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1. Introduction 

The main problem in an autonomous mobile 
robot is the complexity and difficulty to move in 
an unknown environment. To solve this 
problem, the robot must construct a map of the 
environment and, at the same time, determine 
their local localization on the map. If only a map 
is provided, it is called global localization. When 
only a priori state is given, both states the map 
and pose are estimated simultaneously, it is 
called simultaneous localization and mapping. 
This is the reason SLAM and global localization 
is considered disjointed problems. But, neither 
in practice are nor disjointed because of the map 
is imperfect, having small errors and a lack or an 
excess of landmark [1], [2]. 

Objects or obstacles that exist in an environment 
are called landmarks. In real applications, 
unknown environment exploration has a set of 
landmarks, allowing to measure relative distance 
from the robot to each landmark.  

In this paper, both SLAM and global 
localization are used for mapping and a mobile 
robot simultaneous localization (SLAM). This 
permits a mobile robot moving in an unknown 
environment and its implementation in closed 
environments (e.g. rooms, offices, warehouses, 
etc.) with autonomous exploration [1], [2]. 

SLAM solutions have generally been based on 
Extended Kalman Filter (EKF) SLAM [3]-[5]; 
and type Rao-Blackwellized particle filter, 
called FastSLAM. [8]. 

EKF filter allows to integrate the measures 
carried out by the robot and control actions to 
create the probably environment map. Figure 1 
shows a set of landmarks in the environment, 
the robot’s position and observations on the 
landmarks. [9], [10]. 

This SLAM EKF algorithm grows quadratic 
form with the number of landmarks on the map, 
making complicated to generate maps. It is also 
sensitive to erroneous data associated to 
observations with landmarks. 

 
Figure 1. SLAM using the Kalman filter. 

Relative 
observations 

Mobile robots 

Reference global systems 

Landmarks 

Algorithms for Maps Construction and 
Localization in a Mobile Robot 

Daniel ROJAS1, Ginno MILLÁN2, Fernando PASSOLD3, Román OSORIO4, Claudio CUBILLOS1, 
Gastón LEFRANC1 
1  Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile, 

glefranc@ucv.cl 
2  Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile, 

gmillan@ucn.cl 
3  Universidade de Passo Fundo, BR 285, Bairro Passo Fundo, Sao José, Brazil, 

fpassold@upf.br 
4  IIMAS, Universidad Autónoma de México, Av. Universidad 3000, México, 

roman@unam.mx  
Abstract: In this paper it is presented an integration of algorithms that permits maps construction and navigation of 
mobile robots. Simultaneous Localization and Mapping (SLAM) algorithm is used based on FastSLAM method. 
Navigation system is based on Vector Field Histogram algorithm to avoid obstacle and a spiral way trajectory method. Up 
to three different complex simulation maps have been used to evaluate the system. 
Keywords: Mobile Robot, Vector Field Histogram (VHF) algorithm, Simultaneous Localization and Mapping 
(SLAM), FastSLAM. 



 

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 2, June 2014 190 

It has been proposed a compressed algorithm to 
improve performance and reduce complexity. 
Map is subdivided into several sub maps [4]. 

Online SLAM, recovers the present position Xt 
of the robot, instead of the entire route. These 
algorithms tend to be incremental and can 
process a data item at a time. This type of 
algorithms is usually called filters. 

To solve any SLAM problem, the robot must 
have two models: a mathematical model that 
relates measurements of odometry ut to Xt-1 and 
Xt robot positions, and a model that relates 
measurements Zt to the environment map and 
Xt robot location. 

There are several methods for mobile robot 
navigation from one point to another one; it 
uses the VHF algorithm for navigation. This 
algorithm utilizes a two-dimensional Cartesian 
histogram to represent obstacles. Each cell has 
a value representing the certainty that there is 
an obstacle in that position. The Cartesian 
histogram reduces to a one-dimensional polar 
histogram. In this ways, the probability of 
finding an obstacle is obtained. Then, all 
available routes to the destination are look for, 
and select which have less cost function G. 
[11]-[14]. 

In this paper, an algorithm integration that 
allows map construction and simultaneous 
localization (SLAM), with autonomous indoor 
navigation through a mobile robot is presented. 
A construction maps and location algorithm is 
based on the FastSLAM method. For 
autonomous exploration, it uses the method of 
Vector Field Histogram (VHF) based navigation 
algorithm for navigation to avoid obstacles and 
a spiral shape path, to explore the environment. 
This algorithm integration is is evaluated using 
simulation in three different types of maps, 
with varying degrees of complexity. Then, 
developed algorithm is implemented in a real 
mobile robot. 

2. SLAM Math Model 

An autonomous mobile robot in unknown 
environment goes from a position with 
coordinates known, to reach a new position. Its 
movement is uncertain, making it difficult to 
determine their global coordinates. When it 
moves, the robot perceives their environment 
through sensors, and changes its movement to 
avoid obstacles, navigating until reaching the 

desired position. The SLAM problem is 
environment map construction and the 
determination of the relative position of the 
robot on the map. [2], [4], [5]. 

Formally, the SLAM is described in 
probabilistic terms. Robot location is Xt. and 
time is t. For mobile robots on a surface, Xt is 
usually a three-dimensional vector, composed 
of its two-dimensional coordinates in the plane, 
plus a turn unique value for orientation. The 
sequence of positions, or routes, is given as 

0 1 2{ , , , , },T TX x x x x  (1) 

where T is the final time (T may tend to infinity). 
The initial location x0 is known. Other locations 
may not be detected. The odometry provides 
information between two consecutive points. 

1 2 3{ , , , , },T TU u u u u  (2) 

where Ut denotes the odometry characterized in 
the movement between the time t  1 and t; 
such data are obtained from the wheel encoders 
or the control applied to the motors. 

This sequence characterizes the relative motion of 
the robot. For noise-free movement, the sequence 
UT would be enough to retrieve the coordinates XT 
since the initial location x0. However, odometry 
measurements contain noise, and the route 
determined by the techniques of integration, it has 
inevitably an error. 

For environment objects detection, by the robot, 
is m a true environment map. The environment 
can be composed of points of reference objects, 
surfaces, etc., and m describes the location the 
location of them. The environment map m, 
typically is assumed unchanged in time. 

The robot measurements set information 
between features in m and robot location xt. If it 
is assumed that the robot takes a measurement 
at each point in time, the sequence of the 
measurements is: 

1 2 3{ , , , , }.T TZ z z z z  (3) 

The main methods of SLAM are the Extended 
Kalman filter, based on landmarks and the 
particle filter (FastSLAM). 

The Extended Kalman Filter SLAM algorithm 
obtains a world model M and positions sequence 
XT from odometry and data measurement. Pose 
p, position and orientation of a robot, is 
determined from equation 

( | , ) ( , | , ).t t T t t Tp y z U p x m z U  (4) 
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The Figure 2 shows a sequence of locations, 
sensors measurements, and the relationship 
between these variables. This graphic model 
allows the understanding of relationships and 
dependencies on SLAM [2]. 

Full SLAM algorithm is based on particles, i.e. 
in the robot position, using the EKF filter to 
estimate the objects. 

The algorithm determines the position 
throughout robot trajectory, by calculating post 
probability of the set XT and the map m from 
the data available. 

The variables on the right-hand bar of equation 
(5) are directly observable to the robot; while 
on the left-hand are the desire one. Algorithms 
for Full SLAM are processed in batches, i.e. all 
data at the same time. 
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  (5) 

where xt is the position of the robot; and yt is 
(xt, m); m is the map; zt are data from sensors; 
and UT are control orders. 

Figure 2 illustrates the graphical model of Full 
SLAM, where is obtained the path travelled by 
the mobile robot based on the set of positions 
XT in the environment map m. [7], [13]. 

 
Figure 2. SLAM and Full SLAM graphic model. 

3. SLAM System 

In the map construction, the algorithm converts 
robot coordinates and the objects detected to a 
global system of coordinates (Figure 3). It is 
based on previous work [15]. 

 
Figure 3. Global coordinate system. 

It is used Vector Field Histogram algorithm for 
navigation Figure 4. 

 
Figure 4. Navigation method. 

Map is scanned in a spiral way using the VFH 
navigation to avoid obstacles (Figure 5). 

 
Figure 5. Robot exploration. 
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Figure 6 shows the integrated SLAM system 
with the navigation system, in a mobile robot. 

The integrated system is simulated using the 
Player/Stage program as a tool. The Player is 
used as a server for robot control and can be 
programmed in C++, Java and Python. The 
Stage part allows to simulate aspects cinematic 
in two-dimensional and simulate data from the 
sensors (Figure 7). In this case, a Pioneer robot 
has been simulated. 

 

 
Figure 7. Pioneer robot simulated with 

Player/Stage. 

Then, developed algorithm is implemented in a 
real mobile robot used in [16]. This robot has 
two wheels in differential configuration and it 
consists of 5 levels which contains the processing 
system and different sensors and actuators. 

 
Figure 8. Real robot implemented. 

4. System Evaluation 

Evaluations are made in simulation environment 
using Player/Stage. Then, player stage is set in 
the real robot, using a small netbook connected 
to the sensors and actuators. 

Integrated algorithms are evaluated on 
simulation, focusing primarily on the localization 
algorithm and then navigation algorithm.  

 
Figure 6. Integrated SLAM navigation system. 
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In the case of location algorithm, parameters 
are adjusted defining the way in which 
uncertainty increases about the position of the 
robot making a movement in the movement 
model called “Sample Motion”. It is possible to 
estimate these parameters, but, these values 
depend on a number of factors, such as: the 
type of soil of the environment, the wear of 
wheels, and the robot speed robot. In this case, 
parameters are adjusted in the simulation. 

In VFH navigation algorithm, parameters are 
adjusted that allowing the robot to approach at 
a minimum distance of 10 cm to an object, to 
decreases the angular speed or rotation speed of 
the robot and reduce robot sudden movements 
that cause increased error in the estimation of 
the movement model. 

In simulation, using Player/Stage, three 
scenarios are used to test: a map simple 1, 2 
cave map, and a map 3, which is a maze. All 
scenarios have a 256 m2 surface area. These 
maps can be seen in Figure 9. 

The first map consists of a closed environment 
with simple obstacles with geometrical forms. 
The second map consists of a closed 
environment with obstacles more complex than 
the map 1, representing the caves. The third 
map is in a closed environment with obstacles, 
which represents a labyrinth. 

 
Figure 9. Maps 1, 2 and 3. 

Exploration time in map 1 is approximately 12 
minutes and a distance travelled is 120 [m]. 

It is observed that relative error reaches a 
maximum value of 12% and they appear only 
in certain particles. However, in most of the 
particles, the relative error of the estimated 

position of the robot is less than 2%. The 
estimate coordinate Y [m] has a greater error 
average with a value of 1.09%. Table 1 and 2. 

Table 1. General data map 1 

Map size 256 m2 

Trajectory time 12 minutes 

Distance traveled 120 m 

Table 2. Errors obtained with map 1 

Estimated 
position 

Relative error 
average (%) 

Average 
absolute 

error 

Position X m 0.78 2.39 cm 

Position Y m 1.09 2.43 cm 

Orientation rad 0.68 0.006 rad 

The unit used to measure the robot position is 
metro, errors in each position are in the range 
among the 1 to 12 [cm] and robot size has a 
dimension of 40 [cm] wide by 40 [cm] long. 
Algorithms system worked satisfactorily in 
map 1. 

Map 2 simulation obtains a trajectory time of 
10 minutes and a distance of 113 [m]. The 
relative error peak is 12% error and appears 
only in certain particles. However, in most of 
the particles the relative error of the estimated 
position of the robot is less than 2%. The 
estimate in the coordinate is in [m], which has a 
greater error average value of 1.38%. 

Map 2 results can be seen in tables 3 and 4. 
Table 3. General data map 2 

Map size 256 m2 

Trajectory time 10 minutes 

Distance traveled 113 m 

Table 4. Errors obtained with map 2 

Estimated 
position 

Relative error 
average (%) 

Average 
absolute 

error 

Position X m 0.81 1.26 cm 

Position Y m 1.38 1.58 cm 

Orientation rad 0.81 0.004 rad 
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Comparing data from the evaluation of map 2 and 
map 1, it is observed an increase in the number of 
peaks and the extent of the average relative error 
of particles on the map 2. But the average 
absolute error is slightly less than the map 1.  

Considering that the magnitude of the errors at 
each position are in the range of between 1 
[cm] to 12 [cm] and that the size of the robot 
has a dimension of 40 [cm] wide by 40 [cm] 
long, confirms that algorithms system worked 
satisfactorily in the map 2. 

For X coordinate, relative error average is 
0.34% and the absolute error of 0.05 cm, which 
is small. For Y coordinate, relative error is 
0.53% and the absolute error is 0.07 cm. For 
orientation, the error is 0.43% and the absolute 
error is 0.001 radians. 

In map 3 simulation, exploration time is 
approximately 30 minutes and distance is 245 
[m]. The relative error peak is 12% and appears 
only in certain particles. However, in most of 
the particles the relative error of the estimated 
position of the robot is less than 1%. The 
estimate coordinate is in [m], which has a 
greater error average with a value of 0.53%. 

Map 3 results are presented in tables 5 and 6. 
Table 5. General data map 3 

Map size 256 m2 

Trajectory time 30 minutes 

Distance traveled 245 m 

Table 6. Errors obtained with map 3 

Estimated 
position 

Relative error 
average (%) 

Average 
absolute 

error 

Position X m 0.34 0.05 cm 

Position Y m 0.53 0.07 cm 

Orientation rad 0.43 0.001 rad 

In map 3 evaluation, compared with maps 1 
and 2, it is observed that decreases the peaks of 
errors in particles and also in the relative error 
of all coordinates estimated position, being the 
average absolute error which most decrease. 

Considering errors magnitude at each position 
are in the range of between 1 [cm] to 12 [cm] 
and robot size has a dimension of 40 [cm] wide 

by 40 [cm] long, algorithms worked 
satisfactorily in map 3. 

By comparing the evaluations graphs and tables 
for the 3 maps, it is observed that while minor is 
the space for the robot motion, lesser is the error 
in the estimation of the robot position when 
objects or walls have a uniform surface. On the 
other hand, when the robot explores in wider 
spaces or walls with a rough or discontinuous 
surface, the error is greater in the estimation of 
the robot position. This is due to that in tight 
spaces and plain, robot movements and the robot 
twists are more small and soft, on the contrary, 
in the open spaces and discontinuous, the robot 
movements and the robot twists are larger and 
rougher, causing the system of algorithms do not 
well estimate the position. 

Using a real mobile robot, integrated algorithm 
is implemented with player stage set in the real 
robot, using a small netbook connected to the 
sensors and actuators. It is used the same 
parameters adjusted in simulations. The 
evaluation results are similar to simulation for 
map 1 and 2, with error closed to 1% in X 
position and 1.5% in Y position. With these 
results, it can say that SLAM integrated system 
with FastSLAM algorithms, field vectors 
histogram algorithm and spiral exploration 
algorithm, works with minimum errors in 
different evaluated environments. 

5. Conclusions 

The current paper has presented an integration 
of algorithms that permits maps construction 
and navigation of mobile robots. SLAM 
algorithm, based on FastSLAM method is used. 
Navigation system is based on VFH to avoid 
obstacle and a spiral way trajectory method. 
This allows autonomous indoor navigation for 
a mobile robot.  

The map construction algorithm and robot 
locations are based on the method of 
FastSLAM. For autonomous exploration, 
system uses the VHF method to avoid obstacles 
and using spiral shape trajectory to explore the 
environment.  

The developed system is evaluated by 
simulation in three different types of maps, 
with varying degrees of complexity in their 
structures, to know how algorithm works and to 
measurement errors in different environments 
evaluated. Then, player stage is set in the real 
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robot, using a small netbook connected to the 
sensors and actuators. 

Evaluations are made in simulation environment 
using Player/Stage. Then, player stage is set in 
the real robot, using a small netbook connected 
to the sensors and actuators. 

Three scenarios are used for the simulation test: 
a map simple 1, 2 cave map, and a map 3, 
which is a maze. In the three maps simulated, 
in most of the particles the relative error of the 
estimated position of the robot is less than 1%. 
The estimate coordinate is in meter, with error 
average value of 0.53%. Errors are obtained in 
the estimation of the robot position produced 
by sudden movements of the robot and 
discontinuous surfaces on the map. These errors 
in the estimation of the integrated system can 
be reduced by decreasing the speed of the robot 
and modifying the parameters of the algorithms 
of the integrated system. 

Using a real mobile robot, integrated algorithm 
is implemented with player stage set in the real 
robot, using a small netbook connected to the 
sensors and actuators. The same parameters 
adjusted in simulations have been used. The 
evaluation results are similar to simulation for 
map 1 and 2, with error closed to 1% in X 
position and 1.5% in Y position. 
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