
Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 265

1 Introduction

Network design has been an important issue in
logistics during the last century. This is due to
the impact that an efficient distribution network
design can have over both cost and service
level. One specific problem arising in network
design is the problem of moving different
commodities over a network from different
sources to several destinations. This problem is
called Multicommodity Network Flow (MNF)
problem and is mostly encountered in
telecommunications and transportation network
planning. Several models have been proposed
in literature to represent different real life
situations where this kind of problems can be
found (see [19]).

In this article, we consider a transportation
problem of multiple products (commodities)
through a network with capacity constraint,
fixed demands and both fixed and variables
costs in edges construction and flows,
respectively. The capacity constraint
considered in this article is an important
element for the complexity of the capacitated
MNF (CMNF) problem. In fact, several articles
in literature confirm that this problem is NP-
Hard [19, 6, 7, 20]. Thus, when this problem
becomes bigger in terms of the number of
decision variables, mathematical programming

techniques are not able to find the optimal
solution within reasonable time. Therefore
other techniques such as heuristic procedures
must be considered to find an acceptable
approximation of the actual optimal solution
within some time limits. In this article we
consider a hybrid algorithm of Tabu Search
(TS) and Genetic Algorithms (GA) to
approximately solve this problem. We chose
these two strategies based on the good
performance that they have shown when
applied on other complex combinatorial
optimization problems such as routing, facility
location, set covering, among others.

The hybrid algorithm is mainly based on TS.
We use the GA in order to increase the
algorithm diversification degree. Increasing the
algorithm diversification degree allows the
algorithm to increase its exploration level over
the set of feasible solutions, raising the
likelihood of finding good quality
neighbourhoods. A large number of techniques
have been applied to this problem previously in
literature; in [7] the authors present a multilevel
cooperative TS algorithm for the CMNF
problem, using different levels of cooperation,
as well as a set of new cooperation operators.
In [17] the authors propose a Lagrangean
heuristic within a branch-and-bound framework.
The Lagrangean heuristic uses a Lagrangean

Combining Tabu Search and Genetic Algorithms to Solve
the Capacitated Multicommodity Network Flow Problem

Carolina LAGOS1, Broderick CRAWFORD1, Enrique CABRERA2,
Ricardo SOTO1, Jose-Miguel RUBIO1, Fernando PAREDES3
1 Pontificia Universidad Católica de Valparaíso,

2340025 Valparaíso, CHILE.
carolina.lagos@mail.pucv.cl

2 CIMFAV, Universidad de Valparaíso,
Valparaíso, CHILE.

3 Escuela de Ingeniería Industrial, Universidad Diego Portales,
8370179 Santiago, CHILE.

Abstract: Network design has been an important issue in logistics during the last century. This is due to the significant
impact that an efficient distribution network design can have over both costs and service level. In this article, we present a
heuristic solution approach for the well-known capacitated multicommodity network flow problem. The heuristic
approach combines two well-known algorithms namely Tabu Search and Genetic Algorithms. While the main algorithm is
Tabu Search, the Genetic Algorithm is used to select the best option among the neighbours of the current solution. To be
able to do that some well-known evolutionary operators such as cross-over and mutation are made use of. This hybrid
approach obtains important improvements when compared to the ones presented previously in the literature.
Keywords: Multicommodity network flow problem, network design, probabilistic neighbour selection criterion, tabu
search, genetic algorithms.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 266

relaxation to obtain easily handled sub-
problems and solves the Lagrangean dual by
sub-gradient optimization. The Lagrangean
heuristic is then embedded into a branch-and-
bound scheme that yields further primal
improvements. In [11] authors propose a path
re-linking procedure.

Cycle-based neighbourhoods are used to move
along paths between elite solutions and to
generate the elite candidate set, like in local
search procedures. In [2] the authors present an
efficient procedure using a scatter search
framework, which is modified in [3] through an
embedded greedy random adaptive search
procedure (GRASP). More recently, [26] have
presented a hybrid simulated annealing and
column generation approach to solve this
problem. In their paper, simulated annealing
manages open and closed arcs while column
generation is used to solve (exactly) the
resulting sub-problem.

In [24] the authors present a three-phase
strategy that combines TS with path re-linking
and exact techniques. While heuristics are used
to explore the solution set, the exact algorithm
is used to intensify the search in a specific part
of the solution set.

In this article we present a TS-based algorithm
which selects at each iteration a candidate from
a list through a probabilistic criterion based on
evolutionary algorithms. TS algorithms have
been applied on a wide range of different
combinatorial optimization problems [1, 4, 5,
15, 22]. Different implementations of TS have
been also used to solve the CMNF problem
(see e.g. [7]). Regarding the hybridization
proposed in this work, the literature reports
many different hybrid approaches of TS and
evolutionary algorithms [8, 9, 13, 14, 18, 21, 23,
27, 28, 29]. In the majority of these works,
authors rely on the exploration capabilities of
GA while using TS to refine and exploit the
neighbourhood of the best solution obtained by
the GA. Unlike these approaches, in this article
we make use of the evolutionary algorithm only
to choose the next solution among the set of
neighbours candidates of the current solution in
the TS algorithm. Moreover, to the best of our
knowledge, no hybrid algorithm of TS and GA
to solve the CMNF problem, such as the one
presented in this article, has been reported in
the literature.

2. Mathematical Formulation

In this paper we consider the mathematical
model of the CMNF problem proposed by [10].
This model is as follows:

Let 𝐺 = (𝑁, 𝐴) be a network where 𝑁
corresponds to the set of nodes and 𝐴 is the set
of directed arcs. Without loss of generality, we
assume that all (𝑖, 𝑗) ∈ 𝐴 are directed arcs with
i, j ∈ 𝑁. We denote 𝑓𝑖𝑗 and 𝑢𝑖𝑗 the fixed cost
and the capacity of arc (𝑖, 𝑗), respectively. Let
𝑃 denote the set of commodities. For each
commodity 𝑝 ∈ 𝑃, one must move 𝑤𝑝 units of
flow from its (unique) origin 𝑂(𝑝) to its
(unique) destination 𝑆(𝑝). Thus, 𝑐𝑖𝑗

𝑝 denotes the
variable cost of moving one unit flow of
commodity 𝑝 from node 𝑖 to node 𝑗 or,
equivalently, the cost of moving one unit flow
of commodity 𝑝 using arc (𝑖, 𝑗).

Two sets of decision variables are defined.
Design variables 𝑦𝑖𝑗 ∈ {0,1} with (𝑖, 𝑗) ∈ 𝐴 ,
will be equal to 1 if arc (𝑖, 𝑗) is selected in the
final network design and 0 otherwise;
distribution variables 𝑥𝑖𝑗

𝑝
 ∈ ℝ0

+ indicates the
amount of flow of commodity 𝑝 ∈ 𝑃 on arc
(𝑖, 𝑗) . The arc-based formulation of the
capacitated multicommodity network flow
(CMNF) problem is then:

 0, 0,1

, ,
min , p p

ij ij ij ijx y
i j A p P i j A

z x y f y c x

 (1)

s.t.

,
 , , ,

0

p

p p p
ij ij

j N i j N i

w if i o p
x x w if i o p i N p P

otherwise

 (2)

 , p
ij ij ij

p P
x u y i j A

 (3)

 0 , p
ij

p P
x i j A

 (4)

Where 𝑁+(𝑖) and 𝑁−(𝑖) represent the set of
successor and predecessor nodes of node 𝑖 ,
respectively. The objective function (1)
accounts for the total system cost computed as
the sum of the fixed costs of the arcs included
in the design plus the cost of routing the
product demand on the resulting network.
Constraint (2) represents the network flow
conservation relations. The linking constraint
(3) states that the total flow (of all
commodities) on an open arc (𝑦𝑖𝑗) cannot

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 267

exceed its capacity, while it must be 0 if the arc
is closed (𝑦𝑖𝑗 = 0).

3. Solution Approach

This section presents our proposed technique to
solve the CMNF problem. The next sub-section
presents an overview of the implemented TS
algorithm and shows some tests for adjusting
the input parameters of the algorithm. Finally,
the GA-based neighbour selection technique is
presented.

3.1 Tabu search-based algorithm
The TS is essentially a local search algorithm, i.e.
it needs to "exchange information" with its
neighbours. To do that, firstly the
neighbourhood must be defined to determine
whether a solution is neighbour of another or not.
In this paper a neighbourhood movement
corresponds to a change in a set of edges within
the same commodity. Therefore, the
neighbourhood of a solution 𝑠 will be defined as
the set of solutions 𝑁𝑆 = {𝑠1

′ , , 𝑠𝑛𝑠
′ } such that

solutions in 𝑁𝑆 differ from 𝑠 in the set of edges
belonging to only one commodity 𝑝 ∈ 𝑃 . 𝑛𝑠
corresponds to the neighbourhood size and it is a
parameter of our TS-based heuristic, which is
fixed throughout the execution of the algorithm.

One distinctive feature of TS is that it can make
use of both short- and long-term memory. The
main mechanism for implementing the short-
term memory function is the tabu list. This list
contains all the neighbourhood moves that are
prohibited at some iteration during the algorithm
execution. Moreover, the main mechanism for

implementing the long-term memory function is
the diversification criterion. Usually,
diversification criterion is implemented using a
simple memory structure which once reached a
pre-established threshold (number of iterations
without improvements) generates a new random
solution to re-start the algorithm. This allows the
algorithm to get out from neighbourhoods where
the local optimum (or another solution close to it
in terms of objective function value) has been
already found.

Making use of the short- and long-term
memories in our TS algorithm implies we need
to set its parameters. Particularly we need to fix
the length of the tabu list as well as the
threshold for the diversification criterion.

The length of the tabu list is a parameter and
corresponds to the number of iterations during
which a specific neighbourhood movement is
not allowed. Many authors claim that the tabu
list size should be fixed in 7, but there is not a
logical explanation to do that. More recently,
authors take values based on either the size of
the problem or using a dynamic short-term
memory size. Either way, the length of Tabu
list is an important parameter whose influence
must be analysed. Our experiments showed that
with a constant short term memory size of 7 we
obtained the best results for most of the
instances, which is consistent with [12, 25],
among others. Figure 1 depicts the results for
different instances of the problem using
different values for the length of the Tabu list.

Analysed instances vary in the number of
commodities to consider: 10, 50 and 100. We
perform a total of 30 runs of the algorithm for

Figure 1. Objective function values (in average) obtained when different tabu list sizes (between 1 and 10)

are applied over instances with 10 commodities.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 268

each class of instances. Number seven was
consistently one of the best values for all of the
analysed instances. Despite it was not the best
one for some of the instances, we decided to
use this value as it makes the algorithm
performs faster and it requires less objective
function evaluations. Figure 1 shows that the
best average value is obtained when the tabu
list size is seven. Other values have been used,
but they had a poor performance. Figure 2
shows the best average value obtained when the
size of tabu list is 45. However, we can see
how the objective function value obtained by
number seven still is quite competitive. In
terms of CPU time, the algorithm performance
using number seven is about five times faster
than when 45 is considered as the size of the
tabu list.

Finally, Figure 3 confirms the trend of the
previous two figures, i.e. number seven is
among the best w.r.t. it average objective
function value and it is the faster one.

Making use of these concepts we test two types
of diversification strategies which are explained
below:

 Radical Diversification (radDiv): The
algorithm is completely initialised. Only
the best solution found so far (𝑠𝑏𝑒𝑠𝑡) is
considered in the new cycle.

 Random Diversification (randDiv): The
algorithm is partially initialised. Only a fix
number of paths from the current solution
are modified.

We perform some tests on a subset of instances
using these two criteria of diversification and

Figure 2. Objective function values (in average) obtained when different tabu list sizes (between 1 and 10)

are applied over instances with 50 commodities.

Figure 3. Objective function values (in average) obtained when different tabu list sizes (between 1 and 10)

are applied over instances with 50 commodities.

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 269

the results of those tests are presented below in
Table 1.
Table 1. Comparison of two different strategies of

diversification. Tests were applied on a set of
instances with 30 Nodes.

Instance randDiv radDiv

p3010fl1 80,303 80,530

p3010ft1 164,994 165,124

p3010vl1 28,273 28,282

p3010vt1 51,789 51,967

p3050fl1 620,900 626,609

p3050ft1 716,467 709,002

p3050vl1 195,756 195,328

p3050vt1 213,410 214,659

p30100fl1 2,259,040 2,224,325

p30100ft1 2,380,726 2,418,749

p30100vl1 686,501 681,571

p30100vt1 693,245 701,388

As Table 1 shows, the best results are
consistently obtained when randDiv operator is
applied exchanging a number of paths
randomly. The number of routes exchanged
that had the best performance was two. Then,
we need to determine after how many iterations
without improvement the diversification
strategy must be applied. To do that we
perform several tests over an instance of 30
nodes and 10 commodities. The idea is to
determine, in average, how many iterations the
algorithm needs to find a solution better than
the current one. We perform these experiments
without any diversification criterion. Results
shows that, in general, the number of iterations
required to find a new solution better than the
current one are quite similar among the tested
instances. The average value was 790 which
means that, in average, the algorithm needs
around that number of iterations (maximum) to
find a new solution better than the current one.
Thus, the threshold to invoke the diversification
criterion must be larger than this value.
However it must not be much larger as we
should take into account that the larger the

value the longer the algorithm will take
searching around a (possibly) local optimal
solution, a non-desirable behaviour for a local
search algorithm. Finally, the algorithm stops
once the maximum number of iterations is reached.
Algorithm 1 shows a general framework for the
implementation of a TS algorithm.

Parameters for our algorithm are demand
vectors per node (𝑑𝑖), transport cost vectors per
edge (𝑐𝑗

𝑖), set-up cost vectors per edge (𝑓𝑗
𝑖) and

total capacity vectors per edge (𝑣𝑖𝑗).

Solution found by the heuristic corresponds to
two vectors: 𝑥𝑖𝑗

𝑘 for all 𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴 and
𝑦𝑖𝑗 ∈ {0,1} for all (𝑖, 𝑗) ∈ 𝐴 . Where 𝐾
corresponds to the set of commodities to be
transported.

As indicated by the Algorithm 1 in row 3, it is
necessary to generate an initial solution for the
heuristic. The following explains how the

Algorithm 1: Algorithmic Frame for TS

begin

 𝑘 = 0 ; Generate initialSolution 𝑠0;

 𝑠𝑏𝑒𝑠𝑡 = 𝑠0;

 While (𝑘 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) do

 𝑁𝑆𝑘 = getNeighbourhood (𝑠𝑘);

 𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 = 𝑓𝑖𝑛𝑑𝐵𝑒𝑠𝑡(𝑁𝑆𝑘);

 While(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 𝑖𝑠 𝑇𝑎𝑏𝑢) do

 If(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 < 𝑠𝑏𝑒𝑠𝑡) then

 𝑎𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡);

 end If

 end while

 If(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 < 𝑠𝑏𝑒𝑠𝑡) then

 𝑠𝑏𝑒𝑠𝑡 = 𝑁𝑆𝑘
𝑏𝑒𝑠𝑡;

 noImproveIter = 0;

 else

 noImproveIter++;

 end if

 𝑘 = 𝑘 + 1; 𝑠𝑘 = 𝑁𝑆𝑘
𝑏𝑒𝑠𝑡;

 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡);

 𝑐ℎ𝑒𝑐𝑘 (𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛);

 end while

end

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 270

current solution is generated for the general
solution presented in this paper.

For each commodity, we need to build one or
more paths. A path is defined as a set of edges
which a commodity is transported through.
Each path starts from a source node and ends in
a destination node.

Figure 4 shows all the feasible paths between
node 𝑖 and node 𝑗. Please note that only dotted
lines correspond to a path.

Generally, capacity 𝑐𝑘 of a path is not enough
to transport the full amount (𝐾) of commodities
𝑘. Because of that, it is necessary to generate
other paths to increase capacity 𝑐𝑘 of the
network. This path generation should be done
making sure to satisfy capacity constraints at
the edges and the flow conservation constraints
in the nodes, ensuring the feasibility of the
initial solution. The initial node will be the
source node of the flow for a commodity 𝑘. We
then analyse the nodes adjacent to the source
node. One of those adjacent nodes must be
selected according to the probability function
𝑓𝑝𝑟𝑜𝑏(𝑖) . This function calculates the
probability of occurrence of node 𝑖 . This
function makes use of the following criteria:

- Available Capacity: The probability is
directly proportional to the available
capacity on the road tested

- Cost: The probability is inversely
proportional to the cost of evaluated path.

- Cost / Capacity: The probability is indirectly
proportional to the expression
Cost/Capacity of the evaluated road.

Table 2. Paths Assignment Results.

Criterion Objective Function Value

Available

Capacity

693,047.182

Cost 777,910.909

Cost/Capacity 715,670.636

Once implemented, tests were performed on a
subset of instances. The results of these tests
are presented in Table (2). As we can see, all
the three criteria were tested. When the
allocation of paths is made based on the
available capacity, the average cost obtained
was 693,047.182. When the criterion for
allocation of paths corresponds to the cost, the
best average result obtained is 777,910.909 cost
units. Finally when the allocation is made using
the Cost/Capacity criterion, the best average
result obtained is 715,670.636 cost units. Thus,
we found that the best performance was
obtained when the generation of paths was
made using a criterion based on the available
capacity of the network. Consequently, in this
paper we consider this criterion for our
selection function 𝑓𝑝𝑟𝑜𝑏 . In case that the
destination node is within the set of adjacent
(and feasible) nodes, the algorithm will select it
independently of the probability to be assigned.
If during construction of the initial solution a
node (different from the destination node) does
not have adjacent nodes (either due to the
configuration of the network or due to capacity
constraints) the process restarts.

Figure 4. All possible flows from a source i_m to a destination j_m divided into paths.

The paths of the same flow (i_m, j_m) interact sharing edges and their capacities.

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 271

As stated before, the implementation of the TS
algorithm done in this paper is a variant of the
general TS framework, since rather than select
the best candidate deterministically selection is
based on an evolutionary strategy. In next
section this variation is presented.

3.2 Probabilistic neighbour selection criterion
As mentioned above, TS-based algorithm
moves across the neighbourhood using a
predefined neighbourhood-movement. Such
movement generates a set of non-Tabu
neighbour solutions which could be chosen to
perform the movement. However, a problem
arises when trying to define the criteria for this
choice. On the one hand we have a completely
random strategy to choice among the
neighbours. This strategy should increase the
algorithm exploration level. On the other hand
we have several strategies to make the
algorithm tends to perform in the way we
desire, increasing algorithm exploitation level
in detriment of its exploration level. Pure TS
algorithm always chooses the best non-Tabu
search alternative, at least there exists a tabu
alternative with an objective function value
better than the best solution found so far
(aspiration criterion).

Unlike pure TS and other elitist strategies, in
this article we propose a probabilistic
neighbours selection criterion (PNSC) inspired
in selection criteria used by evolutionary
algorithms, particularly by genetic algorithms
(GA). PNSC firstly increases the number of
candidates by mean of the well-known
evolutionary operators namely cross-over and
mutation. New candidates are generated
starting from the original neighbourhood.
After the entire set of candidates is generated
we need to select one of these candidates as
the new current solution. The selection
criterion is the well-known roulette wheel.
The roulette wheel assigns a proportion of the
wheel to each candidate according to their
objective-function value. Then a random
selection is made similar to how the roulette
wheel is rotated. Naturally, good candidate
solutions will be less likely to be eliminated
[16]. This way PNSC increases the
exploration level of our hybrid algorithm.
However, if any candidate improves the best
objective function found so far by the
algorithm, that candidate will have selection
probability equal to 1 (aspiration criterion).
This is done, firstly, to keep those very good

candidate solutions and, secondly, to balance
the relation between exploration and
exploitation of the algorithm.

4. Experiments and
Computational Results

The hybrid TS-GA heuristic presented in this
paper was implemented in Java, on a Ubuntu
12.04 operative system. The tests were
performed on a computer with an Intel i5
processor and 4 GB of RAM. In next section,
the used benchmark is presented. After that, the
results obtained by the TS-GA heuristic and
compares them with results obtained in [2]
are presented.

4.1 Benchmark
In [2], the author design a random instance
generator in order to generate instances
classified according to the following:

- Class I: High Fixed Costs, Loosely
Capacitated Networks

- Class II: High Fixed Costs, Tightly
Capacitated Networks

- Class III: High Variable Costs, Loosely
Capacitated Networks

- Class IV: High Variable Costs, Tightly
Capacitated Networks

The instances generator is the same used in [2].
It creates a text file (ASCII) with different
records that will contain the information and
characteristics of each instance of the network.
The name of the file is defined according to the
characteristics that the network it represents
(number of nodes, number of products, type of
network and type of costs). The generated file
is then used as input for our TS-GA heuristic,
which will read the file and store the data in the
classes that represent the system. The instances
generator has an additional option that allows
us to obtain networks with different capacities
and fixed costs weights. We used this option to
obtain, from a given network instance, some
additional instances with the same number of
products and variable costs but with different
characteristics of capacity and fixed costs.

4.2 Results
The algorithm was tested in a set of instances
presented in [2, 6]. We present in Tables 3 to 5
obtained results for each instance type. In each

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 272

Table the instance name (Instance column), cost
obtained by our TS-GA algorithm (TS-PNSC
column), cost obtained by the Scatter Search
algorithm in [2] (SS column) and the difference
between them (Δ column) is presented.

Table 3 shows the results for the instances
consisting of 30 customers and 10 commodities.
On average, the savings for these instances
reached 1.54% with a peak of 6.58% (p3010ft4
instance, class II). Moreover, the lowest
performance is obtained for instance p3010vt5
with increased costs of 1.83%.

Table 3. Results for instances with 30 Nodes
and 10 commodities.

Instance TS-PNSC SS Δ

p3010fl1 80,303 80,742 -0,54%

p3010fl2 68,114 71,288 -4,45%

p3010fl3 111,136 112,483 -1,20%

p3010fl4 86,466 88,035 -1,78%

p3010fl5 70,976 71,792 -1,14%

p3010ft1 160,950 167,019 -3,63%

p3010ft2 146,564 149,824 -2,18%

p3010ft3 198,960 207,554 -4,14%

p3010ft4 150,400 160,999 -6,58%

p3010ft5 143,150 149,995 -4,56%

p3010vl1 28,167 28,281 -0,40%

p3010vl2 22,965 23,589 -2,65%

p3010vl3 37,691 37,601 0,24%

p3010vl4 29,029 29,154 -0,43%

p3010vl5 24,267 23,997 1,13%

p3010vt1 50,113 50,061 0,10%

p3010vt2 44,471 44,361 0,25%

p3010vt3 62,665 62,272 0,63%

p3010vt4 48,153 48,812 -1,35%

p3010vt5 44,610 43,807 1,83%

Similarly, Table 4 shows the results obtained
for instances of 30 customers and 50
commodities. Our algorithm presents a better
performance than the Scatter Search algorithm
from [2] for the majority of the instances.
However, in average this difference
corresponds to 0.69% only, with a peak of
5.5% (p3050fl4 instance, class I). Moreover,
the average of those instances where there is no
saving is 0.83%.

Table 4. Results for instances with 30 Nodes
and 50 commodities.

Instance TS-PNSC SS Δ

p3050fl1 600,826 594,872 1,00%

p3050fl2 658,782 664,774 -0,90%

p3050fl3 870,069 862,578 0,87%

p3050fl4 712,844 754,294 -5,50%

p3050fl5 713,464 697,016 2,36%

p3050ft1 691,217 715,559 -3,40%

p3050ft2 725,156 732,436 -0,99%

p3050ft3 978,242 971,473 0,70%

p3050ft4 827,636 845,984 -2,17%

p3050ft5 817,905 816,569 0,16%

p3050vl1 186,979 191,260 -2,24%

p3050vl2 214,047 213,792 0,12%

p3050vl3 270,508 269,559 0,35%

p3050vl4 235,758 240,052 -1,79%

p3050vl5 220,967 224,295 -1,48%

p3050vt1 209,752 207,560 1,06%

p3050vt2 232,811 233,405 -0,25%

p3050vt3 294,363 295,885 -0,51%

p3050vt4 254,949 255,879 -0,36%

p3050vt5 245,178 247,309 -0,86%

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 273

Table 5 shows a very similar behaviour
between both algorithms, being our algorithm
slightly better on average (0.13%). The best
performance of our TS-GA algorithm is
obtained at the instance p30100vl1 class III
(5.6%). Unlike the results shown in Tables 3
and 4, in this case we have a significant
increment in the average cost of those instances
where there is no saving. This increment is
2.45% on average, with a peak of 5.09%
(p30100fl3 instance, class I)

Table 5. Results for instances with 30 Nodes
and 100 commodities.

Instance TS-PNSC SS Δ

p30100fl1 1,836,807 1,777,644 3,33%

p30100fl2 2,134,616 2,063,516 3,45%

p30100fl3 1,812,369 1,724,508 5,09%

p30100fl4 2,183,939 2,160,174 1,10%

p30100fl5 1,681,758 1,711,917 -1,76%

p30100ft1 2,019,340 2,073,628 -2,62%

p30100ft2 2,307,337 2,361,424 -2,29%

p30100ft3 1,902,447 2,010,868 -5,39%

p30100ft4 2,378,418 2,443,325 -2,66%

p30100ft5 1,883,920 1,875,002 0,48%

p30100vl1 577,123 611,379 -5,60%

p30100vl2 699,374 700,556 -0,17%

p30100vl3 577,334 572,004 0,93%

p30100vl4 710,446 726,896 -2,26%

p30100vl5 594,903 575,406 3,39%

p30100vt1 608,137 627,080 -3,02%

p30100vt2 715,723 708,939 0,96%

p30100vt3 573,291 581,496 -1,41%

p30100vt4 736,563 709,097 3,87%

p30100vt5 603,449 592,142 1,91%

Tables 6 to 8 show an analysis of the results
grouped by class, cost, type of network and
number of commodities, respectively. Our
algorithm presents, on average, better results
than the Scatter Search in [2] in almost all
classes (I to III) with the only exception of
class IV.

Table 6. Comparison of instances grouped by class.

Class TS-PNSC SS Δ

I 2,977,749.60 2,687,126.60 0.00%

II 3,285,099.00 3,136,331.80 -2.62%

III 902,116.00 893,564.20 -0.72%

IV 959,674.80 941,621.00 0.19%

Table 7. Comparison of instances grouped by Cost.

Cost TS-PNSC SS Δ

Fix 3,131,424.30 2,911,729.20 -1.31%

Var. 930,895.40 917,592.60 -0.27%

Based on the results presented above, it is
possible to state that our algorithm shows a
satisfactory performance for most of the instances.

Table 8. Comparison of instances grouped by type
of network (Loosely and Tightly Capacitated).

Network TS-PNSC SS Δ

LC 1,926,666.10 1,790,345.40 -0.36%

TC 2,109,424.40 2,038,976.40 -1,21%

However, it can be noted that as the problem
increases in size or complexity the performance
of our algorithm tends to fall. Because of that,
new strategies must be implemented to improve
the performance of the algorithm in these more
complex (bigger) instances. New strategies to
select the best candidate solution as well as
adding dynamic selection strategies could be an
option to improve the algorithm performance.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 274

Table 9 shows a summary of the results sorted
by the number of commodities.

Table 9. Comparison of instances grouped by
number of commodities (#p).

#p TS-PNSC SS Δ

10 80,644.10 82,583.30 -2,57%

50 498,072.65 501,727.55 -0,73%

100 1,326,881.30 1,330,350.05 -0,26%

From these results, some important remarks
can be given: The algorithm performs better in
those instances with predominant fixed costs,
as seen in Tables 6 and 7. This is because of
the strategy used in the generation of paths,
which is preferentially guided to the
destination node as long as this is in the list of
candidate nodes. Our TS-GA algorithm
performs better when applied to networks with
restricted capacity. This may be due to another
criterion used in the generation of paths:
preference is given to those paths with greater
available capacity. While this strategy aims to
create a smaller number of paths-per-flow,
might not be taking into account the creation
of a greater number of new edges, which
would translate into higher fixed costs.

Table 9 shows that for the instances of 10 and
50 commodities a non-negligible improvement
exists compared to the benchmark. Finally, for
instances with 100 commodities it can be seen
a small deterioration in performance in relation
to total costs obtained, which can be attributed
to two situations: The method used to diversify
is not the best one we can use and, therefore,
we should look for strategies that increase the
solution space and therefore increase the ability
of our TS-GA algorithm of finding a solution
better than the one obtained by the Scatter
Search algorithm. Also it might be that the
neighbourhood definition or movement
definition is not the adequate for this problem.

5. Conclusions and Future Work

In this paper we have presented a hybrid
algorithm of TS and GA. While TS guides
the search, GA balances the relation between
exploration and exploitation levels of the
algorithm by means of evolutionary operators,
such as cross-over and mutation, used during

the selection process. We described in detail
how we made decisions about parameter
values of the algorithm as well as the
different criteria used by our algorithm. The
parameters in a meta-heuristic are a key
factor in its performance. In the early stages
of the implementation up to 300% difference
were obtained in results compared to the best
solution due to poor parameters calibration in
the tabu list size and diversification threshold.
Obtained results shown that our algorithm is
able to find very competitive solutions
especially for small instances or with non-
too-hard restrictions. However, it is
necessary to try different strategies within the
algorithm to keep the good performance
obtained for small instances on those large
instances with hard restrictions.

Finally, the implementation of a number of
strategies remains as future work. Among them,
new probabilistic selection criteria, new
neighbourhood definitions as well as the
implementation of other path generation
strategies could lead to improve results
obtained by our hybrid algorithm.

REFERENCES

1. Al-SULTAN, K., M. Al-FAWZAN, A
Tabu Search Approach to the
Uncapacitated Facility Location
Problem, Annals of Operation Research,
vol. 86, 1999, pp. 91-103.

2. ALVAREZ, A., J. GONZALEZ-
VELARDE, K. DE-ALBA, GRASP
Embedded Scatter Search for the
Multicommodity Capacitated Network
Design Problem, Journal of Heuristics, vol.
11, 2005, pp. 233-257.

3. ALVAREZ, A., J. GONZALEZ-
VELARDE, K. DE-ALBA, Scatter Search
for Network Design Problem, Annals of
Operation Research, vol. 138, 2005,
pp. 159-178.

4. BRANDÃO, J., A. MERCER, A Tabu
Search Algorithm for the Multi-Trip
Vehicle Routing and Scheduling
Problem, European Journal of Operational
Research, vol. 100, 1997, pp. 180-191.

5. CABRERA, G., P. A. MIRANDA, E.
CABRERA, R. SOTO, B. CRAWFORD, J.
M. RUBIO, F. PAREDES, Solving A
Novel Inventory Location Model with

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 275

Stochastic Constraints and (R, s, S)
Inventory Control Policy, Mathematical
Problems in Engineering, vol. 2013, Article
ID 670528, 12 pages, 2013.

6. COBOS, N., A. ALVAREZ, Tabu Search-
Based Algorithm for Capacitated
Multicommodity Network Design
Problem, 14th International Conference on
Electrical, Communication & Computing -
ICECC, 2004, p. 144.

7. CRAINIC, T. G., Y. LI, M. TOULOUSE,
A First Multilevel Cooperative
Algorithm for Capacitated
Multicommodity Network Design,
Computers & Operations Research, vol. 33,
2006, pp. 2602-2622.

8. DAVIDOVIC, T., P. HANSEN, N.
MLADENOVIC, Permutation-based
Genetic, Tabu, and Variable
Neighborhood Search Heuristics for
Multiprocessor Scheduling with
Communication Delays, Asia-Pacific
Journal of Operational Research, vol. 22,,
2005, pp. 297-326.

9. GARAI, G., B. CHAUDHURII, A Novel
Hybrid Genetic Algorithm with Tabu
Search for Optimizing Multi-
dimensional Functions and Point Pattern
Recognition, Information Sciences, vol.
221, 2013, pp. 28-48.

10. GENDRON, B., T. CRAINIC, A.
FRANGIONI, Multicommodity
Capacitated Network Design,
Telecommunications Network Planning,
1999, pp. 1-19.

11. GHAMLOUCHE, I., T. CRAINIC, M.
GENDREAU, Path Relinking, Cycle-
based Neighbourhoods and Capacitated
Multicomodity Network Design, Annals
of Operation Research, vol. 131, 2004,
pp. 109-133.

12. GLOVER, F., B. MELIÁN, Tabu Search,
Inteligencia Artificial, Revista
Iberoamericana de Inteligencia Artificial
vol. 19, 2003, pp. 29-48.

13. GONZALEZ, M., C. VELA, R. VARELA,
Genetic Algorithm Combined with Tabu
Search for the Job Shop Scheduling
Problem with Setup Times, Methods and
Models in Artificial and Natural
Computation, 2009, pp. 265-274.

14. El FERCHICHI, S., K. LAABIDI, S. ZIDI,
Genetic Algorithm and Tabu Search for
Feature Selection, Studies in Informatics
and Control, 2009, vol. 18(2), pp. 181-187.

15. HANAFI, S., A. FREVILLE, An Efficient
Tabu Search Approach for the 0 - 1
Multidimensional Knapsack Problem,
European Journal of Operational Research,
vol. 106, 1998, pp. 659-675.

16. HOLLAND, J., Adaptation in Natural
and Artificial Systems: An Introductory
Analysis with Applications to Biology,
Control, and Artificial Intelligence,
University of Michigan Press, 1975.

17. HOLMBERG, K., D. YUAN, A
Lagrangian Heuristic based Branch-
and-Bound Approach for the
Capacitated Network Design
Problem, Operations Research, vol. 48,
2000, pp. 461-481.

18. CABRERA, G., S. RONCAGLIOLO, J.P.
RIQUELME, C. CUBILLOS, R. SOTO. A
Hybrid Particle Swarm Optimization -
Simulated Annealing Algorithm for the
Probabilistic Travelling Salesman
Problem, Studies in Informatics and
Control, 2012, vol. 21(1), pp. 49-58.

19. MAGNANTI, T., R. WONG, Network
Design, and Transportation Planning:
Models and Algorithms, Transportation
Science, vol. 1, 1984, pp. 1-55.

20. MINOUX, M., Networks Synthesis and
Optimum Network Design Problems:
Models, Solution Methods and
Applications, Networks, vol. 19, 1988,
pp. 313-360.

21. TING, C. K., C. F. KO, C. H. HUANG,
Selecting Survivors in Genetic Algorithm
using Tabu Search Strategies, Memetic
Computing vol. 1, 2009, pp. 191-203.

22. VALLS, V., M. PEREZ, M.
QUINTANILLA, A Tabu Search
Approach to Machine Scheduling,
European Journal of Operational Research,
vol. 106, 1998, pp. 277-300.

23. VILCOT, G., J. C. BILLAUT, A Tabu
Search and a Genetic Algorithm for
Solving a Bicriteria General Job Shop
Scheduling Problem, European Journal of
Operational Research, vol. 190, 2008,
pp. 398-411.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 276

24. VU, D., T. CRAINIC, M. TOULOUSE, A
Three-phase Matheuristic for
Capacitated Multi-Commodity Fixed-
Cost Network Design with Design-
Balance Constraints, Journal of Heuristics
vol. 19, 2013, pp. 757-795.

25. WESLEY BARNES, J., M. LAGUNA, A
Tabu Search Experience in Production
Scheduling, Annals of Operation Research,
vol. 41, 1993, pp. 139-156.

26. YAGHINI, M., M. RAHBAR, M. KARIMI,
Hybrid Simulated Annealing and
Column Generation Approach, Journal
of the Operational Research Society, vol.
64, 2013, pp. 1010-1020.

27. HAGEMAN, J., R. WEHRENS, H. van
SPRANG, L. BUYDENS, Hybrid Genetic
Algorithm-Tabu Search Approach for
Optimising Multilayer Optical Coatings,
Analytica Chimica Acta vol. 490, 2003,
pp. 211-222.

28. JAT, S. N., S. YANG, A Hybrid Genetic
Algorithm and Tabu Search Approach
for Post Enrolment Course Timetabling,
Journal of Scheduling vol. 14, 2011,
pp. 617-637.

29. DURAN, O., L. PEREZ, Solution of the
Spare Parts Joint Replenishment
Problem with Quantity Discounts using
a Discrete Particle Swarm Optimization
Technique, Studies in Informatics and
Control, 2013, vol. 22(4), pp. 319-328.

