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1. Introduction 

In finance, the term volatility refers to the 
standard deviation of the continuously 
compounded returns of a financial asset. 
Calling p the price or level of a financial asset, 
the returns of the financial index are defined 
according to 

௞ାଵݎ ൌ ݃݋݈ ቀ௣ೖశభ

௣ೖ
ቁ (1) 

To define the concept of volatility in a proper 
manner, it is first necessary to introduce the 
concept of variance conditional to the returns: 

௞|఑ߪ
ଶ ൌ ܧ  ቂ൫ݎ௞ െ ௞|఑൯ߤ

ଶ
ቚΣ఑ቃ (2) 

whereµ୲|த is the conditional expectation of the 
returns. Considering that Σச is the ߪ-algebra 
defined by the observations up to time ߢ, the 
financial returns can be modeled as a stochastic 
Gaussian process 

௞ݎ ൌ  ௞߳௞ (3)ߪ 

where ߳௞ ~ܰሺ0,1ሻ and thus,ݎ௞~ܰሺ0, ௞ߪ
ଶሻ. 

Consequently, one can interpret volatility as a 
measure of the intensity of the variations 
undergone by a given financial asset or, 
equivalently, a measure of the risk associated to 
that asset. It is important to mention that 
different definitions may be associated to the 
concept of financial volatility; including 
“historic volatility”, which refers to the 
volatility experimented by an asset within a 
specific time period, and “current volatility”, 
which refers to the volatility of current prices. 

This work is focused on the estimation of the 
latter, which is assumed to be time-variant. 

From an information technology perspective, 
volatility estimation plays an important role in 
the development of trading algorithms for 
today’s stock market. Although several 
strategies that are currently in use include 
arbitrage and decision-making processes based 
on trend (moving average) evaluation, just few 
of those strategies are able to quantify (and 
manage) the risk that is associated to high 
volatility periods from the perspective of fault 
detection (and control) systems. 

Considering Eq.(1)-(3), volatility estimation 
can be seen as a Bayesian filtering problem. In 
this regard, it is important to note that particle 
filters (also known as sequential Monte Carlo 
methods) have gained notable attention in the 
past few years, due to simple implementation 
and the excellent results they confer. Contrary 
to the Kalman filter, Particle Filters (PF) can be 
used to track the state trajectory in non-linear 
or non-Gaussian systems by approximating the 
state probability density function through a set 
of samples (called particles) and their 
correspondent weights. These characteristics 
make PF and their variants an interesting 
choice to solve the stochastic volatility 
estimation problem. 

In literature, few examples and applications of 
Bayesian filtering applied in economics and 
finance may be found. (Harvey and Koopman, 
2009) introduces a survey on the use of state-
space models in economics applied to CPI and 
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GDP modeling. They also describe some of the 
most common volatility models, including the 
GARCH model (Bollerslev, 1986) and 
stochastic volatility (SV) models. He briefly 
describes the Kalman filter and PF, but does 
not show any results on stochastic volatility 
estimation. (Tsay, 2010) describes the use of 
Gibbs sampling in volatility estimation of SV 
models, but there is no mention about the use 
of PF for volatility estimation. (Tobar and 
Orchard, 2012) introduce the uGARCH model, 
stochastic variation of the GARCH(1,1) model, 
and use Kalman filters (classic and extended) 
and PF to compare the results of estimating 
stochastic volatility in the uGARCH and log-
VE models. On the other hand, several 
examples can be found in literature that 
incorporate information-theoretic measures to 
analyze the output of particle filtering 
algorithms (Ajgl and Šimandl, 2011; Lanz, 
2007; Boers et al., 2010; Skoglaret al., 2009). 
Most of these are related to uncertainty 
characterization, optimality testing, and 
evaluation of control strategies. In (Orchard et 
al., 2012), a detection scheme using entropy as a 
particle filter output processing tool is proposed. 

This article proposes a risk-sensitive particle 
filter approach for volatility estimation. This 
approach also explores the use of differential 
entropy to implement a risk management 
scheme that detects high-volatility clusters 
based on estimates of the state probability 
density function. Validation of the proposed 
scheme is performed using ground truth data 
that is generated via a GARCH model. The 
structure of this document is as follows: In 
Section 2, the uGARCH model is introduced, 
and sub-optimal Bayesian filtering routines are 
referenced. In the same section, the concept of 
entropy is included, and insight is given 
towards its use in a detection scheme. In 
Section 3, the held experiments are described, 
and results of these experiments are displayed. 
Finally, in Section 4, conclusions are presented. 

2. The uGARCH Model, Volatility 
Estimation, and Entropy 

This section presents an introduction to the 
state-space stochastic uGARCH model for 
volatility representation (Tobar and Orchard, 
2012), as well as a brief survey on risk-
sensitive particle filtering (a technique used in 
sub-optimal Bayesian filtering). Finally, the 
concept of differential entropy is described in a 

framework where it can be used to determine 
the uncertainty that is associated to PF-based 
estimates of the probability density function. 

2.1 The uGARCH model 

Economic and financial time-series are 
particular in the sense that the variances of the 
processes involved vary over time. 
(Mandelbrot, 1963) was one of the first to 
mention varying variances in return time-series, 
by describing clusters of high and low 
volatility. The uGARCH model (Tobar and 
Orchard, 2012) is a non-linear model that 
assumes non-observable volatility, and it 
allows the description of the evolution of 
processes with these characteristics over time. 
The uGARCH(1,1) model is 

௞ߪ
ଶ ൌ  ߱ ൅ ௞ିଵߪߙ 

ଶ ௞ିଵߟ
ଶ ൅ ௞ିଵߪߚ 

ଶ  (4) 

௞ݎ ൌ ߤ  ൅  ௞߳௞ (5)ߪ 

where ݎ௞ is a process of returns, ߪ௞ is the 
stochastic volatility, ߤ א Թ, ߱ א Թା, and 
α, β א ሾ0,1ሿ ൈ ሾ0,1ሿ are parameters of the 
model that need to be estimated. Also,  

߳௞ ׽ ܰሺ0,1ሻ     ݅. ݅. ݀. ,  ,݇׊

௞ߟ ׽ ܰ൫0, ௣ߪ
ଶ൯ ݅. ݅. ݀. ,  .݇׊

The following conditional probability density 
functions for state transition may be calculated 
from the model shown in Equations (4)-(5): 

௞ߪ൫݌
ଶหߪ௞ିଵ

ଶ ሻ ൌ 

1

ට2ߪ ߙߨ௞ିଵ
ଶ ሺߪ௞

ଶ –  ߱ െ ௞ିଵߪ ߚ 
ଶ ሻ

݁
ቆ

ഘశ ഁ഑ೖషభ
మ ష ഑ೖ

మ

మഀ഑ೖషభ
మ ቇ

,  

௞ߪ
ଶ  ൒ ߱ ൅ ௞ିଵߪߚ 

ଶ  (6) 

௞ߪ|௞ݎሺ݌
ଶሻ  ൌ  

ଵ

ටଶగఙೖ
మ

݁
ቆି

൫ೝೖ ష ഋ൯
మ

మ഑ೖ
మ ቇ

 (7) 

Equations (6)-(7) completely define the process 
that the uGARCH model states, and are the key 
of the implementation of Bayesian filtering 
routines used in this work. 

2.2 Particle filters and risk-sensitive 
algorithms for volatility estimation 

Bayesian non-linear filtering is defined as the 
process of using noisy observations to estimate 
at least the two first moments of a states vector 
governed by a non-linear and non-Gaussian 
dynamic system. 
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From the Bayesian perspective, a non-linear 
filtering procedure intends to generate an 
estimate of the a posteriori conditional 
probability density function of the state vector. 
The PF is an algorithm that aims to solve this 
estimation problem through an efficient 
selection of ܰ particles and corresponding 
weights, so that the conditional probability 
density function of the state vector is 
approximated by the empirical distribution 
(Doucet, 1998; Maskell and Gordon, 2001; 
Arulampalam et al., 2002; Thrunet al., 2002): 

ሻݔሺ݌  ൌ  ∑ ݔሺ ߜሺ௜ሻݓ െ ሺ௜ሻሻேݔ
௜ୀଵ , (8) 

௞ݓ
ሺ௜ሻ ן      

గቀ௫ೖ
೔ ቁ

௤൫௫ೖ
೔ ൯

, 

ן            
௣ሺ௭ೖ|௫ೖ

೔ ሻ௣ሺ௫ೖ
೔ |௫ೖషభ

೔ ሻ

௤ሺ௫ೖ
೔ |௫బ:ೖషభ

೔ ሻ
, (9) 

where ݍ ቀݔ௞
ሺ௜ሻቁ is known as the importance 

sampling density function (Doucet, 1998; 
Maskell and Gordon, 2001; Arulampalam et 
al., 2002). The determination of this 
importance density function is critical for the 
performance of particle filters. In the specific 
case of non-linear state estimation, the value of 

the weights ݓ௞
ሺ௜ሻ of the particles is calculated 

after establishing that the importance density 
function is equivalent to the a priori state 
transition probability density functions, i.e., 
଴:௞ିଵሻݔ|௞ݔሺݍ  ൌ  ௞ିଵሻ. Although theݔ|௞ݔሺ݌ 
selection of this importance density function is 
appropriate to estimate the most likely 
probability distribution according to a specific 
data set, it is not intended for the tracking of 
high-risk and low-likelihood events (Thrun et 
al., 2002), as events of sporadic high volatility 
may be considered. 

In this sense, the risk-sensitive particle filter 
(RSPF) (Thrun et al., 2002) incorporates a 
model of cost in the definition of the 
importance density function, to generate 
particles in regions associated to high-risk 
events. Mathematically, the importance density 
distribution is selected as follows  

ݍ ቀ݀௞, ௞ቚ݀଴:௞ିଵݔ
ሺ௜ሻ , ଴:௞ିଵݔ

ሺ௜ሻ , ଵ:௞ቁݕ  ൌ 

௞ߛ ڄ  ሺ݀௞ሻݎ  ڄ ,ሺ݀௞݌   ଵ:௞ሻ, (10)ݕ|௞ݔ

where ݀௞ is a set of discrete values representing 
different models of volatility, ݔ௞ is a set of 
continuous states that describe the evolution of 
the financial system given the economic 
conditions, ݎሺ݀௞ሻ is a positive function of risk 

that is independent from the operation mode 
and ߛ௞ is a normalization constant. This 
methodology has proven to be very adequate in 
FDI applications, improving the state tracking 
of states that are critical in the performance of a 
6-wheel robot (Thrun et al., 2002). Up to our 
knowledge, there are no publications of this 
technique in the area of volatility estimation. It 
is extremely important to note that this 
methodology uses exogenous models to 
evaluate and estimate the risk associated to 
economic conditions, a characteristic that 
makes the implementation more difficult in the 
absence of expert opinion. 

The RSPF approach in this work ensures the 
existence of particles in the tail of the state 
transition probability density function, which 
are associated to higher risk and low likelihood. 
This implies the tracking of situations including 
model parameter change, and detection of high 
volatility clusters. 

2.3 Entropy for PF-based detection schemes 

Entropy is a concept that quantifies the amount 
of uncertainty of a random variable, as a 
function of its probability density function 
(Cover and Thomas, 2006). This concept is 
introduced formally as follows. 

Let ܺ be a discrete random variable, modeled 
by (Haykin, 2009): ܺ ൌ  ሼݔ௞|݇ ൌ  1, … ܰ ሽ, 
where ܺ ൌ  ௞ occurs with probabilityݔ 
௞݌ ൌ Զሺܺ ൌ ,௞ሻݔ  0 ൑ ௞݌ ൑  1, ∑ ௞݌

ே
௞ୀଵ ൌ 1. 

In particular, it is possible to define the gain of 
information after observing ܺ ൌ  ௞ withݔ 
probability ݌௞ through the function         
(Hartley, 1927): 

௞ሻݔሺܫ ൌ  log
1

௞݌
 ൌ  െ log  ,௞݌

where the base of the logarithm is arbitrary. 
Given the former facts, it is possible to define 
the entropy of a random variable ܺ as the 
expected value of information gain for all the 
possible outcomes of X; i.e., 

ሺܺሻܪ ൌ ௞ሻሿݔሺܫ௑ሾܧ  ൌ  െ ෍ ௞݌ ݃݋݈ ௞݌

ே

௞ୀଵ

. 

In particle filtering-based applications, the 
probability density functions are defined 
conditionally with respect to a set of 
observations. For these cases (Cover and 
Thomas, 2006) introduce conditional entropy 
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as follows. If ሺܺ, ܻሻ ~ ݌ሺݔ,  ሻ, the conditionalݕ
entropy ܪሺܺ|Yሻ is defined as  

ሺܺ|ܻሻܪ ൌ ෍ ܺ|ሺܻܪሻݔሺ݌ ൌ ሻݔ
௫אஎ

 

   ൌ  െ ෍ ሻݔሺ݌
௫א௑

෍ ሻݔ|ݕሺ݌ log pሺy|xሻ
௬א௒

 

    ൌ  െ ∑ ∑ ,ݔሺ݌ ௒אሻ௬ݕ log൫pሺy|xሻ൯௫א௑  (11) 

    ൌ  െܧሾlog ሺ݌ሺܻ|ܺሻሻሿ. 

Expression (11) is typically used for the 
calculation of entropy in a particle-filtering 
scheme. Moreover, considering that the 
differential conditional entropy (12) –where the 
a posteriori state probability density function 
estimate (13) can be inferred from the 
likelihood of measurement ݕ௞, the a priori state 
estimate ݌ሺݔ௞ିଵ|ݕ௞ିଵሻ, and the probability of 
acquiring the current measurement–, then it is 
possible to use the properties of the logarithm 
to write (11) as in (14): 

௞ሻ൯ݕ|௞ݔሺ݌൫ܪ ൌ
          െ ׬ ௞ሻݕ|௞ݔሺ݌ log ௞ሻݕ|௞ݔሺ݌  ௞, (12)ݔ݀

௞ሻݕ|௞ݔሺ݌ ൌ  
௣ሺ௬ೖ|௫ೖሻ

௣ሺ௬ೖ|௬ሻ
 ௞ିଵሻ. (13)ݕ|௞ݔሺ݌

௞ሻ൯ݕ|௞ݔሺ݌൫ܪ ൌ log ௞ିଵሻݕ|௞ݕሺ݌ െ
׬                   ௞ሻሾlogݕ|௞ݔሺ݌ ௞ሻݔ|௞ݕሺ݌ ൅
                  log݇ݕ݇ݔ݌െ1ሿ݀(14) ݇ݔ 

In addition, given that in this specific case all 
distributions correspond to particle-filtering 
estimates, both the a priori state estimate and 
the probability of measured data can be 
approximated by their corresponding sampled 
versions, as in (15)-(16): 

௞ିଵሻݕ|௞ݔሺ݌ ൎ ∑ ௞ିଵ|௞ିଵݓ
ሺ௜ሻே

௜ୀଵ ݌ ቀݔ௞
ሺ௝ሻቚݕ௞ିଵ

ሺ௜ሻ ቁ,(15) 

௞ିଵሻݕ|௞ݔሺ݌ ൎ ∑ ௞|௞ݓ
ሺ௜ሻே

௜ୀଵ ௞ݔሺߜ െ ௞ݔ
ሺ௜ሻሻ, (16) 

where ݓ௞ିଵ|௞ିଵ
ሺ௜ሻ  and ݓ௞|௞

ሺ௜ሻ  are the a priori and 

posterior weight of the particle (i), respectively. 
Thus, replacing (15)-(16) in (14), it is possible 
to write: 

௞ሻ൯ݕ|௞ݔሺ݌൫ܪ ൌ log ௞ିଵሻݕ|௞ݕሺ݌ ൅

              ∑ ௞|௞ݓ
ሺ௝ሻே

௝ୀଵ ቂlog ݌ ቀݕ௞ቚݔ௞
ሺ௝ሻቁ ൅

              log݅ൌ1ܰ݇ݓെ1|݇െ1ሺ݅ሻ݇ݔ݇ݔ݌െ1ሺ݅ሻ.(17) 

Also, the term ݌ሺݕ௞|ݕ௞ିଵሻ can becomputed 
through its sampled version: 

௞ିଵሻݕ|௞ݕሺ݌ ൌ  ∑ ௞|௞ିଵݓ
ሺ௜ሻே

௜ୀଵ ݌ ቀݕ௞ቚݔ௞
ሺ௜ሻቁ,  (18) 

where ݓ௞|௞ିଵ
ሺ௜ሻ  are the particle weights. As a 

final result, the differential entropy of the 
particle-filtering estimate of the posterior state 
probability density function can be computed 
as in (19) (Orguner, 2009): 

௞ሻ൯ݕ|௞ݔሺ݌൫ܪ ൌ

           log ൬∑ ௞|௞ିଵݓ
ሺ௜ሻே

௜ୀଵ ݌ ቀݕ௞ቚݔ௞
ሺ௜ሻቁ൰ െ

          ∑ ௞|௞ݓ
ሺ௝ሻே

௝ୀଵ ቂlog ݌ ቀݕ௞ቚݔ௞
ሺ௝ሻቁ ൅

          log݅ൌ1ܰ݇ݓെ1|݇െ1ሺ݅ሻ݇ݔ݇ݔ݌െ1ሺ݅ሻ (19) 

Equation (19) will be of use when evaluating 
the uncertainty associated to online estimates in 
dynamic processes.  

Entropy-related applications for particle 
filtering algorithms generally aim at evaluating 
how many independent and identically 
distributed (i.i.d.) samples does the filtering 
algorithm require to represent regions of the 
state-space that accumulate the majority of the 
probability mass, for a given state probability 
density function estimate ݌ሺݔሻ (for a complete 
survey of use of entropy in particle filtering 
schemes, please refer to (Orchard et al., 2012)). 

In (Orchard et al., 2012), the authors propose to 
use entropy as an uncertainty metric over the 
online estimate of the classical PF in a dynamic 
process. In this sense, this work extends this 
idea, calculating entropy over RSPF and PF 
output for uncertainty management and high-
risk event detection in volatility estimation. 

3.   Implementation of a  
RSPF Framework for  
Volatility Estimation and 
Entropy-based Detection 

In this section, we describe the procedure 
followed to generate the data used as ground truth 
to compare the two filtering techniques: Classic 
particle filter and risk-sensitive particle filter. 
Also, the comparison metrics are introduced, 
allowing the comparison between both filtering 
approaches in terms of accuracy and precision. 
As a consideration for the algorithm 
implementation, all schemes use 100 particles. 

3.1 Volatility estimation using particle filters 

In the current section, the implementation 
details of the particle filtering routines used in 
this work are presented. The notation of the 
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uGARCH model previously shown is used, 
presented by (Tobar and Orchard, 2012). 

3.1.1 Classic particle filter 

According to (Maskell and Gordon, 2001; 
Arulampalam et al., 2002), it is possible to 

demonstrate that the optimal q ቀߪ௞
ଶሺ௜ሻ|ߪ௞ିଵ

ଶሺ௜ሻቁ 

function in the sense of minimazing 
degeneration of the particle set is: 

ݍ ቀߪ௞
ଶሺ௜ሻ|ߪ௞ିଵ

ଶሺ௜ሻቁ  ൌ ݌  ቀߪ௞
ଶሺ௜ሻ|ߪ௞ିଵ

ଶሺ௜ሻቁ. (20) 

In the classical version of the PF, the particles 
are generated according to: 

௞ߪ
ଶ ׽ ݌  ቀߪ௞

ଶ|ߪ௞ିଵ
ଶሺ௜ሻቁ, (21) 

and the respective weights are updated through: 

w୩
୧  ൌ  w୩ିଵ

୧ ݌ ቀݎ௞|ߪ௞ିଵ
ଶሺ௜ሻቁ (22) 

In the case of the classical version of the PF, 
the state-transition distribution and the 
likelihood are assumed to be known. 

3.1.2 Risk-sensitive particle filter 

Sampling in a risk-sensitive particle filtering 
approach is done through an arbitrary risk 
functional. Specifically, during this work the 
authors have considered the Inverse Gamma 
distribution to be an appropriate risk functional, 
given its relation of conjugate distribution of 
the Gaussian distribution. The Inverse Gamma 
distribution is: 

;ݔΓሺݒ݊ܫ ,௰ߙ ௰ሻߚ ൌ  
ఉ೨

ഀ೨

୻ሺఈ೨ሻ
ఈ೨ିଵ݁ିିݔ

ഁ೨
ೣ . (23) 

In (23), it is possible to note that the density is 
parameterized by the variables ߙ௰ andߚ௰. 
During this work, the generation of particles 
has been done considering these two 
parameters in the following way: 

௞ߪ
ଶሺ௜ሻ ׽ ௞ߪΓሺݒ݊ܫ 

ଶ, ,௰ߙ ௰ߚ ൌ ௞ିଵߪ
ଶሺ௜ሻሻ, (24) 

where ߙ௰ is a parameter that needs to be 
determined and ߚ௰ is the value of the state in 
the previous time step. Thus, the weight update 
equation is described by: 

௞ݓ
௜  ൌ ௞ିଵݓ 

௜ ௣ቀ௥ೖቚఙೖ
೔ ቁ௣ቀఙೖ

మሺ೔ሻቚఙೖషభ
మሺ೔ሻቁ

ூ௡௩୻ቀఙೖ
మሺ೔ሻቚఈ,ఙೖషభ

మሺ೔ሻቁ
. (25) 

The numerator of (25) is calculated using Eq. 
(6) and (7), respectively. 

3.2 Data generation 

In the comparison of the particle filtering 
schemes, it is mandatory to establish a data set 
where returns and volatility are known in every 
instant for a given time window. The 
artificially created data includes a parameter 
change in the generating model that simulates a 
regime shift in the market. The authors have 
considering a time window of 500 steps, using 
the following dynamical system: 

௞|௞ିଵߪ
ଶ  ൌ ߱ ൅ ௞ିଵݑߙ

ଶ  ൅ ௞ିଵ|௞ିଶߪߚ
ଶ  

௞ݎ  ൌ ௞|௞ିଵߤ     ൅  ,௞ݑ 

where the parameters ߙ and ߚ change over time 
according to the values present in Table 1. It is 
important to note that during the comparison of 
both algorithms, the comparison metrics are 
applied to the filtering output for݇ ൌ 151: 500. 
Values in the range ݇ ൌ 1: 100 are used for 
parameter estimation, and data points between 
݇ ൌ 101: 150 are considered for the training of 
both PFs. 

Table 1. Parameters used in the GARCH model for 
data generation 

Time α β 
1≤ k ≤ 250 0,2 0,6 

251≤ k ≤ 500 0,1 0,85 
 

3.3 Performance measures for particle-
filter-based estimates 

3.3.1 Accuracy indicator 

To measure the accuracy of the estimates 
produced by both PF approaches, the following 
index is used, for every instant ݇ of time: 

݅ா௑ሺ݇ሻ ൌ  
|ఙෝೖ

మ ିఙೖ
మ |

ఙೖ
మ ڄ  100. (26) 

This approach permits to measure the 
percentage difference between the estimated 
value and the real value (artificially generated 
data used as ground truth). Furthermore, it is 
possible to calculate the mean value over the 
sliding window: 

ா௑ܫ  ൌ  
1
ܶ

෍ ݅ா௑ሺ݇ሻ
்

௞ୀଵହଵ

 ൌ  ෍
ො௞ߪ|

ଶ  െ ௞ߪ
ଶ|

௞ߪ
ଶ

்

௞ୀଵହଵ

ڄ  100 

From the previous Equation, it is possible to 
observe that values close to cero indicate that 
the estimated value approaches the true value. 
Due to the inherent randomness of the filtering 
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process, the time window is filtered 10 times, 
and the average of the index ܫா௑ is calculated: 

ܫ ҧா௑  ൌ  
ଵ

ଵ଴
∑ ா௑ሺ݊ሻଵ଴ܫ

௡ୀଵ . (27) 

3.3.2 Precision indicator 

It is also necessary to compare the performance 
of the algorithms from a precision perspective. 
Let the instantaneous precision of a filtering 
structure be 

݅௑
௉ோሺ݇ሻ  ൌ  

஼ூ෢೉ሺ௞ሻ

஼ூതതത೉ሺ௞ሻ
, (28) 

where ܫܥ෢௑ሺ݇ሻ is the length of the ܺ% 
confidence interval in 1-step predictions. The 
confidence interval has been calculated through 
a continuous version of the 1-step prediction 
probability density functions from an existent 
set of particles, using Epanechnikov kernels 
(Tobar and Orchard, 2012). The confidence 
interval is calculated integrating from 0 (which 
is the no-risk point, since null volatility implies 
complete certainty). Also, ܫܥതതത௑ሺ݇ሻ is the 
average in a sliding window that considers the 
last 50 data points. For this reason, this index is 
calculates starting at݇ ൌ 151. 

Analogously to the accuracy index, it is 
possible to define the average of the precision 
index over the sliding window: 

௑ܫ
௉ோ  ൌ  

ଵ

்
∑ ݅௑

௉ோሺ݇ሻ்
௞ୀହଵ   ൌ  

ଵ

்
∑ ஼ூ෢೉ሺ௞ሻ

஼ூതതത೉ሺ௞ሻ
்
௞ୀହଵ . 

Values close to 1 indicate that the estimation 
process reports levels of uncertainty similar to 
the process being studied (Tobar and Orchard, 

2012). It is important to indicate that the reason 
for using the average over a sliding window is 
that the true dispersion of the data when using 
real values is unknown. Additionally, it is 
possible to calculate the average of the precision 
index, taken over 10 filtering realizations: 

ܫ ҧ௑
௉ோ  ൌ

ଵ

ଵ଴
∑ ௑ܫ

௉ோሺ݊ሻଵ଴
௡ୀଵ . (29) 

The indexes are used to compare the filtering 
output of both PF schemes. 

3.4 Results in generated time series 

3.4.1 Parameter estimation 

For the data presented in Figure 1, a GARCH 
(1,1) model has been assumed and parameters 
have been adjusted using maximum likelihood. 
These estimated parameters are used as initial 
conditions for the filtering algorithms, and have 
been calculated using the first 150 steps of the 
simulation (see Table 2). In Figure 1 and also 
in the following figures, the first 100 steps have 
been discarded to ensure that the impact of the 
initial conditions has been dissipated. Hence, 
only steps ݇ ൌ 101: 500 have been displayed 
(and shown as ݇ ൌ 1: 400 for simplicity). 

Table 2. Parameters estimates computed from 
artificially generated data, using steps 1:150 

Parameter Value 
ߤ̂ െ2,5930 ൈ 10ିସ

ෝ߱ 9,8107 ൈ 10ି଺ 
ොߙ 0,3735 
መߚ  0,5687 

 

Figure 1. Average filtering output over 10 realizations with ߙ௰ ൌ 0,7. 
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Due to implementation reasons, it has been 
considered that the parameters ߙ and ߚ are part 
of the state vector and therefore, must             
be estimated. 

3.4.2 Comparative results: Accuracy 

Regarding accuracy indexes, results containing 
the accuracy comparisons of ܫ ҧா௑ between the 
PF and RSPF are presented in Table 3. The 
presented results are obtained averaging over 
10 filtering processes, for the values of ߙ௰ 
between 0.3 and 1.6. On Table 3, it is clear that 
the PF works better as a state estimator than the 
RSPF. In particular, values around ߙ௰ ൌ 0.7 
are the best estimator. 

Table 3. Accuracy index averages over 10 filtering 
routines for different values of ߙ௰ 

ࢄࡱതࡵ ࢣࢻ ࢄࡱതࡵ ࡲࡼ  ࡲࡼࡿࡾ
0,3 39,2821 66,8970 
0,4 39,2821 57,7779 
0,5 39,2821 57,1155 
0,6 39,2821 56,5506 
0,7 39,2821 56,4327 
0,8 39,2821 58,9474 
0,9 39,2821 58,7331 
1,0 39,2821 59,2656 
1,1 39,2821 68,2475 
1,2 39,2821 71,6817 
1,3 39,2821 66,1019 
1,4 39,2821 102,3524 
1,5 39,2821 147,4566 
1,6 39,2821 352,9343 
1,7 39,2821 605,1278 

In Figure 1, the filtering results are presented 
for both PF and RSPF with ߙ௰ ൌ 0.7. Figure 1 
also shows the outputs produced by both 
filtering schemes. The PF in general produces 
better results and the RSPF, but in many cases 
it overestimates the true value, while the RSPF 
underestimates the true value almost 
everywhere. Nevertheless, it is extremely 
important to note that the RSPF has a great 
capacity to filter states where there is a sudden 
and important variation in the state, producing 
better estimates in fast changes of volatility. 

3.4.3. Comparative results: Precision 

Data presented in Table 4 offer the average of 
the calculated precision index again for both 
particle filtering schemes, for everyߙ௰. From 
the Table 4, it is possible to observe that the 
results are very balance between both particle 
filtering schemes. The RSPF has the best 
results again for values around ߙ௰ ൌ 0.7, even 

better than the classical PF. However, it is 
important to note that due to the 
underestimation of the RSPF, the real value is 
not always inside the 90% confidence interval. 
This is an interesting point, since it reaffirms 
that the RSPF tracks sudden volatility changes 
better than the classical PF. 

Although in Table 4 both filtering schemes 
offer values similar to 1 for the precision index, 
this indicator is not capable of capturing all the 
dynamic of the process. In point of fact, the 
length of the confidence intervals produces by 
the RSPF is shorter than the ones produced by 
the PF. Nevertheless, it is mandatory to 
consider first the accuracy of the estimators 
rather than precision. 

Table 4. Accuracy index averages over 10 filtering 
routines for different values of ߙ௰ 

RSPFࡾࡼതࡵ PFࡾࡼതࡵ ࢣࢻ
0,3 1,1107 1,0729 
0,4 1,1107 1,0699 
0,5 1,1107 1,0743 
0,6 1,1107 1,0752 
0,7 1,1107 1,0513 
0,8 1,1107 1,0351 
0,9 1,1107 1,0459 
1,0 1,1107 1,0239 
1,1 1,1107 1,0567 
1,2 1,1107 1,0518 
1,3 1,1107 1,0380 
1,4 1,1107 1,0848 
1,5 1,1107 1,0740 
1,6 1,1107 1,1243 
1,7 1,1107 1,1465 

3.5. Entropy-based detection of sudden 
variations in financial volatility 

In this work, entropy is used as a measure of 
randomness of the a posteriori distribution 
generated by both PF and RSPF-based 
approaches. Figure 3 shows a time series for 
entropy of the conditional distributions, 
calculated according to (19). In is interesting to 
note that in the case of classical PF-based 
estimates, entropy may indeed show relevant 
information within a detection scheme, since 
high volatilities are associated with high 
entropies and low volatilities with low 
entropies. Particularly, between the 70th and 
120th data points there the calculated entropy 
value decreases significantly, while the inverse 
phenomenon may be observed between the 
150th and 170th data points. Additionally, as 
Figure 3 also shows, the information that is  
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Figure 2. Filtering routine #5, with ߙ௰ ൌ 0.7 and 90% confidence interval. 

 

Figure 3.Entropy of the PF-based conditional probability density estimates. 
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provided by the entropy calculation of the 
RSPF-based posterior state distribution results 
to be highly suitable for the  detection of 
volatility peaks (as it occurs for the 160th, 201st, 
240th, 256th, and 287th data points), which 
typically antecedes high-volatility clusters. In 
general, it is possible to observe that certainty 
over classical PF-based estimates is well 
characterized by entropy calculation (see 
Figures 2 and 3), while entropy calculation 
over the RSPF scheme may conduce to an 
automatic peak-detection scheme. 

Finally, it is important to note that entropy does 
not seem to show important information with 
respect to the regime shift introduced at the 
150th data point (see Figure 3). Indeed, there is 
no apparent difference in entropy behavior, 
other than a mean change. 

4. Conclusion 

This article presents and analyzes the 
implementation of a risk-sensitive particle-
filtering algorithm for volatility estimation of 
continuously compounded returns of financial 
assets. This algorithm is based on uGARCH 
models for state-space representation of the 
system, and an Inverse Gamma distribution has 
been used as risk functional (and importance 
density distribution) within the Bayesian 
estimation routine to ensure the allocation of 
particles in regions of the state-space that are 
associated to sudden changes in the volatility of 
the system. The proposed methodology is, in 
fact, a first step towards the inclusion of fault 
detection approaches in a framework for 
automatic detection of high-volatility clusters. 

RSPF results have been compared to the 
volatility estimation obtained through a 
classical PF approach. The comparison shows 
that the application of classic PF-basic 
estimation routines has a tendency to 
overestimate the actual state values, while the 
proposed RSPF scheme tends to underestimate 
it. However, there are some interesting facts 
that require further analysis. The RSPF is 
capable of producing better estimations than 
the classical PF over rapid-changing volatility 
values (initial steps of high-volatility clusters), 
a fact that results critical for the 
implementation of decision-making schemes. 
More importantly, it is assumed that combining 
these results, with entropy calculation, it is 
possible to produce a detector for high 

variations of volatility; either from low-
volatility clusters to high-volatility clusters or 
vice-versa. 

To address the afore-mentioned concept, a 
simple approach inspired in fault detection 
techniques was implemented and tested. 
However, from this perspective, entropy does 
not seem to be a correct tool for regime shift 
detection. Therefore, as future work in this 
area, it is mandatory to consider other tools to 
obtain an adequate detection of high volatility 
and produce and automatic detection scheme 
based on entropy. It is necessary, as well, to 
study the proposed techniques in other data 
sets, including artificially generated data and 
real returns from the stock market. 

As a final remark, it is important to mention 
that future work must also include the 
generation of efficient code that may be used to 
test and the proposed algorithms in real-time, 
extracting stock data directly from authorized 
sites available at the World Wide Web. 
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