatics and Control, Vol. 22, No. 1, March 2013 http://www.sic.ici.ro 57

Figure 4 indicates no remarkable difference in
total time between fault-tolerant and non-fault-
tolerant CG. Figure 5 illustrates the cost of
setting checkpoints as rather low, at no more
than 5% of the total time. In fact, checkpoint
setup accounts for only 2.29% of total time on
average. Such a result is calculated without
special points and is obtained through the
network conditions and machine workload.
However, given that the network conditions

and machine workload have already been
included in the points used for computation, the
cost should be less than 2.29% of total time.
Considering these special points, by simply
adding and averaging, we can obtain the ratio
of the time required for checkpoint setup
against total time, which is 1.61%. Compared
with the costs involved in restarting and
recounting, this cost is very low.

Table 3. Testing result of the different checkpoints step when the number of processes is 8

Number of
processes

Checkpoint
step length of

(Iteration
times)

Number of
checkpoint

s
Computing time(s)

Communication
time (s)

Total
time(s)

8

50 151 0.652597 23.55539 24.32476

100 76 0.502503 22.90244 23.50767

200 38 0.457846 22.89871 23.46044

400 19 0.535683 22.64116 23.30269

600 13 0.515328 22.84472 23.48475

Figure 4. Comparison of total time between fault-tolerant and non-fault-tolerant CG

Figure 5. Percentage of checkpoint setup time

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 1, March 2013 58

5.2 Comparison among various
checkpoint steps

We then test each time parameter under various
checkpoint steps when the number of processes
is eight. Table 3 shows that as the number of
checkpoints increases, the total time also
increases, albeit in small increments. The
desired number of checkpoints is related to the
actual amount of computation. The experiments
reveal the optimal checkpoint step to be 76 for
fault-tolerant CG solvers, which indicates one
checkpoint for every 100 iterations.

5.3 Comparison among different
checkpoint storage methods

The storage method can be either in-memory
storage or file-storage. In Figure 6, we ran a
test on file-storage checkpoints and in-memory
storage checkpoints. The test shows that file-
storage checkpoints have a higher time cost
than in-memory storage. This finding is
reasonable considering that the read/write
speed of files for file-storage is significantly
slower than that for in-memory storage.

Figure 6. Comparison of file-storage checkpoints
and in-memory storage checkpoints

5.4 Fault-tolerance test

Table 4 shows that during the migration and
restoration of computing tasks, restructuring in
the communication domain has consumed most
of the time, whereas the restoration of
computing workspaces and data only consumed
a small amount of time. Both restorations
account for 7.89% of total time. By simply
adding and averaging each percentage data, we
can obtain the ratio of single restoration time
against total fault-tolerance CG execution time
as 5.41%.

5.5 Test summary

This chapter provides the detailed testing
process for the computing, communication time,
and total execution times of fault-tolerant CG

solvers in normal execution. From these tests,
the efficiency of establishing checkpoints can
be retrieved, that is, establishing checkpoints
requires 1.61% of the total execution time.
Further, various checkpoint steps are tested,
and the optimal checkpoint step for fault-
tolerant CG solvers is calculated. Tests
comparing the parameters of in-memory
storage checkpoints and file-storage
checkpoints indicate that the latter require more
time than the former. Finally, we tested the
fault tolerance of fault-tolerant CGs, that is, the
migration and restoration of computing tasks
when a single process fails, under various
numbers of checkpoints. We found that time
costs mainly come from the copying task in a
communication domain. We also proved that
fault-tolerant CGs can tolerate any number of
failures in a single process and that one
restoration involves approximately 5.41% of
total execution time.

5. Conclusion

In this article, we discussed the process for the
migration and restoration of multi-storage
computing tasks by using a checkpoint
algorithm based on the FT-MPI library for
implementation in fault-tolerant grid computing.
We introduced the current FT-MPI library. We
likewise presented a task migration and
restoration model based on grid computing,
wherein we analyzed and compared the
checkpoint storage method and checkpoint
information encoding algorithm. Furthermore,
we presented a complete proof on the fault-
tolerance feasibility of the Reed–Solomon
algorithm. Finally, a fault-tolerant CG solver
was implemented based on the principle of this
model. Test results prove that the fault-tolerant
CG solver is redundancy fault-tolerant in single
node failure for as many times as possible.

Given that the checkpoint algorithm used for
this fault-tolerant CG solver is Checksum, only
tolerate the failure of one node can be tolerated
at any given time. When multiple nodes fail
simultaneously, the algorithm cannot
implement fault-tolerance for the system.
However, the use of the Reed–Solomon
algorithm can mitigate this problem. Therefore,
the next step is to implement fault-tolerant CG
solvers based on the Reed–Solomon algorithm
and then analyze and compare the results with
that when the checksum algorithm is used.

0

1

2

3

4

4 5 6 8 9 10 11 12 14 15 16

A
xi
s
Ti
tl
e

Number of processes

Time
Difference
between file
checkpoint
and CG
without …

Studies in Informatics and Control, Vol. 22, No. 1, March 2013 http://www.sic.ici.ro 59

In addition, the checkpoint steps and the failure
characteristics of each node in the system
directly affect the execution efficiency of fault-
tolerant systems. Hence, we will conduct
further research on the relationship model of
checkpoint set mechanisms as well as
implement and study actual algorithms to
improve the efficiency of fault-tolerant systems.

Acknowledgements

Weizhe Zhang is supported in part by the
National Grand Basic Research Program (973
Program) of China under grant No.
2011CB302605, National Natural Science
Foundation of China (NSFC) under grant
No. 61173145.

REFERENCES

1. FOSTER, I., C. KESSELMAN, The Grid:
Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San
Fransisco, CA. 1999 http://mkp.com/grids.

2. FAGG, G. E., A. BUKOVSKY, J. J.
DONGARRA. Harness and Fault
Tolerant MPI. Parallel Computing, 2001.

3. FAGG, G. E., E. GABRIEL, G. BOSILCA,
T. ANGSKUN, Z. CHEN, J. PJESIVAC-
GRBOVIC, K. LONDON, J. J.
DONGARRA. Extending the MPI
Specification for Process Fault Tolerance
on High Performance Computing
Systems. University of Tennessee,
Knoxville, USA, 2004.

4. STELLNER, G., Cocheck: Checkpointing
and Process Migration for MPI. In
Proceedings of the 10th International
Parallel Processing Symposium (IPPS ’96),
Honolulu, Hawaii, 1996.

5. AGBARIA, A., R. FRIEDMAN,
STARFISH: Fault-tolerant Dynamic
MPI Programs on Clusters of
Workstations. In 8th IEEE International
Symposium on High Performance
Distributed Computing, 1999.

Table 4. Check-points test in fault-tolerance CG solvers

Number of
processes

Time of
copying the

communicati
on domain(s)

Time of
restoring

workspace(s)

Time of
restoring
data(s)

Total time of
single

restoration(s)

Normal
total time

(s)

The
percentage

of
restoration
time (%)

3 0.984357 0.0327155 0.046062 1.0631345 9.619499 11.05

4 1.048805667 0.02968025 0.052247 1.13073292 13.77294 8.21

5 1.12095425 0.0215512 0.091045 1.23355045 20.36834 6.06

6 1.1745138 0.021662917 0.072278 1.26845472 21.79224 5.82

7 1.239471333 0.018257929 0.094061 1.35179026 21.62652 6.25

8 1.275007857 0.016904188 0.077942 1.36985405 23.46044 5.84

9 1.335297438 0.015148167 0.082352 1.4327971 28.32543 5.06

10 1.389583444 0.01621565 0.082614 1.48841309 29.538541 5.04

11 1.43583375 0.014203136 0.086411 1.53644789 34.137064 4.50

12 1.509873 0.013151333 0.094145 1.61716933 35.191527 4.60

13 1.571477875 0.014109846 0.097989 1.68357672 35.134292 4.79

14 1.631156 0.013227571 0.130361 1.77474457 36.407385 4.87

15 1.663123893 0.0137886 0.112573 1.78948549 38.639928 4.63

16 1.6909015 0.013524719 0.132652 1.83707772 39.647513 4.63

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 1, March 2013 60

6. BOSILCA, G., A. BOUTEILLER, F.
CAPPELLO, S. DJILALI, G. F´EDAK, C.
GERMAIN, T. H´ERAULT, P.
LEMARINIER, O. LODYGENSKY, F.
MAGNIETTE, V. N´ERI, A. SELIKHOV.
MPICH-V: Toward a Scalable Fault
Tolerant MPI for Volatile Nodes. In
Super-Computing, Baltimore USA,
Novembre 2002.

7. GRAHAM, R. L., S.-E. CHOI, D. J.
DANIEL, N. N. DESAI, R. G. MINNICH,
C. E. RASMUSSEN, L. D. RISINGER, M.
W. SUKALSKI. A network-failure-
tolerant message-passing system for
terascale clusters. In ICS. New York,
USA, June. 22-26 2002.

8. BATCHU, R., J. NEELAMEGAM, Z. CUI,
M. BEDDHUA, A. SKJELLUM, Y.
DANDASS, M. APTE. Mpi/ftTM:
Architecture and taxonomies for fault-
tolerant, message-passing middleware
for performance-portable parallel
computing. In Proceedings of the 1st IEEE
International Symposium of Cluster
Computing and the Grid held in Melbourne,
Australia, 2001.

9. LOUCA, S., N. NEOPHYTOU, A.
LACHANAS, P. EVRIPIDOU. Mpi-ft:
Portable fault tolerance scheme for mpi.
In Parallel Processing Letters, Vol. 10, No.
4, 371-382, World Scientific Publishing
Company, 2000.

10. CHEN, Z., G. E. FAGG. Building Fault
Survivable MPI Programs with FTMPI
Using Diskless Checkpointing. Computer
Science Department, University of
Tennessee, USA, 2005.

11. PLANK, J. S., K. LI, Faster
Checkpointing with n+1 Parity. In FTCS,
1994, pp. 288-297.

12. PLANK, J. S., A Tutorial on Reed-
Solomon Coding for Fault-Tolerance in
RAID-like Systems. Department of
Computer Science University of Tennessee,
Technical Report CS-96-332.2003.

13. CHEN, G. L., Parallel Computing – Data
Structure and Algorithm, 1999.

14. DUFF, I., R. GRIMES, J. LEWIS User's
Guide for the Harwell-Boeing Sparse
Matrix Collection, October 1992.

15. DUFF, I., R. GRIMES, J. LEWIS, Sparse
Matrix Test Problems. ACM Transactions
on Mathematical Software, Volume 15,
March 1989, pp. 1-14.

16. ANDREI, N., Accelerated Conjugate
Gradient Algorithm with Modified
Secant Condition for Unconstrained
Optimization. Studies in Informatics and
Control, vol. 18 (3), pp. 211-232, 2009

17. ANDREI, N., A Hybrid Conjugate
Gradient Algorithm for Unconstrained
Optimization as a Convex Combination
of Hestenes-Stiefel and Dai-Yuan.
Studies in Informatics and Control, ISSN
1220-1766, vol. 17 (1) , 2008, pp. 57-70.

18. ANDREI, N., A Hybrid Conjugate
Gradient Algorithm with Modified
Secant Condition for Unconstrained
Optimization as a Convex Combination
of Hestenes-Stiefel and Dai-Yuan
Algorithms. Studies in Informatics and
Control, ISSN 1220-1766, vol. 17 (4), 2008,
pp. 373-392.

19. JAIRAM, N. K., K. V. KUMAR, N.
SATYANARAYANA. Scheduling Tasks
on Most Suitable Fault tolerant
Resource for Execution in
Computational Grid. International Journal
of Grid and Distributed Computing, Vol. 5,
No. 3, 2012, pp.121-132.

20. OSMAN, A., A. ANJUM, N. BATOOL, R.
MCCLATCHEY. A Fault Tolerant,
Dynamic and Low Latency BDII
Architecture for Grids. International
Journal of Grid and Distributed Computing,
Vol. 3, No. 4, pp.1-18, 2010.

