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1. Introduction 

Traffic modeling and simulation are used in the 
field of traffic management for evaluating the 
impact of various road traffic policies and 
infrastructure changes. Macroscopic models 
describe the traffic flow attributes of links and 
intersections, without allowing for the 
representation of individual vehicles [12]. The 
key attributes used in macroscopic models are: 
speed (distance travelled during a time unit), 
density (number of vehicles in a road segment) 
and flow (number of vehicles passing through a 
certain point)[12][13]. Their advantages are 
computational simplicity and fast simulation 
speeds. In microscopic models, each vehicle is 
represented individually and traffic conditions 
arise as a consequence of vehicle interactions, 
closer to real life[14].These models are based 
on the acceleration function, with inputs such 
as the distance to the vehicle in front, adjacent 
lane vehicles[12]or even psychological 
factors[15].Individual driver modeling allows 
for dynamic route choices, which also impact 
the overall traffic conditions. Mesoscopic 
models combine these characteristics, by 
including individual vehicles and routes. The 
movement of vehicles on a segment is 
represented by a queue [7][16], with segment 
travelling times being approximations derived 
from macroscopic traffic conditions. 
Mesoscopic models have recently been used as 
a solution for simulating nationwide traffic in 
agent-based systems [12] [17]. Microscopic 

models are traditionally used for the 
representation of small, isolated areas, such as a 
few neighboring intersections, or a city district 
[12]. With the advent of new technologies for 
parallel computing, such as multi-core 
processors and fast network communications, 
research has been done on large-scale 
microscopic simulations[6][8].Obtaining fast 
simulation speeds with microscopic models 
would allow analyzing metropolitan-scale 
transportation scenarios, with fewer simulation 
fidelity compromises. 

When designing a traffic simulator, the Real-
Time-Ratio (RTR) [16] must be minimized: 

ܴܴܶ ൌ  
௧ೞ

௧೛
, where ݐ௦  is the duration of the 

simulated events and ݐ௣ is the time it takes to 
simulate them. Recently proposed microscopic 
traffic simulators allow for RTR values of 7.5 
[6], 2.5 [1] and 1.5 [5]. These values are 
estimates for a single-core 2.5 Ghz processor, 
100,000 vehicles and ∆௧ൌ  based on the ,ܿ݁ݏ 1
reported performance numbers. The simulator 
described in [6] can be accelerated through 
parallel computing, while the other two are not 
parallel. Among commercial products, VISSIM, 
AIMSUN, MITSIM, MAS-T2er Lab and 
ITSUMO are parallel, and only PARAMICS 
supports distributed processing [10].Its reported 
RTR is 3.6 using 32 old-generation compute-
nodes [24], but constrained by hardware. An 
older proposed distributed microsimulator [8] 
has an RTR value of about 48 for 16 CPUs, but 
without simulating any vehicles. 
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In microscopic simulators, time is discrete and 
its granularity is usually given by ∆௧ൌ ܿ݁ݏ 1 , 
the average driver reaction time. Spatially, 
microscopic simulations are divided into space-
discrete and space-continuous. A simulator that 
conforms to discrete space and time rules falls 
into the cellular automata category [6], [18], 
and allows for fast simulation speeds. 

2. Proposed Microscopic Simulator 

We introduce the microscopic traffic simulator 
TrafficWeb, designed as a component of an 
Intelligent Transportation System (ITS). The 
system’s functionalities include predicting and 
optimizing road traffic across a metropolitan 
region. Research in this field has seen active 
support in recent years [21]. The prediction 
capabilities can be useful by integrating with 
existing trip planning solutions, like the one 
described in [22].Agent-based optimization is 
usually performed over long periods of time, 
sometimes a few weeks [17], so high RTR 
values are a requirement. 

Being designed for city traffic, the simulator 
supports lane changing and restrictions, priority 
rules, traffic lights, and driver cooperation. The 
last feature is necessary for optimizing correct car 
placement on mandatory lanes at intersections. 
TrafficWeb also features the first WebGL-based 
GUI for a traffic simulator. This allows remote 
synchronization between a web-based 3D-
accelerated graphical interface, and a number of 
several simulations running in parallel. 

TrafficWeb conforms to cellular automata rules. 
The road network is divided into distinct spaces, 
called cells, and time is discrete [18]. The 
maximum cell size that allows realistic traffic 
representation is equal to the space occupied by 
a stopped vehicle [6], [18]. 

According to the principles of cellular automata 
[6], the simulation is divided into steps and 
sub-steps, as shown in Figure 1. 

 

Figure 1. Simulation step/sub-step outline 

In the decision sub-step, for each vehicle, the 
simulator performs all the operations required to 
determine its new position for the current step, 
based on information from its vicinity. In the 
advancing sub-step, the results of the decision 
sub-step are made visible for all the vehicles. The 

new position and vehicle states (speed, signaling) 
will be available as inputs, in the next decision 
sub-step, for neighboring vehicles. The following 
simulation constants can be tuned in order to 
ensure speed-precision scalability: 

݈ܿ - the size of a cell, the minimum distance a 
vehicle can advance during a time step 

∆௧- the duration of a time step 

ெܸ஺௑  - maximum speed (number of advanced 
cells between two successive steps) for a 

vehicle  (
௏ಾಲ೉כ௖௟

∆೟
).  

,ܥܣ = ܥܦ
∆ೇ

∆೟
 maximum speed increase/decrease 

between two successive steps (
஺஼כ௖௟

∆೟
మ ,

ି஽஼כ௖௟

∆೟
మ ) 

The main constraint for a realistic traffic 
simulation is the content uniqueness rule, 
which requires a cell to be occupied by at most 
one vehicle during a given time step t. The 
decision rules are defined using the following 
variables, for each vehicle: 

,௧ିଵݒ ௧ݒ  - the speed of the current vehicle 
during the previous and current time steps 

݀௧ିଵ - the distance of the current vehicle to the 
closest front obstacle, in the previous step 

௧ିଵݒ
ᇱ  - the speed of the closest front obstacle, 

either another vehicle (ݒᇱ ൒ 0ሻ or a stop/slow 
traffic sign or traffic light (ݒᇱ ൌ 0ሻ. 

 ௧ - the safe speed for the current time step݌ݏݏ
and vehicle, which allows for safe stopping in 
any possible situation, current or future 

݉݀ሺݒሻ - minimum stopping distance (כ ݈ܿሻ 

The forward movement rules are computed     
as follows: 

݉݀ሺݒሻ ൌ ሾܥܦ/ݒሿ כ ሺݒ െ ܥܦ כ
ሾ௩/஽஼ሿାଵ

ଶ
ሻ (1) 

௧݌ݏݏ ൌ maxሺݒ| ሺݒ ൅ ݉݀ሺݒሻሻ ൑ ሺ݀௧ିଵ ൅
݉݀ሺݒ௧ିଵ

ᇱ ሻሻሻ (2) 

௧ݒ ൌ  ൜
minሺ ெܸ஺௑, ௧ିଵݒ ൅ ሻܥܣ , ௧݌ݏݏ ൒ ௧ିଵݒ

maxሺ݌ݏݏ௧, ௧ିଵݒ െ ሻܥܦ , ௧݌ݏݏ ൏ ௧ିଵݒ
 (3) 

A value ofݒ௧ ൐  ௧ may cause the violation of݌ݏݏ
the content uniqueness rule, as the vehicle 
cannot stop safely under the max ܥܦconstraint. 

The maximum depth (ܦܯ) that must be parsed 
during the decision sub-step, in front of the 
vehicle, is the one that allows a vehicle to 
travel at ெܸ஺௑: 

ܦܯ ൌ maxሺ݀௧ሻ ൌ  ெܸ஺௑ ൅ ݉݀ሺ ெܸ஺௑ሻ (4) 
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TrafficWeb supports lane-changing moves, 
allowing for realistic multi-lane traffic flows. 
The main rule for lane changing is the 
clearance rule: the movement of a vehicleݒ to 
an adjacent lane at stepݐ must not invalidate the 
݀ᇱᇱ

௧ିଵ value for a vehicle ݒᇱᇱ travelling on the 
target lane, in the vicinity and behind of ݒ. The 
theoretical maximum clearance for ݒᇱᇱ  (the 
maximum depth for the “rear-view-mirror 
check”) is also equal to ܦܯ . Finally, ܦܯ  is 
also the maximum depth for “priority 
announcements” at intersections. Figure 2 
shows a graphical representation of some of the 
aforementioned variables: 

 

Figure 2. Atypical scenario illustrating safety 
variables used in the decision sub-step for vehicle ݒ 

While microscopic models can include some 
stochastic parameters [6][18], representing 
variations in driver behavior, these have been 
omitted so far, in order to verify the 
consistency of the results. 

Figure 3 shows that the flow of traffic in 
TrafficWeb is within the limits described in 
theoretical models. The differences are caused 
by traffic variations, which are a characteristic 
of metropolitan environments: downstream 
jams, traffic lights, lane restrictions. 

 

Figure 3. Comparison between TrafficWeb traffic 
flows and theoretical models described in [13] 

3. Gridlock Detection and Solving 

In road traffic, gridlock situations occur when 
certain vehicles cannot advance by applying the 
safe distance rule, and remain stopped for an 

infinite amount of time. The main cause of this 
situation is, as described for a vehicle ݒ: 

݊௧ሺݒሻ ൌ ሻሻݒሺ݈݈݁ܥݒሺܽ݀ݐ݊݁ݐ݊݋ܿ  , where 
 ݒ ሻis the next cell on the route ofݒሺ݈݈݁ܥݒ݀ܽ

݊௧ሺ݊௧ሺ… ݊௧ሺݒሻሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௡ ௧௜௠௘௦

ሻ ൌ  ௡ܰ௧ሺݒሻ ൌ ݒ ֜ ݒ is in a 

gridlock of size ݊. 

Various solutions have been used for managing 
the gridlock problem. A vehicle is assumed to 
be part of a gridlock when it has been standing 
for longer than a threshold period [1], [19], or 
some undisclosed algorithms are employed for 
detecting the gridlock [5]. Solving methods 
include: teleporting vehicles to the next 
segment [1], removing vehicles from the 
simulation [19], rerouting vehicles [5], 
exceeding the estimated segment capacity in 
mesoscopic models [2] [19], or simulating 
driver anticipation for avoiding such situations, 
in more detailed simulators [3]. 

For solving the gridlock problem, we propose a 
solution that includes actual detection of the 
vehicle queue loop and two solving strategies. 
In order to detect a loop, the vehicle queue is 
parsed recursively as long as ௧ܰሺݒሻ= ݒᇱ  (we 
haven’t reached the end of the queue). A 
gridlock (ܩ௜ሻ is detected whenݒᇱ ൌ  Also, a .ݒ
situation of “gridlock dependence” can occur if 

ܰ௠௧ሺݒሻ ൌ ᇱሻݒᇱ and ௡ܰ௧ሺݒ ൌ  ᇱ (5)ݒ

with ݊ as the gridlock length and ݉ as the 
dependence length. Vehicles in the dependence 
are not inside the gridlock, but are dependent 
on its solving to advance. This situation is 
detected by maintaining a list of all the visited 
vehicles situated at the start of segments, 
stopping when such a vehicle is visited twice: 

 ݒ ሻ - current segment ofݒ௧ሺ݃݁ݏ

 ݒ ሻ - current segment step ofݒ௧ሺ݌݁ݐݏ

ܸܵீ
೔

ൌ ሼݒ | ௧ܰሺݒሻ ൌ , ݒ ሻݒ௧ሺ݌݁ݐݏ ൌ 1ሽ - start 
segment vehicles in gridlock ܩ௜. 

Gridlocks can be detected during a separate 
sub-step before the decision sub-step. The front 
queue is parsed for each vehicle in the 
simulation. Once a gridlock is detected, the 
vehicles inside it are marked, and there are two 
options of solving it. 

The first solving method involves granting a 
“wildcard”, for advancing, to each vehicle 
within the gridlock. This overrides the content 
uniqueness rule during the decision sub-step, 
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but the rule is respected in the advancing sub-
step, as all the vehicles in the gridlock advance. 
Each vehicle with a wildcard is allowed to 
move to the cell in front of it, which is 
occupied by a blocking vehicle. As the 
blocking vehicle also receives a wildcard, the 
aforementioned cell will be freed. In the next 
step, the gridlock queue will be composed of 
the same vehicles, each of them shifted forward 
by one cell. The difference will consist in the 
dependencies between vehicles: in the new step, 
vehicles situated at the segments’ ends might 
have the opportunity to leave the gridlock, 
according to their paths. This cyclic movement 
is suitable for a simulation involving 
autonomous vehicles, on which research has 
increased in recent years [5]. 

Another approach, suitable for human driver 
modeling, is the rerouting of end-segment 
vehicles, shown in red in Figure 4. As in real-life 
traffic involving human drivers, a driver situated 
at the end of a segment might get tired of 
waiting, so he will change his course. The new 
course will have the same endpoint as the old 
one and will start at the driver’s current position. 
The restriction for applying this method is that, 
for a given end-segment vehicle, its current 
intersection must offer a choice of changing its 
initial outgoing segment. Thus, the node must 
have at least two outgoing segments. Also, the 
newly chosen outgoing segment must allow the 
driver to reach his intended destination. 

 

Figure 4. An example situation with gridlock 
dependence vehicles (orange), start segment 

vehicles (blue) and other gridlock vehicles (red) 

4. Parallel Simulator Architecture 

The nature of the traffic simulation problem 
allows for parallelization. Reduced-complexity 
queue-based simulators are easier to parallelize, 
with implementations on SIMD architectures 
like GPUs [25] resulting in high RTR values [7]. 
Detailed microsimulations, while difficult to 
implement on SIMD systems, are highly 

parallelizable on MIMD architectures [8], [6]. 
Theoretically, each vehicle may be assigned to a 
different computation unit, with synchronization 
required only for time stepping. In TrafficWeb, 
parallelization is employed at two levels. 

4.1 Multi-threaded parallelization 

This method is used when the computational 
load is shared between multiple processing units 
addressing the same memory space. In recent 
years, multi-core processors have become the 
standard in PCs and the trend is expected to 
grow [9]. Space continuous models require 
partitioning by lanes among different threads 
[11]. Other proposed parallel implementations of 
discrete space models also use geographical 
domain decomposition [8], [11].  

In our proposed architecture, the vehicles that 
must be processed during the current time step 
are split among separate threads. We take 
advantage of the direct memory mapping for 
individual cells, which allows concurrent 
markings on the network, without any 
geographical domain decomposition. This is an 
advantage when lots of processing units are 
present, in a shared-memory environment, as 
there are no overheads associated to partitioning 
and load balancing. When a vehicle enters the 
simulation, it is randomly assigned to a thread. 
For large numbers of vehicles, the thread load is 
balanced by the random allocation. The lack of 
explicit load balancing operations compensates 
for the small random imbalances that may occur. 
A few principles ensure a good scalability of the 
multi-threaded simulation. First, the absence of 
per-vehicle synchronizations reduces 
computationally expensive OS calls. As shown 
in Figure 5, thread waiting and notification 
operations are used only at the step / sub-step 
levels. Second, using visible uncertainty 
reduction, the results of certain queries, like 
front vehicle determination and gridlock 
inclusion, are shared among threads during the 
decision sub-step.  

 

Figure 5. Thread synchronization in the multi-
threaded parallel architecture 
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To accelerate the gridlock detection, it is 
performed during the decision sub-step, as 
opposed to a separate sub-step. The gridlock 
state ݃ݏሺݒሻof each vehicle ݒ, once determined, 
is visible from the other vehicles’ perspectives 
(including those handled by other threads), in 
the decision sub-step: 

ሻݒሺݏ݃ א ሼ0,1,2ሽ – state codes for unknown, in 
gridlock, not in gridlock 

ሻݒሺݏ݃ ൌ 2, if ݒ ׌ᇱ ൌ ௧ܰሺݒሻ, ᇱሻݒሺݏ ൌ 2 

ሻݒሺݏ݃ ൌ 1,  if ݒ ׌ᇱ א   ܸܵீ
೔
,  with ݃݁ݏ௧ሺݒᇱሻ ൌ

ᇱሻݒሻand ௧ܰሺݒ௧ሺ݃݁ݏ ൌ  ݒ

This allows for a parallelization of the gridlock 
detection algorithm, using multi-threading. 

4.2 Distributed parallelization 

This method is employed by processing the 
simulation on independent systems, which 
communicate through a network interface. A 
number of several workstations is common in 
most computing environments, so further 
speedups can be obtained by processing on a 
Beowulf cluster. Gigabit Ethernet is standard 
nowadays, but its speed is significantly lower 
(1 Gbit/s) compared to RAM (>85 Gbit/s in 
DDR3) [4]. Thus, the random assignment of 
vehicles among separate nodes is not efficient. 
Due to the geographical nature of the problem, 
spatial decomposition [2], [8], [11], [20] can be 
used for limiting the amount of data transferred 
between nodes. This is achieved by assigning 
different contiguous areas of the map to 
different nodes [8], [11], [20]. Finding optimal 
partitions requires solving the graph 
partitioning problem, with two objectives: 
minimizing communication volumes between 
neighboring partitions, by limiting the inter-
partition visibility [8], [20];ensuring a balanced 
load distribution for all nodes, in this case a 
balanced number of vehicles, during each 
iteration [20], [24]. The graph partitioning 
problem is known to be NP-hard [8], without 
known algorithms for finding the best solution. 
A fast approximate solution can be obtained 
using orthogonal bisection [8], [20]. For low 
inter-node message volumes, only information 
about vehicles that may influence the 
neighboring partition’s vehicles is sent. The 
presence of vehicle ݒ  on the network may 
influence other drivers’ behaviors at a 
maximum distance of ܦܯ, both upstream and 
downstream. There are three types of 
visibilities, as shown in Figure 6: 

ܸܷ௣௣ᇲ ൌ ሼܿ א ᇱܿ ׌ | ݌ א ,ᇱ݌ ݀ሺܿ, ܿᇱሻ ൏  -  ሽܦܯ
upstream visibility 

௣௣ᇲܦܸ ൌ ሼܿ א ᇱܿ ׌ | ݌ א ,ᇱ݌ ݀ሺܿᇱ, ܿ ሻ ൏  - ሽܦܯ
downstream visibility 

ܸܲ௣௣ᇲ ൌ ሼܿ א ᇱܿ ׌ | ݌ א ,ᇱ݌ ݀ሺܿ, ݀݊ሺݏᇱሻ ሻ ൏
ᇱሻݏሽ – priority visibility, where݀݊ሺܦܯ  is the 
destination node of segment ݏᇱ 

௣ܸ௣ᇲ ൌ  ܸܵ௣௣ᇲ ׫ ௣௣ᇲܦܸ  ׫ ܸܲ௣௣ᇲ  contains all 
cells from partition ݌ visible to partition ݌ᇱ 

 

Figure 6. Areas of length ܦܯ (darker),from the red 
partition, which are visible to the green partition 

௣௣ᇲܯ
௧

ൌ ൛ܣ௩௧ห݈݈ܿ݁௧ሺݒሻ א ௉ܸ௉ᇲሽ is the message 

from ݌  to ݌ᇱ  during time step ݐ ,with ௩௧ܣ  the 
collection of attributes (24 bytes) for vehicle ݒ 
at time ݐ. 

For each partitioning, the visibility ratio 
ݎݒ ൌ  

௩௖

஼
 (visible cells relative to the total 

number of cells) is an approximation of the 
expected message exchange ratio. Figure 7 
shows a graphical representation of this ratio. 

 

Figure 7. Segments with visible cells (black) in an 
orthogonal bisection partitioning of Bucharest 

In the distributed simulation algorithm, 
synchronization between nodes is required before 
the beginning of each step. Each vehicle is 
handled by only one node during a given decision 
sub-step. For each visible vehicle, 9 values, 
totaling 24 bytes, are passed over the network, to 
the neighboring partitions. This includes 
information about vehicle id, the newly computed 
speed and position, as well as signaling and inter-
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vehicle cooperation values. As shown in Figure 8, 
the visible-vehicles information is transmitted 
between nodes after the decision sub-step. When 
this information arrives, the receiving node 
performs the advancing sub-step for these 
vehicles, adopting them if their new position is in 
the node’s partition. 

Communication between adjacent partitions is 
asynchronous with the other computations 
within a given simulation step. The only 
constraint is that any advancing of vehicles 
(own or visible) in a node must not begin 
before the decision sub-step for the given node 
has ended. The advancing of own / visible 
vehicles runs multi-threaded and in parallel. 

5. Distributed Gridlock Detection 

In the distributed simulation, gridlock detection 
is achieved by allowing the loop to be 
reconstructed, based on information from each 
partition’s edges. For any given partition ݌, the 
following potential-gridlock visibilities are 
determined: 

௣௧ܦܩܸ
ൌ ሼݒᇱ א א ݒ ׌|ᇱ݌ ,݌ ݊௧ሺݒሻ  ൌ  ᇱሽݒ

௣௧ܷܩܸ
ൌ ሼא ݒ ᇱݒ׌|݌ א ,ᇱ݌ ݊௧ሺݒᇱሻ ൌ  ሽݒ

௣೟ܩܸ ൌ ሼݎ ൌ ሺݒ, ݒ|ᇱሻݒ א ௣௧ܷܩܸ
,

ᇱݒ א ௣௧ܦܩܸ 
,  ௧ܰሺݒሻ ൌ  ᇱሽݒ

௥ܩܸ ൌ ሼݒᇱᇱ א ሻݒ௧ܰሺ |݌ ൌ ;ᇱᇱݒ  ௧ܰሺݒᇱᇱሻ ൌ  ᇱሽ for aݒ
given ݎ א  ௣೟ܩܸ

Globally, cross-partition queue edges are in 

௧ܩܸ ൌ ራ ௣೟ܩܸ

௣א௉

 

We define the function ݊ݎ: ௧ܩܸ ՜  ௧ܩܸ

ሻݎሺݎ݊ ൌ ,ݒ൫ሺݎ݊ ᇱሻ൯ݒ ൌ ሺݒᇱ, ᇱᇱሻݒ א  ௧ܩܸ

At a given time stepݒ ,ݐ א  is in reconstructed ݌
gridlock if 

ݎ׌ א ௣೟ܩܸ
; ݒ א ;௥ܩܸ …ሺݎሺ݊ݎ݊  ൫݊ݎሺݎሻ൯ሻ ൌ   ݎ

6. Adaptive Load Balancing 

During a simulation, the load distribution on 
the network may vary greatly. This leads to 
load imbalances and wasted computing 
resources. Also, as the nodes may have 
heterogeneous processing capabilities, 
assigning an equal number of vehicles to each 
node might not be optimal. In order to 
efficiently use all the available resources, we 
use a load balancing mechanism. The 
mechanism takes into account both variations 
in spatial load distribution and the 
heterogeneity/variation of the available 
computing resources. As shown in Figure 9, the 
master node checks for discrepancies in 
computing times for each slave node. The time 
cost of the decision sub-step is analyzed as a 
benchmark for each node, during each 
simulation step. 

 

Figure 8. Outline of message passing in the distributed parallel architecture 
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௡೟ܥ
ൌ

௖௔௥ௗሺ௏೙೟ሻ

஽்௡೟
 - the processing capacity of 

node݊at step ݐ, as ݏ݉/ݏ݈݄݁ܿ݅݁ݒ 

௧ܥ ൌ ∑ ேא௡೟௡ܥ  - cluster processing capacity 

௧ܸ ൌ ڂ ௡ܸ೟௡אே  - all the vehicles that must be 
processed on the cluster 

௡೟ܮܫ
ൌ ሺ݀ݎܽܿ ௧ܸሻ כ ௡೟ܥ

⁄௧ܥ  - the ideal vehicle 
load for node݊ at step ݐ 

ܫ ௧ܶ ൌ ௡೟ܮܫ
௡೟ܥ

⁄  - the ideal processing time,  
constant at step ׊ ,ݐ ݊ א ܰ 

ܱܶ݊௧= ݊ܶܦ௧ െ ܫ ௧ܶ - overload time for ݊ 

ܹ ௧ܶ ൌ max௡אேሺܱܶ݊௧ሻ - global wasted time 

௧ܴܫ ൌ ܹ ௧ܶ ܫ ௧ܶ⁄  - the imbalance ratio at step ݐ 

Load balancing is performed depending on the 
value of ߠ (treshold), when ܴܫ௧ ൐  .ߠ

The load balancing is considered finished when 
all the slave nodes have received their updated 
partition segment lists. After repartitioning run 
ܯ receives information ݌ each partition ,ݎ ௣ܲ௥

: 

 

ܵ௣௥
- segments in ݌ at run ݎ 

ܴܵ௣௥
ൌ ቄݏᇱ א ܵ െ ܵ௣௥

ቚ ݏ׌ א ܵ௣௥
, ݀ሺݏ, ᇱሻݏ ൑

ெܸ஺௑ሽ-segments of other partitions, reachable 
in one time step from ݌ 

݀ሺݏ,  ᇱݏ to ݏ ᇱሻ- distance fromݏ

݀݊ሺݏሻ- destination node of segment ݏ 

 ݎ in runݏሻ- partition ofݏ௥ሺ݌

ܸܷ௣௥
ൌ ቄݏᇱ א ܵ െ ሺܵ௣௥

׫ ܴܵ௣௥
ሻ ቚ ݏ ׌

א ሺܵ௣௥
׫ ܴܵ௣௥

ሻ, ݀ሺݏ, ᇱሻݏ

൑ ש ܦܯ  ݀ሺݏᇱ, ሻ ݏ
൑ ש ܦܯ  ݀ሺݏ, ݀݊ሺݏᇱሻ ሻ ൑   ሽܦܯ

ܯ ௣ܲ௥
ൌ ቄݏ א ቀܵ௣௥

׫ ܴܵ௣௥
׫ ܸܷ௣௥

׫ ܯ ௣ܲ௥ିଵ
ቁቚ ሺݏ

ב ܯ ௣ܲ௥ିଵ
ሻ ש ሺ݌௥ሺݏሻ ്  ሻሻሽݏ௥ିଵሺ݌

For the partitioning run ݎ, partition ݌ receives 
information only about the segments 
concerning it, for which it doesn’t have 
information from the previous partitioning run 
ݎ െ 1, or which changed their partition from 
ݎ െ 1  to ݎ. 

7. Experimental Results 

For simulation tests, the road network of the 
city of Bucharest was used, consisting of 
52,782 segments and 24,953 nodes. The data 
was imported from OpenStreetMap using a 
purpose-built XML parser and was persisted in 
an Oracle Spatial database. 

The simulation was calibrated using the 
following parameter values: 

݈ܿ ൌ 450 ܿ݉, ெܸ஺௑ ൌ ܥܣ,4 ൌ ܥܦ,1 ൌ 2 

A variable number of 25,000 to 100,000 
simultaneously starting trips was employed, as 
described in Table 1. The value of 100,000 is a 
typical load value for the road network of 
Bucharest [23]. 

Table 1. The scenarios used for testing 

No. Start veh. End veh Average veh.

1 25000 20000 23255 

2 50000 30000 34728 

3 100000 80000 90603 

The trips were previously obtained by 
randomly generating pairs of origin-destination 
nodes, with each path computed using 
Dijkstra’s algorithm, having segment length as 
link cost. This way, congestion formed along 
the main boulevards. 

 

Figure 9. Outline of the load balancing algorithm 
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Table 2 shows the number of gridlocks for the 
tested scenarios. This is greater than expected to 
occur in real life, but microsimulations are known 
to over represent such situations. The number of 
gridlocks increases with the number of vehicles, 
due to greater congestion. All the gridlocks were 
successfully solved using cyclic movements. 

Table 2. Description of gridlock situations 

Vehicles Gridlocks Max gridlock size 
25,000 31 61 
50,000 96 442 

100,000 628 680 

Figure 10 shows that gridlock searching has a 
significant impact on the simulation time, 
increasing it by 38% for 100,000 vehicles. The 
parallel search algorithm greatly decreases this 
performance penalty, down to 11% when using 
8 threads, a decrease of 72%. The speedup for 
the gridlock searching algorithm is thus 3.5. 

 

Figure 10. Performance impact of gridlock 
searching 

For the tested scenario, the ݎݒ is 0.34% for 2 
partitions, 0.8% for 5, 2.05%for 16 and 19.5% 
for 1024 partitions. Figure 11 shows an 
increase of the visibility ratio, at a decreasing 
rate, when the number of partitions grows. The 
actual number of visible vehicles is greater than 
the estimate because both vehicles and partition 
visibility areas tend to concentrate in the central 
area of the city. 

 

Figure 11.Evolution of the ݎݒ estimate and actual 
visible vehicles ratio 

The processing cluster was composed of the 
nodes described in Table 3. All the nodes 
featured 4 physical cores and 8 virtual cores, 
through Hyper-Threading, and 8 GB of RAM. 

Table 3. Specifications of the processing cluster 

Node Processor ܥ௡(vehicles/ms) 

݊1 Core i7 2670QM 2.2GHz 3292 

݊2 Core i7 2670QM 2.2GHz 3285 

݊3 Core i7 2630QM 2GHz 3087 

݊4 Core i7 930 2.8GHz 3039 

݊5 Core i7 Q7401.73 GHz 2782 

The Java socket bandwidth was benchmarked 
and was found to be at 88% of the theoretical 
maximum (1Gbit/sec). This value allows 
sending information for 4583 vehicles/ms 
across the cluster. 

Figure 12 shows that the speedups increase 
when the problem size (number of vehicles) 
grows, due to the diminishing impact ratio of 
the synchronization operations. The multi-
threaded (MT) performance scalability was 
tested on݊1, and its maximum speedup is 3.5 
using 4 physical cores and 4.15 using 8 virtual 
cores. Hyper-Threading thus brings a speedup 
of 18%.For the distributed (DT) scalability, the 
base value (1 node) is the one obtained using 
only ݊5 , and all the nodes were assigned 
equally sized partitions. In the 100,000 scenario, 
distributed processing on 5 nodes speeds up the 
simulation by 4.45, equivalent to an efficiency 
of 89%. 

 

Figure 12.Speedups obtained using multi-threading 
(MT) and distributed (DT) processing 

Figure 13 shows that gains in RTR value are 
higher when simulating more vehicles. With 
adaptive load balancing (LB values), the RTR 
is increased by 11%. 

Figure 14 shows the overall increase in the 
value of RTR, using the multilevel parallel 
architecture, with and without adaptive load 
balancing. Processing on multiple cores 
increases the RTR value from 5 to 21 when 
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using node ݊ଵ , and, by adding 4 additional 
nodes to the cluster, the value increases to 87. 

 
Figure 13. The increase of the RTR value using 

distributed processing and load balancing 

 

Figure 14. RTR values for the overall number of 
used threads in the cluster, 100,000 vehicles 

The overall performance speedup obtained 
using multilevel parallel processing is 17.17. 
The overall efficiency of the distributed system 
is thus 85%, if taking into account the 
theoretical maximum imposed by the number 
of physical cores:  

ݏ݁ݎ݋ܿ 4 כ ݏ݁݀݋݊ 5 ൌ  ݌ݑ݀݁݁݌ݏ ݔ20

8. Conclusion and Future Work 

The proposed multi-level parallel architecture 
efficiently accelerates computations in a 
metropolitan-scale traffic microsimulation, 
resulting in high RTR values. Multi-level 
parallelism is an advantage, with random load 
allocation at node level being more efficient than 
further splitting each node into sub-partitions for 
each thread. Such smaller partitions would be 
more prone to short-term imbalance variations. 
With the highest obtained RTR value of 87, a 
week of traffic in the city of Bucharest, 
averaging 90,000 vehicles at any time, can be 
simulated in only 1h and 55min. The overall 
multi-level parallel efficiency is 85% using 5 
nodes. Performance is improved by using a 
processing-capacity aware load balancing 
algorithm for the cluster environment, as all the 

available resources are optimally used. The load 
balancing mechanism adapts to both differences 
in computing capacities and variable vehicle 
load distributions across the network. This can 
be further evaluated using a more pronounced 
variation of the congestion areas. 

The gridlock detection algorithm is optimized 
for parallel processing, reducing its impact on 
the overall processing time. The distributed 
detection method allows the simulation to run 
continuously in a distributed environment. 

The TrafficWEB platform will be extended by 
including continuous trip scheduling and 
vehicle insertion, and also dynamic traffic 
assignment. Thanks to the high RTR value, the 
evaluation of various algorithms for dynamic 
traffic allocation, traffic signaling and lane 
restrictions can be performed in a reasonable 
amount of time. 
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