
Studies in Informatics and Control, Vol. 22, No. 3, September 2013 http://www.sic.ici.ro 279

1. Introduction

Traffic modeling and simulation are used in the
field of traffic management for evaluating the
impact of various road traffic policies and
infrastructure changes. Macroscopic models
describe the traffic flow attributes of links and
intersections, without allowing for the
representation of individual vehicles [12]. The
key attributes used in macroscopic models are:
speed (distance travelled during a time unit),
density (number of vehicles in a road segment)
and flow (number of vehicles passing through a
certain point)[12][13]. Their advantages are
computational simplicity and fast simulation
speeds. In microscopic models, each vehicle is
represented individually and traffic conditions
arise as a consequence of vehicle interactions,
closer to real life[14].These models are based
on the acceleration function, with inputs such
as the distance to the vehicle in front, adjacent
lane vehicles[12]or even psychological
factors[15].Individual driver modeling allows
for dynamic route choices, which also impact
the overall traffic conditions. Mesoscopic
models combine these characteristics, by
including individual vehicles and routes. The
movement of vehicles on a segment is
represented by a queue [7][16], with segment
travelling times being approximations derived
from macroscopic traffic conditions.
Mesoscopic models have recently been used as
a solution for simulating nationwide traffic in
agent-based systems [12] [17]. Microscopic

models are traditionally used for the
representation of small, isolated areas, such as a
few neighboring intersections, or a city district
[12]. With the advent of new technologies for
parallel computing, such as multi-core
processors and fast network communications,
research has been done on large-scale
microscopic simulations[6][8].Obtaining fast
simulation speeds with microscopic models
would allow analyzing metropolitan-scale
transportation scenarios, with fewer simulation
fidelity compromises.

When designing a traffic simulator, the Real-
Time-Ratio (RTR) [16] must be minimized:

ܴܴܶ ൌ
௧ೞ

௧೛
, where ݐ௦ is the duration of the

simulated events and ݐ௣ is the time it takes to
simulate them. Recently proposed microscopic
traffic simulators allow for RTR values of 7.5
[6], 2.5 [1] and 1.5 [5]. These values are
estimates for a single-core 2.5 Ghz processor,
100,000 vehicles and ∆௧ൌ based on the ,ܿ݁ݏ 1
reported performance numbers. The simulator
described in [6] can be accelerated through
parallel computing, while the other two are not
parallel. Among commercial products, VISSIM,
AIMSUN, MITSIM, MAS-T2er Lab and
ITSUMO are parallel, and only PARAMICS
supports distributed processing [10].Its reported
RTR is 3.6 using 32 old-generation compute-
nodes [24], but constrained by hardware. An
older proposed distributed microsimulator [8]
has an RTR value of about 48 for 16 CPUs, but
without simulating any vehicles.

A Massive Multilevel-parallel Microscopic
Traffic Simulator with Gridlock Detection and Solving

Alex - Alexandru SIROMASCENKO, Ion LUNGU

Economic Informatics and Cybernetics Department, Academy of Economic Studies,
Calea Dorobanţi, 15-17, Bucharest, 010552, Romania
alex.siromascenko@gmail.com, ion.lungu@ie.ase.ro

Abstract: Traffic simulators based on microscopic models are a detailed approach to infrastructure and policy evaluation.
They allow a closer to reality representation of the factors that influence traffic flow: individual driver and vehicle
attributes, dynamic route decisions, lane changing and restrictions, driver cooperation. Such aspects add to the complexity
and volume of computations, leading to slower simulation speeds compared to macroscopic models. Also, route
restrictions can lead to gridlocks, a common problem in such simulations. In this paper, we propose a multi-level parallel
architecture for the TrafficWeb microscopic traffic simulator. The solution combines random load allocation, for multi-
threaded processing, and distributed parallelization, through geographical domain decomposition. Adaptive load balancing
is used for optimizing the distributed processing speed. Gridlock detection and solving are employed through efficient
parallel and distributed algorithms, significantly decreasing their cost. Performance tests show an overall efficiency of
85% for the multilevel-parallel architecture, on a cluster with 5 nodes, each having 4 cores. This allows simulating
metropolitan traffic 85 times faster than in real time.

Keywords: Parallel computing, Distributed computing, Multilevel parallelism, traffic simulation, gridlock.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 3, September 2013 280

In microscopic simulators, time is discrete and
its granularity is usually given by ∆௧ൌ ܿ݁ݏ 1 ,
the average driver reaction time. Spatially,
microscopic simulations are divided into space-
discrete and space-continuous. A simulator that
conforms to discrete space and time rules falls
into the cellular automata category [6], [18],
and allows for fast simulation speeds.

2. Proposed Microscopic Simulator

We introduce the microscopic traffic simulator
TrafficWeb, designed as a component of an
Intelligent Transportation System (ITS). The
system’s functionalities include predicting and
optimizing road traffic across a metropolitan
region. Research in this field has seen active
support in recent years [21]. The prediction
capabilities can be useful by integrating with
existing trip planning solutions, like the one
described in [22].Agent-based optimization is
usually performed over long periods of time,
sometimes a few weeks [17], so high RTR
values are a requirement.

Being designed for city traffic, the simulator
supports lane changing and restrictions, priority
rules, traffic lights, and driver cooperation. The
last feature is necessary for optimizing correct car
placement on mandatory lanes at intersections.
TrafficWeb also features the first WebGL-based
GUI for a traffic simulator. This allows remote
synchronization between a web-based 3D-
accelerated graphical interface, and a number of
several simulations running in parallel.

TrafficWeb conforms to cellular automata rules.
The road network is divided into distinct spaces,
called cells, and time is discrete [18]. The
maximum cell size that allows realistic traffic
representation is equal to the space occupied by
a stopped vehicle [6], [18].

According to the principles of cellular automata
[6], the simulation is divided into steps and
sub-steps, as shown in Figure 1.

Figure 1. Simulation step/sub-step outline

In the decision sub-step, for each vehicle, the
simulator performs all the operations required to
determine its new position for the current step,
based on information from its vicinity. In the
advancing sub-step, the results of the decision
sub-step are made visible for all the vehicles. The

new position and vehicle states (speed, signaling)
will be available as inputs, in the next decision
sub-step, for neighboring vehicles. The following
simulation constants can be tuned in order to
ensure speed-precision scalability:

݈ܿ - the size of a cell, the minimum distance a
vehicle can advance during a time step

∆௧- the duration of a time step

ெܸ஺௑ - maximum speed (number of advanced
cells between two successive steps) for a

vehicle (
௏ಾಲ೉כ௖௟

∆೟
).

,ܥܣ = ܥܦ
∆ೇ

∆೟
 maximum speed increase/decrease

between two successive steps (
஺஼כ௖௟

∆೟
మ ,

ି஽஼כ௖௟

∆೟
మ)

The main constraint for a realistic traffic
simulation is the content uniqueness rule,
which requires a cell to be occupied by at most
one vehicle during a given time step t. The
decision rules are defined using the following
variables, for each vehicle:

,௧ିଵݒ ௧ݒ - the speed of the current vehicle
during the previous and current time steps

݀௧ିଵ - the distance of the current vehicle to the
closest front obstacle, in the previous step

௧ିଵݒ
ᇱ - the speed of the closest front obstacle,

either another vehicle (ݒᇱ ൒ 0ሻ or a stop/slow
traffic sign or traffic light (ݒᇱ ൌ 0ሻ.

 ௧ - the safe speed for the current time step݌ݏݏ
and vehicle, which allows for safe stopping in
any possible situation, current or future

݉݀ሺݒሻ - minimum stopping distance (כ ݈ܿሻ

The forward movement rules are computed
as follows:

݉݀ሺݒሻ ൌ ሾܥܦ/ݒሿ כ ሺݒ െ ܥܦ כ
ሾ௩/஽஼ሿାଵ

ଶ
ሻ (1)

௧݌ݏݏ ൌ maxሺݒ| ሺݒ ൅ ݉݀ሺݒሻሻ ൑ ሺ݀௧ିଵ ൅
݉݀ሺݒ௧ିଵ

ᇱ ሻሻሻ (2)

௧ݒ ൌ ൜
minሺ ெܸ஺௑, ௧ିଵݒ ൅ ሻܥܣ , ௧݌ݏݏ ൒ ௧ିଵݒ

maxሺ݌ݏݏ௧, ௧ିଵݒ െ ሻܥܦ , ௧݌ݏݏ ൏ ௧ିଵݒ
 (3)

A value ofݒ௧ ൐ ௧ may cause the violation of݌ݏݏ
the content uniqueness rule, as the vehicle
cannot stop safely under the max ܥܦconstraint.

The maximum depth (ܦܯ) that must be parsed
during the decision sub-step, in front of the
vehicle, is the one that allows a vehicle to
travel at ெܸ஺௑:

ܦܯ ൌ maxሺ݀௧ሻ ൌ ெܸ஺௑ ൅ ݉݀ሺ ெܸ஺௑ሻ (4)

Studies in Informatics and Control, Vol. 22, No. 3, September 2013 http://www.sic.ici.ro 281

TrafficWeb supports lane-changing moves,
allowing for realistic multi-lane traffic flows.
The main rule for lane changing is the
clearance rule: the movement of a vehicleݒ to
an adjacent lane at stepݐ must not invalidate the
݀ᇱᇱ

௧ିଵ value for a vehicle ݒᇱᇱ travelling on the
target lane, in the vicinity and behind of ݒ. The
theoretical maximum clearance for ݒᇱᇱ (the
maximum depth for the “rear-view-mirror
check”) is also equal to ܦܯ . Finally, ܦܯ is
also the maximum depth for “priority
announcements” at intersections. Figure 2
shows a graphical representation of some of the
aforementioned variables:

Figure 2. Atypical scenario illustrating safety
variables used in the decision sub-step for vehicle ݒ

While microscopic models can include some
stochastic parameters [6][18], representing
variations in driver behavior, these have been
omitted so far, in order to verify the
consistency of the results.

Figure 3 shows that the flow of traffic in
TrafficWeb is within the limits described in
theoretical models. The differences are caused
by traffic variations, which are a characteristic
of metropolitan environments: downstream
jams, traffic lights, lane restrictions.

Figure 3. Comparison between TrafficWeb traffic
flows and theoretical models described in [13]

3. Gridlock Detection and Solving

In road traffic, gridlock situations occur when
certain vehicles cannot advance by applying the
safe distance rule, and remain stopped for an

infinite amount of time. The main cause of this
situation is, as described for a vehicle ݒ:

݊௧ሺݒሻ ൌ ሻሻݒሺ݈݈݁ܥݒሺܽ݀ݐ݊݁ݐ݊݋ܿ , where
 ݒ ሻis the next cell on the route ofݒሺ݈݈݁ܥݒ݀ܽ

݊௧ሺ݊௧ሺ… ݊௧ሺݒሻሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௡ ௧௜௠௘௦

ሻ ൌ ௡ܰ௧ሺݒሻ ൌ ݒ ֜ ݒ is in a

gridlock of size ݊.

Various solutions have been used for managing
the gridlock problem. A vehicle is assumed to
be part of a gridlock when it has been standing
for longer than a threshold period [1], [19], or
some undisclosed algorithms are employed for
detecting the gridlock [5]. Solving methods
include: teleporting vehicles to the next
segment [1], removing vehicles from the
simulation [19], rerouting vehicles [5],
exceeding the estimated segment capacity in
mesoscopic models [2] [19], or simulating
driver anticipation for avoiding such situations,
in more detailed simulators [3].

For solving the gridlock problem, we propose a
solution that includes actual detection of the
vehicle queue loop and two solving strategies.
In order to detect a loop, the vehicle queue is
parsed recursively as long as ௧ܰሺݒሻ= ݒᇱ (we
haven’t reached the end of the queue). A
gridlock (ܩ௜ሻ is detected whenݒᇱ ൌ Also, a .ݒ
situation of “gridlock dependence” can occur if

ܰ௠௧ሺݒሻ ൌ ᇱሻݒᇱ and ௡ܰ௧ሺݒ ൌ ᇱ (5)ݒ

with ݊ as the gridlock length and ݉ as the
dependence length. Vehicles in the dependence
are not inside the gridlock, but are dependent
on its solving to advance. This situation is
detected by maintaining a list of all the visited
vehicles situated at the start of segments,
stopping when such a vehicle is visited twice:

 ݒ ሻ - current segment ofݒ௧ሺ݃݁ݏ

 ݒ ሻ - current segment step ofݒ௧ሺ݌݁ݐݏ

ܸܵீ
೔

ൌ ሼݒ | ௧ܰሺݒሻ ൌ , ݒ ሻݒ௧ሺ݌݁ݐݏ ൌ 1ሽ - start
segment vehicles in gridlock ܩ௜.

Gridlocks can be detected during a separate
sub-step before the decision sub-step. The front
queue is parsed for each vehicle in the
simulation. Once a gridlock is detected, the
vehicles inside it are marked, and there are two
options of solving it.

The first solving method involves granting a
“wildcard”, for advancing, to each vehicle
within the gridlock. This overrides the content
uniqueness rule during the decision sub-step,

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 3, September 2013 282

but the rule is respected in the advancing sub-
step, as all the vehicles in the gridlock advance.
Each vehicle with a wildcard is allowed to
move to the cell in front of it, which is
occupied by a blocking vehicle. As the
blocking vehicle also receives a wildcard, the
aforementioned cell will be freed. In the next
step, the gridlock queue will be composed of
the same vehicles, each of them shifted forward
by one cell. The difference will consist in the
dependencies between vehicles: in the new step,
vehicles situated at the segments’ ends might
have the opportunity to leave the gridlock,
according to their paths. This cyclic movement
is suitable for a simulation involving
autonomous vehicles, on which research has
increased in recent years [5].

Another approach, suitable for human driver
modeling, is the rerouting of end-segment
vehicles, shown in red in Figure 4. As in real-life
traffic involving human drivers, a driver situated
at the end of a segment might get tired of
waiting, so he will change his course. The new
course will have the same endpoint as the old
one and will start at the driver’s current position.
The restriction for applying this method is that,
for a given end-segment vehicle, its current
intersection must offer a choice of changing its
initial outgoing segment. Thus, the node must
have at least two outgoing segments. Also, the
newly chosen outgoing segment must allow the
driver to reach his intended destination.

Figure 4. An example situation with gridlock
dependence vehicles (orange), start segment

vehicles (blue) and other gridlock vehicles (red)

4. Parallel Simulator Architecture

The nature of the traffic simulation problem
allows for parallelization. Reduced-complexity
queue-based simulators are easier to parallelize,
with implementations on SIMD architectures
like GPUs [25] resulting in high RTR values [7].
Detailed microsimulations, while difficult to
implement on SIMD systems, are highly

parallelizable on MIMD architectures [8], [6].
Theoretically, each vehicle may be assigned to a
different computation unit, with synchronization
required only for time stepping. In TrafficWeb,
parallelization is employed at two levels.

4.1 Multi-threaded parallelization

This method is used when the computational
load is shared between multiple processing units
addressing the same memory space. In recent
years, multi-core processors have become the
standard in PCs and the trend is expected to
grow [9]. Space continuous models require
partitioning by lanes among different threads
[11]. Other proposed parallel implementations of
discrete space models also use geographical
domain decomposition [8], [11].

In our proposed architecture, the vehicles that
must be processed during the current time step
are split among separate threads. We take
advantage of the direct memory mapping for
individual cells, which allows concurrent
markings on the network, without any
geographical domain decomposition. This is an
advantage when lots of processing units are
present, in a shared-memory environment, as
there are no overheads associated to partitioning
and load balancing. When a vehicle enters the
simulation, it is randomly assigned to a thread.
For large numbers of vehicles, the thread load is
balanced by the random allocation. The lack of
explicit load balancing operations compensates
for the small random imbalances that may occur.
A few principles ensure a good scalability of the
multi-threaded simulation. First, the absence of
per-vehicle synchronizations reduces
computationally expensive OS calls. As shown
in Figure 5, thread waiting and notification
operations are used only at the step / sub-step
levels. Second, using visible uncertainty
reduction, the results of certain queries, like
front vehicle determination and gridlock
inclusion, are shared among threads during the
decision sub-step.

Figure 5. Thread synchronization in the multi-
threaded parallel architecture

Studies in Informatics and Control, Vol. 22, No. 3, September 2013 http://www.sic.ici.ro 283

To accelerate the gridlock detection, it is
performed during the decision sub-step, as
opposed to a separate sub-step. The gridlock
state ݃ݏሺݒሻof each vehicle ݒ, once determined,
is visible from the other vehicles’ perspectives
(including those handled by other threads), in
the decision sub-step:

ሻݒሺݏ݃ א ሼ0,1,2ሽ – state codes for unknown, in
gridlock, not in gridlock

ሻݒሺݏ݃ ൌ 2, if ݒ ׌ᇱ ൌ ௧ܰሺݒሻ, ᇱሻݒሺݏ ൌ 2

ሻݒሺݏ݃ ൌ 1, if ݒ ׌ᇱ א ܸܵீ
೔
, with ݃݁ݏ௧ሺݒᇱሻ ൌ

ᇱሻݒሻand ௧ܰሺݒ௧ሺ݃݁ݏ ൌ ݒ

This allows for a parallelization of the gridlock
detection algorithm, using multi-threading.

4.2 Distributed parallelization

This method is employed by processing the
simulation on independent systems, which
communicate through a network interface. A
number of several workstations is common in
most computing environments, so further
speedups can be obtained by processing on a
Beowulf cluster. Gigabit Ethernet is standard
nowadays, but its speed is significantly lower
(1 Gbit/s) compared to RAM (>85 Gbit/s in
DDR3) [4]. Thus, the random assignment of
vehicles among separate nodes is not efficient.
Due to the geographical nature of the problem,
spatial decomposition [2], [8], [11], [20] can be
used for limiting the amount of data transferred
between nodes. This is achieved by assigning
different contiguous areas of the map to
different nodes [8], [11], [20]. Finding optimal
partitions requires solving the graph
partitioning problem, with two objectives:
minimizing communication volumes between
neighboring partitions, by limiting the inter-
partition visibility [8], [20];ensuring a balanced
load distribution for all nodes, in this case a
balanced number of vehicles, during each
iteration [20], [24]. The graph partitioning
problem is known to be NP-hard [8], without
known algorithms for finding the best solution.
A fast approximate solution can be obtained
using orthogonal bisection [8], [20]. For low
inter-node message volumes, only information
about vehicles that may influence the
neighboring partition’s vehicles is sent. The
presence of vehicle ݒ on the network may
influence other drivers’ behaviors at a
maximum distance of ܦܯ, both upstream and
downstream. There are three types of
visibilities, as shown in Figure 6:

ܸܷ௣௣ᇲ ൌ ሼܿ א ᇱܿ ׌ | ݌ א ,ᇱ݌ ݀ሺܿ, ܿᇱሻ ൏ - ሽܦܯ
upstream visibility

௣௣ᇲܦܸ ൌ ሼܿ א ᇱܿ ׌ | ݌ א ,ᇱ݌ ݀ሺܿᇱ, ܿ ሻ ൏ - ሽܦܯ
downstream visibility

ܸܲ௣௣ᇲ ൌ ሼܿ א ᇱܿ ׌ | ݌ א ,ᇱ݌ ݀ሺܿ, ݀݊ሺݏᇱሻ ሻ ൏
ᇱሻݏሽ – priority visibility, where݀݊ሺܦܯ is the
destination node of segment ݏᇱ

௣ܸ௣ᇲ ൌ ܸܵ௣௣ᇲ ׫ ௣௣ᇲܦܸ ׫ ܸܲ௣௣ᇲ contains all
cells from partition ݌ visible to partition ݌ᇱ

Figure 6. Areas of length ܦܯ (darker),from the red
partition, which are visible to the green partition

௣௣ᇲܯ
௧

ൌ ൛ܣ௩௧ห݈݈ܿ݁௧ሺݒሻ א ௉ܸ௉ᇲሽ is the message

from ݌ to ݌ᇱ during time step ݐ ,with ௩௧ܣ the
collection of attributes (24 bytes) for vehicle ݒ
at time ݐ.

For each partitioning, the visibility ratio
ݎݒ ൌ

௩௖

஼
 (visible cells relative to the total

number of cells) is an approximation of the
expected message exchange ratio. Figure 7
shows a graphical representation of this ratio.

Figure 7. Segments with visible cells (black) in an
orthogonal bisection partitioning of Bucharest

In the distributed simulation algorithm,
synchronization between nodes is required before
the beginning of each step. Each vehicle is
handled by only one node during a given decision
sub-step. For each visible vehicle, 9 values,
totaling 24 bytes, are passed over the network, to
the neighboring partitions. This includes
information about vehicle id, the newly computed
speed and position, as well as signaling and inter-

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 3, September 2013 284

vehicle cooperation values. As shown in Figure 8,
the visible-vehicles information is transmitted
between nodes after the decision sub-step. When
this information arrives, the receiving node
performs the advancing sub-step for these
vehicles, adopting them if their new position is in
the node’s partition.

Communication between adjacent partitions is
asynchronous with the other computations
within a given simulation step. The only
constraint is that any advancing of vehicles
(own or visible) in a node must not begin
before the decision sub-step for the given node
has ended. The advancing of own / visible
vehicles runs multi-threaded and in parallel.

5. Distributed Gridlock Detection

In the distributed simulation, gridlock detection
is achieved by allowing the loop to be
reconstructed, based on information from each
partition’s edges. For any given partition ݌, the
following potential-gridlock visibilities are
determined:

௣௧ܦܩܸ
ൌ ሼݒᇱ א א ݒ ׌|ᇱ݌ ,݌ ݊௧ሺݒሻ ൌ ᇱሽݒ

௣௧ܷܩܸ
ൌ ሼא ݒ ᇱݒ׌|݌ א ,ᇱ݌ ݊௧ሺݒᇱሻ ൌ ሽݒ

௣೟ܩܸ ൌ ሼݎ ൌ ሺݒ, ݒ|ᇱሻݒ א ௣௧ܷܩܸ
,

ᇱݒ א ௣௧ܦܩܸ
, ௧ܰሺݒሻ ൌ ᇱሽݒ

௥ܩܸ ൌ ሼݒᇱᇱ א ሻݒ௧ܰሺ |݌ ൌ ;ᇱᇱݒ ௧ܰሺݒᇱᇱሻ ൌ ᇱሽ for aݒ
given ݎ א ௣೟ܩܸ

Globally, cross-partition queue edges are in

௧ܩܸ ൌ ራ ௣೟ܩܸ

௣א௉

We define the function ݊ݎ: ௧ܩܸ ՜ ௧ܩܸ

ሻݎሺݎ݊ ൌ ,ݒ൫ሺݎ݊ ᇱሻ൯ݒ ൌ ሺݒᇱ, ᇱᇱሻݒ א ௧ܩܸ

At a given time stepݒ ,ݐ א is in reconstructed ݌
gridlock if

ݎ׌ א ௣೟ܩܸ
; ݒ א ;௥ܩܸ …ሺݎሺ݊ݎ݊ ൫݊ݎሺݎሻ൯ሻ ൌ ݎ

6. Adaptive Load Balancing

During a simulation, the load distribution on
the network may vary greatly. This leads to
load imbalances and wasted computing
resources. Also, as the nodes may have
heterogeneous processing capabilities,
assigning an equal number of vehicles to each
node might not be optimal. In order to
efficiently use all the available resources, we
use a load balancing mechanism. The
mechanism takes into account both variations
in spatial load distribution and the
heterogeneity/variation of the available
computing resources. As shown in Figure 9, the
master node checks for discrepancies in
computing times for each slave node. The time
cost of the decision sub-step is analyzed as a
benchmark for each node, during each
simulation step.

Figure 8. Outline of message passing in the distributed parallel architecture

Studies in Informatics and Control, Vol. 22, No. 3, September 2013 http://www.sic.ici.ro 285

௡೟ܥ
ൌ

௖௔௥ௗሺ௏೙೟ሻ

஽்௡೟
 - the processing capacity of

node݊at step ݐ, as ݏ݉/ݏ݈݄݁ܿ݅݁ݒ

௧ܥ ൌ ∑ ேא௡೟௡ܥ - cluster processing capacity

௧ܸ ൌ ڂ ௡ܸ೟௡אே - all the vehicles that must be
processed on the cluster

௡೟ܮܫ
ൌ ሺ݀ݎܽܿ ௧ܸሻ כ ௡೟ܥ

⁄௧ܥ - the ideal vehicle
load for node݊ at step ݐ

ܫ ௧ܶ ൌ ௡೟ܮܫ
௡೟ܥ

⁄ - the ideal processing time,
constant at step ׊ ,ݐ ݊ א ܰ

ܱܶ݊௧= ݊ܶܦ௧ െ ܫ ௧ܶ - overload time for ݊

ܹ ௧ܶ ൌ max௡אேሺܱܶ݊௧ሻ - global wasted time

௧ܴܫ ൌ ܹ ௧ܶ ܫ ௧ܶ⁄ - the imbalance ratio at step ݐ

Load balancing is performed depending on the
value of ߠ (treshold), when ܴܫ௧ ൐ .ߠ

The load balancing is considered finished when
all the slave nodes have received their updated
partition segment lists. After repartitioning run
ܯ receives information ݌ each partition ,ݎ ௣ܲ௥

:

ܵ௣௥
- segments in ݌ at run ݎ

ܴܵ௣௥
ൌ ቄݏᇱ א ܵ െ ܵ௣௥

ቚ ݏ׌ א ܵ௣௥
, ݀ሺݏ, ᇱሻݏ ൑

ெܸ஺௑ሽ-segments of other partitions, reachable
in one time step from ݌

݀ሺݏ, ᇱݏ to ݏ ᇱሻ- distance fromݏ

݀݊ሺݏሻ- destination node of segment ݏ

 ݎ in runݏሻ- partition ofݏ௥ሺ݌

ܸܷ௣௥
ൌ ቄݏᇱ א ܵ െ ሺܵ௣௥

׫ ܴܵ௣௥
ሻ ቚ ݏ ׌

א ሺܵ௣௥
׫ ܴܵ௣௥

ሻ, ݀ሺݏ, ᇱሻݏ

൑ ש ܦܯ ݀ሺݏᇱ, ሻ ݏ
൑ ש ܦܯ ݀ሺݏ, ݀݊ሺݏᇱሻ ሻ ൑ ሽܦܯ

ܯ ௣ܲ௥
ൌ ቄݏ א ቀܵ௣௥

׫ ܴܵ௣௥
׫ ܸܷ௣௥

׫ ܯ ௣ܲ௥ିଵ
ቁቚ ሺݏ

ב ܯ ௣ܲ௥ିଵ
ሻ ש ሺ݌௥ሺݏሻ ് ሻሻሽݏ௥ିଵሺ݌

For the partitioning run ݎ, partition ݌ receives
information only about the segments
concerning it, for which it doesn’t have
information from the previous partitioning run
ݎ െ 1, or which changed their partition from
ݎ െ 1 to ݎ.

7. Experimental Results

For simulation tests, the road network of the
city of Bucharest was used, consisting of
52,782 segments and 24,953 nodes. The data
was imported from OpenStreetMap using a
purpose-built XML parser and was persisted in
an Oracle Spatial database.

The simulation was calibrated using the
following parameter values:

݈ܿ ൌ 450 ܿ݉, ெܸ஺௑ ൌ ܥܣ,4 ൌ ܥܦ,1 ൌ 2

A variable number of 25,000 to 100,000
simultaneously starting trips was employed, as
described in Table 1. The value of 100,000 is a
typical load value for the road network of
Bucharest [23].

Table 1. The scenarios used for testing

No. Start veh. End veh Average veh.

1 25000 20000 23255

2 50000 30000 34728

3 100000 80000 90603

The trips were previously obtained by
randomly generating pairs of origin-destination
nodes, with each path computed using
Dijkstra’s algorithm, having segment length as
link cost. This way, congestion formed along
the main boulevards.

Figure 9. Outline of the load balancing algorithm

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 3, September 2013 286

Table 2 shows the number of gridlocks for the
tested scenarios. This is greater than expected to
occur in real life, but microsimulations are known
to over represent such situations. The number of
gridlocks increases with the number of vehicles,
due to greater congestion. All the gridlocks were
successfully solved using cyclic movements.

Table 2. Description of gridlock situations

Vehicles Gridlocks Max gridlock size
25,000 31 61
50,000 96 442

100,000 628 680

Figure 10 shows that gridlock searching has a
significant impact on the simulation time,
increasing it by 38% for 100,000 vehicles. The
parallel search algorithm greatly decreases this
performance penalty, down to 11% when using
8 threads, a decrease of 72%. The speedup for
the gridlock searching algorithm is thus 3.5.

Figure 10. Performance impact of gridlock
searching

For the tested scenario, the ݎݒ is 0.34% for 2
partitions, 0.8% for 5, 2.05%for 16 and 19.5%
for 1024 partitions. Figure 11 shows an
increase of the visibility ratio, at a decreasing
rate, when the number of partitions grows. The
actual number of visible vehicles is greater than
the estimate because both vehicles and partition
visibility areas tend to concentrate in the central
area of the city.

Figure 11.Evolution of the ݎݒ estimate and actual
visible vehicles ratio

The processing cluster was composed of the
nodes described in Table 3. All the nodes
featured 4 physical cores and 8 virtual cores,
through Hyper-Threading, and 8 GB of RAM.

Table 3. Specifications of the processing cluster

Node Processor ܥ௡(vehicles/ms)

݊1 Core i7 2670QM 2.2GHz 3292

݊2 Core i7 2670QM 2.2GHz 3285

݊3 Core i7 2630QM 2GHz 3087

݊4 Core i7 930 2.8GHz 3039

݊5 Core i7 Q7401.73 GHz 2782

The Java socket bandwidth was benchmarked
and was found to be at 88% of the theoretical
maximum (1Gbit/sec). This value allows
sending information for 4583 vehicles/ms
across the cluster.

Figure 12 shows that the speedups increase
when the problem size (number of vehicles)
grows, due to the diminishing impact ratio of
the synchronization operations. The multi-
threaded (MT) performance scalability was
tested on݊1, and its maximum speedup is 3.5
using 4 physical cores and 4.15 using 8 virtual
cores. Hyper-Threading thus brings a speedup
of 18%.For the distributed (DT) scalability, the
base value (1 node) is the one obtained using
only ݊5 , and all the nodes were assigned
equally sized partitions. In the 100,000 scenario,
distributed processing on 5 nodes speeds up the
simulation by 4.45, equivalent to an efficiency
of 89%.

Figure 12.Speedups obtained using multi-threading
(MT) and distributed (DT) processing

Figure 13 shows that gains in RTR value are
higher when simulating more vehicles. With
adaptive load balancing (LB values), the RTR
is increased by 11%.

Figure 14 shows the overall increase in the
value of RTR, using the multilevel parallel
architecture, with and without adaptive load
balancing. Processing on multiple cores
increases the RTR value from 5 to 21 when

Studies in Informatics and Control, Vol. 22, No. 3, September 2013 http://www.sic.ici.ro 287

using node ݊ଵ , and, by adding 4 additional
nodes to the cluster, the value increases to 87.

Figure 13. The increase of the RTR value using

distributed processing and load balancing

Figure 14. RTR values for the overall number of
used threads in the cluster, 100,000 vehicles

The overall performance speedup obtained
using multilevel parallel processing is 17.17.
The overall efficiency of the distributed system
is thus 85%, if taking into account the
theoretical maximum imposed by the number
of physical cores:

ݏ݁ݎ݋ܿ 4 כ ݏ݁݀݋݊ 5 ൌ ݌ݑ݀݁݁݌ݏ ݔ20

8. Conclusion and Future Work

The proposed multi-level parallel architecture
efficiently accelerates computations in a
metropolitan-scale traffic microsimulation,
resulting in high RTR values. Multi-level
parallelism is an advantage, with random load
allocation at node level being more efficient than
further splitting each node into sub-partitions for
each thread. Such smaller partitions would be
more prone to short-term imbalance variations.
With the highest obtained RTR value of 87, a
week of traffic in the city of Bucharest,
averaging 90,000 vehicles at any time, can be
simulated in only 1h and 55min. The overall
multi-level parallel efficiency is 85% using 5
nodes. Performance is improved by using a
processing-capacity aware load balancing
algorithm for the cluster environment, as all the

available resources are optimally used. The load
balancing mechanism adapts to both differences
in computing capacities and variable vehicle
load distributions across the network. This can
be further evaluated using a more pronounced
variation of the congestion areas.

The gridlock detection algorithm is optimized
for parallel processing, reducing its impact on
the overall processing time. The distributed
detection method allows the simulation to run
continuously in a distributed environment.

The TrafficWEB platform will be extended by
including continuous trip scheduling and
vehicle insertion, and also dynamic traffic
assignment. Thanks to the high RTR value, the
evaluation of various algorithms for dynamic
traffic allocation, traffic signaling and lane
restrictions can be performed in a reasonable
amount of time.

Acknowledgements
This work was co-financed from the European
Social Fund through Sectorial Operational
Programme Human Resources Development
2007-2013; project number POSDRU/
107/1.5/S/77213 „Ph.D. for a career in
interdisciplinary economic research at the
European standards”

REFERENCES

1. ***Sumo wiki -
http://sumo.sourceforge.net/doc/current/doc
s/userdoc, Nov. 2011

2. WARAICH, R., D. CHARYPAR, M.
BALMER, K. AXHAUSEN, Performance
Improvements for Large Scale
Transportation Simulation in MATSim,
9th Swiss Transport Research Conference,
Sep. 2009.

3. DONIEC, A., R. MANDIAU, S.
PIECHOWAIK, S. ESPIÉ, A Behavioral
Multi-agent Model for Road Traffic
Simulation, Engineering Applications of
Artificial Intelligence, vol. 21 Issue 8,
December, 2008, pp. 1443-1454.

4. ***List of device bit rates -
http://en.wikipedia.org/wiki/List_of_device
_bit_rates

5. CARLINO, D., M. DEPINET, P.
KHANDELWAL, P. STONE,
Approximately Orchestrated Routing
and Transportation Analyzer: Large-

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 3, September 2013 288

scale Traffic Simulation for Autonomous
Vehicles, 15th International IEEE
Conference on Intelligent Transportation
Systems, 2012, pp. 334-339.

6. KORCEK, P., L. SEKANINA, O. FUCIK,
A Scalable Cellular Automata based
Microscopic Traffic Simulation,
Intelligent Vehicles Symposium (IV), 2011.
IEEE Transcriptions.

7. STRIPPGEN, D., K. NAGEL, Multi-agent
Traffic Simulation with CUDA, Intl.
Conference on High Performance
Computing & Simulation, 2009. HPCS ’09.

8. NAGEL, K., M. RICKERT, Parallel
Implementation of the TRANSIMS
Micro-simulation, Parallel Computing, vol.
27(12), November 2001, pp. 1161-1639.

9. LIN, P. Desktop and Notebook PC
Technology Penetration Forecast, iSuppli
Market Intelligence, Nov. 2012.

10. PASSOS, L. S., R. J. F. ROSSETTI,
Towards the Next-generation Traffic
Simulation Tools: a First Appraisal,
Information Systems and Technologies
(CISTI), 2011 6th Iberian Conference.

11. ANNING, N. I., J. ZHICAI, Y. JIAONI,
Method and Strategy for Parallelizing
microscopic Traffic Simulation, Proc. of
the 10th Intl. Conf. of Chinese
Transportation Professionals, 2010.

12. BARCELÓ, J., (Ed.) Fundamentals of
Traffic Simulation, vol. 145, Springer, 2010

13. RAKHA, H., B. CROWTHER, A
Comparison of the Green shields, Pipes,
and Van Aerde Car-Following and
Traffic Stream Models, Transportation
Research Record: Journal of the
Transportation Research Board, vol. 1802,
2002, pp. 248-262.

14. EHLERT, P., L. ROTHKRANTZ.,
Microscopic Traffic Simulation with
Reactive Driving Agents, IEEE Proc.,
Intelligent Transportation Systems, 2001.

15. BRACKSTONE, M., M. MCDONALD,
Car-following: a Historical Review.
Transportation Research Part F: Traffic
Psychology and Behaviour vol. 2(4), 1999,
pp. 181-196.

16. NAGEL, K., K. MARCHAL,
Computational Methods for Multi-agent
Simulations of Travel Behavior. Proc. of

the Meeting of the Intl. Assoc. for Travel
Behavior Research (IATBR), 2003.

17. MEISTER, K., et al., Large-scale Agent-
based Travel Demand Optimization
Applied to Switzerland, Including Mode
Choice. ETH, Eidgenössische Technische
Hochschule Zürich, IVT, Institut für
Verkehrsplanung und Transportsysteme, 2010.

18. NAGEL, K., M. SCHRECKENBERG, A
Cellular Automaton Model for Freeway
Traffic, Journal de Physique vol. I 2(12),
1992, pp. 2221-2229.

19. RIESER, M., Adding Transit to an
Agent-Based Transportation Simulation:
Concepts and Implementation. PhD
thesis, VSP, TU Berlin, Germany, 2010.

20. ÇETIN, N., Large-scale Parallel Graph-
based Simulations. Dissertation, ETH
Zurich, Switzerland, 2005

21. BANCIU, D., I. PETRE, D. M. SMADA,
M. ANGHEL, Developing an Interactive
System to Provide Management Support
for Transportation Research
Organizations, Studies in Informatics and
Control, vol. 20(4), 2011, pp. 420-428.
ISSN 1220-1766.

22. HRIN, G. R., L. E. ANGHEL, M.
TOMESCU, I. ILIESCU, D. SAVU,
Solutions for Finding the Optimum
Route between Two Urban Locations
Using Public or Private Transport or
Pedestrian Movement, Studies in
Informatics and Control, vol. 17(4), 2008,
pp. 353-360, ISSN 1220-1766.

23. WSP Group Romania, Master Plan General
pentru Transport Urban – Bucuresti,
Sibiu si Ploiesti - Raport Final Bucuresti,
EuropeAid/123579/D/SER/RO, 2007.

24. LIU, H. X., et al., Distributed Modeling
Framework for Large-scale Microscopic
Traffic Simulation, Proc. of 84th Annual
Meeting of the Transportation Research
Board (CDROM), 2005.

25. LUNGU, I., A. PÎRJAN, D. PETROŞANU,
Optimizing the Computation of
Eigenvalues using Graphics Processing
Units, Scientific Bulletin Series A, Applied
Mathematics and Physics, 2011,
ISSN 1223-7027.

