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1 Introduction 

Network design has been an important issue in 
logistics during the last century. This is due to 
the impact that an efficient distribution network 
design can have over both cost and service 
level. One specific problem arising in network 
design is the problem of moving different 
commodities over a network from different 
sources to several destinations. This problem is 
called Multicommodity Network Flow (MNF) 
problem and is mostly encountered in 
telecommunications and transportation network 
planning. Several models have been proposed 
in literature to represent different real life 
situations where this kind of problems can be 
found (see [19]). 

In this article, we consider a transportation 
problem of multiple products (commodities) 
through a network with capacity constraint, 
fixed demands and both fixed and variables 
costs in edges construction and flows, 
respectively. The capacity constraint 
considered in this article is an important 
element for the complexity of the capacitated 
MNF (CMNF) problem. In fact, several articles 
in literature confirm that this problem is NP-
Hard [19, 6, 7, 20]. Thus, when this problem 
becomes bigger in terms of the number of 
decision variables, mathematical programming 

techniques are not able to find the optimal 
solution within reasonable time. Therefore 
other techniques such as heuristic procedures 
must be considered to find an acceptable 
approximation of the actual optimal solution 
within some time limits. In this article we 
consider a hybrid algorithm of Tabu Search 
(TS) and Genetic Algorithms (GA) to 
approximately solve this problem. We chose 
these two strategies based on the good 
performance that they have shown when 
applied on other complex combinatorial 
optimization problems such as routing, facility 
location, set covering, among others. 

The hybrid algorithm is mainly based on TS. 
We use the GA in order to increase the 
algorithm diversification degree. Increasing the 
algorithm diversification degree allows the 
algorithm to increase its exploration level over 
the set of feasible solutions, raising the 
likelihood of finding good quality 
neighbourhoods. A large number of techniques 
have been applied to this problem previously in 
literature; in [7] the authors present a multilevel 
cooperative TS algorithm for the CMNF 
problem, using different levels of cooperation, 
as well as a set of new cooperation operators. 
In [17] the authors propose a Lagrangean 
heuristic within a branch-and-bound framework. 
The Lagrangean heuristic uses a Lagrangean 
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relaxation to obtain easily handled sub-
problems and solves the Lagrangean dual by 
sub-gradient optimization. The Lagrangean 
heuristic is then embedded into a branch-and-
bound scheme that yields further primal 
improvements. In [11] authors propose a path 
re-linking procedure.  

Cycle-based neighbourhoods are used to move 
along paths between elite solutions and to 
generate the elite candidate set, like in local 
search procedures. In [2] the authors present an 
efficient procedure using a scatter search 
framework, which is modified in [3] through an 
embedded greedy random adaptive search 
procedure (GRASP). More recently, [26] have 
presented a hybrid simulated annealing and 
column generation approach to solve this 
problem. In their paper, simulated annealing 
manages open and closed arcs while column 
generation is used to solve (exactly) the 
resulting sub-problem. 

In [24] the authors present a three-phase 
strategy that combines TS with path re-linking 
and exact techniques. While heuristics are used 
to explore the solution set, the exact algorithm 
is used to intensify the search in a specific part 
of the solution set. 

In this article we present a TS-based algorithm 
which selects at each iteration a candidate from 
a list through a probabilistic criterion based on 
evolutionary algorithms. TS algorithms have 
been applied on a wide range of different 
combinatorial optimization problems [1, 4, 5, 
15, 22]. Different implementations of TS have 
been also used to solve the CMNF problem 
(see e.g. [7]). Regarding the hybridization 
proposed in this work, the literature reports 
many different hybrid approaches of TS and 
evolutionary algorithms [8, 9, 13, 14, 18, 21, 23, 
27, 28, 29]. In the majority of these works, 
authors rely on the exploration capabilities of 
GA while using TS to refine and exploit the 
neighbourhood of the best solution obtained by 
the GA. Unlike these approaches, in this article 
we make use of the evolutionary algorithm only 
to choose the next solution among the set of 
neighbours candidates of the current solution in 
the TS algorithm. Moreover, to the best of our 
knowledge, no hybrid algorithm of TS and GA 
to solve the CMNF problem, such as the one 
presented in this article, has been reported in 
the literature. 

 

2. Mathematical Formulation 

In this paper we consider the mathematical 
model of the CMNF problem proposed by [10]. 
This model is as follows:  

Let 𝐺 = (𝑁, 𝐴)  be a network where 𝑁 
corresponds to the set of nodes and 𝐴 is the set 
of directed arcs. Without loss of generality, we 
assume that all (𝑖, 𝑗) ∈  𝐴 are directed arcs with 
i, j ∈  𝑁. We denote 𝑓𝑖𝑗  and 𝑢𝑖𝑗  the fixed cost 
and the capacity of arc (𝑖, 𝑗), respectively. Let 
𝑃  denote the set of commodities. For each 
commodity 𝑝 ∈  𝑃, one must move 𝑤𝑝 units of 
flow from its (unique) origin 𝑂(𝑝)  to its 
(unique) destination 𝑆(𝑝). Thus, 𝑐𝑖𝑗

𝑝  denotes the 
variable cost of moving one unit flow of 
commodity 𝑝  from node 𝑖  to node 𝑗  or, 
equivalently, the cost of moving one unit flow 
of commodity 𝑝 using arc (𝑖, 𝑗). 

Two sets of decision variables are defined. 
Design variables 𝑦𝑖𝑗 ∈  {0,1}  with (𝑖, 𝑗)  ∈  𝐴 , 
will be equal to 1 if arc (𝑖, 𝑗) is selected in the 
final network design and 0 otherwise; 
distribution variables 𝑥𝑖𝑗

𝑝
 ∈  ℝ0

+  indicates the 
amount of flow of commodity 𝑝 ∈  𝑃  on arc 
(𝑖, 𝑗) . The arc-based formulation of the 
capacitated multicommodity network flow 
(CMNF) problem is then: 
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Where 𝑁+(𝑖)  and 𝑁−(𝑖)  represent the set of 
successor and predecessor nodes of node 𝑖 , 
respectively. The objective function (1) 
accounts for the total system cost computed as 
the sum of the fixed costs of the arcs included 
in the design plus the cost of routing the 
product demand on the resulting network. 
Constraint (2) represents the network flow 
conservation relations. The linking constraint 
(3) states that the total flow (of all 
commodities) on an open arc ( 𝑦𝑖𝑗 ) cannot 
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exceed its capacity, while it must be 0 if the arc 
is closed (𝑦𝑖𝑗 = 0). 

3. Solution Approach 

This section presents our proposed technique to 
solve the CMNF problem. The next sub-section 
presents an overview of the implemented TS 
algorithm and shows some tests for adjusting 
the input parameters of the algorithm. Finally, 
the GA-based neighbour selection technique is 
presented. 

3.1 Tabu search-based algorithm 
The TS is essentially a local search algorithm, i.e. 
it needs to "exchange information" with its 
neighbours. To do that, firstly the 
neighbourhood must be defined to determine 
whether a solution is neighbour of another or not. 
In this paper a neighbourhood movement 
corresponds to a change in a set of edges within 
the same commodity. Therefore, the 
neighbourhood of a solution 𝑠 will be defined as 
the set of solutions 𝑁𝑆 = {𝑠1

′ , . . . . , 𝑠𝑛𝑠
′ } such that 

solutions in 𝑁𝑆 differ from 𝑠 in the set of edges 
belonging to only one commodity 𝑝 ∈  𝑃 . 𝑛𝑠 
corresponds to the neighbourhood size and it is a 
parameter of our TS-based heuristic, which is 
fixed throughout the execution of the algorithm. 

One distinctive feature of TS is that it can make 
use of both short- and long-term memory. The 
main mechanism for implementing the short-
term memory function is the tabu list. This list 
contains all the neighbourhood moves that are 
prohibited at some iteration during the algorithm 
execution. Moreover, the main mechanism for 

implementing the long-term memory function is 
the diversification criterion. Usually, 
diversification criterion is implemented using a 
simple memory structure which once reached a 
pre-established threshold (number of iterations 
without improvements) generates a new random 
solution to re-start the algorithm. This allows the 
algorithm to get out from neighbourhoods where 
the local optimum (or another solution close to it 
in terms of objective function value) has been 
already found. 

Making use of the short- and long-term 
memories in our TS algorithm implies we need 
to set its parameters. Particularly we need to fix 
the length of the tabu list as well as the 
threshold for the diversification criterion. 

The length of the tabu list is a parameter and 
corresponds to the number of iterations during 
which a specific neighbourhood movement is 
not allowed. Many authors claim that the tabu 
list size should be fixed in 7, but there is not a 
logical explanation to do that. More recently, 
authors take values based on either the size of 
the problem or using a dynamic short-term 
memory size. Either way, the length of Tabu 
list is an important parameter whose influence 
must be analysed. Our experiments showed that 
with a constant short term memory size of 7 we 
obtained the best results for most of the 
instances, which is consistent with [12, 25], 
among others. Figure 1 depicts the results for 
different instances of the problem using 
different values for the length of the Tabu list.   

Analysed instances vary in the number of 
commodities to consider: 10, 50 and 100. We 
perform a total of 30 runs of the algorithm for 

 
Figure 1. Objective function values (in average) obtained when different tabu list sizes (between 1 and 10) 

are applied over instances with 10 commodities. 
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each class of instances. Number seven was 
consistently one of the best values for all of the 
analysed instances. Despite it was not the best 
one for some of the instances, we decided to 
use this value as it makes the algorithm 
performs faster and it requires less objective 
function evaluations. Figure 1 shows that the 
best average value is obtained when the tabu 
list size is seven. Other values have been used, 
but they had a poor performance. Figure 2 
shows the best average value obtained when the 
size of tabu list is 45. However, we can see 
how the objective function value obtained by 
number seven still is quite competitive. In 
terms of CPU time, the algorithm performance 
using number seven is about five times faster 
than when 45 is considered as the size of the 
tabu list. 

Finally, Figure 3 confirms the trend of the 
previous two figures, i.e. number seven is 
among the best w.r.t. it average objective 
function value and it is the faster one. 

Making use of these concepts we test two types 
of diversification strategies which are explained 
below: 

 Radical Diversification (radDiv): The 
algorithm is completely initialised. Only 
the best solution found so far (𝑠𝑏𝑒𝑠𝑡 ) is 
considered in the new cycle. 

 Random Diversification (randDiv): The 
algorithm is partially initialised. Only a fix 
number of paths from the current solution 
are modified. 

We perform some tests on a subset of instances 
using these two criteria of diversification and 

 
Figure 2. Objective function values (in average) obtained when different tabu list sizes (between 1 and 10) 

are applied over instances with 50 commodities.  

 
Figure 3. Objective function values (in average) obtained when different tabu list sizes (between 1 and 10) 

are applied over instances with 50 commodities. 
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the results of those tests are presented below in 
Table 1. 
Table 1. Comparison of two different strategies of 

diversification. Tests were applied on a set of 
instances with 30 Nodes. 

Instance randDiv radDiv 

p3010fl1  80,303 80,530 

p3010ft1  164,994 165,124 

p3010vl1  28,273  28,282 

p3010vt1  51,789  51,967 

p3050fl1  620,900  626,609 

p3050ft1  716,467  709,002 

p3050vl1  195,756  195,328 

p3050vt1  213,410  214,659 

p30100fl1  2,259,040  2,224,325 

p30100ft1  2,380,726  2,418,749 

p30100vl1  686,501  681,571 

p30100vt1  693,245  701,388 

As Table 1 shows, the best results are 
consistently obtained when randDiv operator is 
applied exchanging a number of paths 
randomly. The number of routes exchanged 
that had the best performance was two. Then, 
we need to determine after how many iterations 
without improvement the diversification 
strategy must be applied. To do that we 
perform several tests over an instance of 30 
nodes and 10 commodities. The idea is to 
determine, in average, how many iterations the 
algorithm needs to find a solution better than 
the current one. We perform these experiments 
without any diversification criterion. Results 
shows that, in general, the number of iterations 
required to find a new solution better than the 
current one are quite similar among the tested 
instances. The average value was 790 which 
means that, in average, the algorithm needs 
around that number of iterations (maximum) to 
find a new solution better than the current one. 
Thus, the threshold to invoke the diversification 
criterion must be larger than this value. 
However it must not be much larger as we 
should take into account that the larger the 

value the longer the algorithm will take 
searching around a (possibly) local optimal 
solution, a non-desirable behaviour for a local 
search algorithm. Finally, the algorithm stops 
once the maximum number of iterations is reached. 
Algorithm 1 shows a general framework for the 
implementation of a TS algorithm. 

 
Parameters for our algorithm are demand 
vectors per node (𝑑𝑖), transport cost vectors per 
edge (𝑐𝑗

𝑖), set-up cost vectors per edge (𝑓𝑗
𝑖) and 

total capacity vectors per edge (𝑣𝑖𝑗). 

Solution found by the heuristic corresponds to 
two vectors: 𝑥𝑖𝑗

𝑘  for all 𝑘 ∈ 𝐾, (𝑖, 𝑗)  ∈  𝐴  and 
𝑦𝑖𝑗 ∈  {0,1}  for all (𝑖, 𝑗)  ∈  𝐴 . Where 𝐾 
corresponds to the set of commodities to be 
transported. 

As indicated by the Algorithm 1 in row 3, it is 
necessary to generate an initial solution for the 
heuristic. The following explains how the 

Algorithm 1: Algorithmic Frame for TS 

begin 

  𝑘 = 0 ;  Generate initialSolution 𝑠0; 

  𝑠𝑏𝑒𝑠𝑡  =  𝑠0; 

  While (𝑘 <  𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) do 

    𝑁𝑆𝑘 = getNeighbourhood (𝑠𝑘); 

    𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 =  𝑓𝑖𝑛𝑑𝐵𝑒𝑠𝑡(𝑁𝑆𝑘); 

    While(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡  𝑖𝑠 𝑇𝑎𝑏𝑢) do 

      If(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 < 𝑠𝑏𝑒𝑠𝑡) then 

        𝑎𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡);  

      end If 

    end while   

    If(𝑁𝑆𝑘
𝑏𝑒𝑠𝑡 < 𝑠𝑏𝑒𝑠𝑡) then 

      𝑠𝑏𝑒𝑠𝑡 = 𝑁𝑆𝑘
𝑏𝑒𝑠𝑡; 

      noImproveIter = 0; 

    else 

      noImproveIter++; 

    end if 

    𝑘 = 𝑘 + 1;    𝑠𝑘 = 𝑁𝑆𝑘
𝑏𝑒𝑠𝑡; 

    𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡); 

    𝑐ℎ𝑒𝑐𝑘 (𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛); 

  end while 

end 
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current solution is generated for the general 
solution presented in this paper. 

For each commodity, we need to build one or 
more paths. A path is defined as a set of edges 
which a commodity is transported through. 
Each path starts from a source node and ends in 
a destination node.  

Figure 4 shows all the feasible paths between 
node 𝑖 and node 𝑗. Please note that only dotted 
lines correspond to a path. 

Generally, capacity 𝑐𝑘 of a path is not enough 
to transport the full amount (𝐾) of commodities 
𝑘. Because of that, it is necessary to generate 
other paths to increase capacity 𝑐𝑘  of the 
network. This path generation should be done 
making sure to satisfy capacity constraints at 
the edges and the flow conservation constraints 
in the nodes, ensuring the feasibility of the 
initial solution. The initial node will be the 
source node of the flow for a commodity 𝑘. We 
then analyse the nodes adjacent to the source 
node. One of those adjacent nodes must be 
selected according to the probability function 
𝑓𝑝𝑟𝑜𝑏(𝑖) . This function calculates the 
probability of occurrence of node 𝑖 . This 
function makes use of the following criteria: 

- Available Capacity: The probability is 
directly proportional to the available 
capacity on the road tested 

- Cost: The probability is inversely 
proportional to the cost of evaluated path. 

- Cost / Capacity: The probability is indirectly 
proportional to the expression 
Cost/Capacity of the evaluated road. 

Table 2. Paths Assignment Results. 

Criterion  Objective Function Value 

Available 

Capacity  

693,047.182 

Cost  777,910.909 

Cost/Capacity 715,670.636 

Once implemented, tests were performed on a 
subset of instances. The results of these tests 
are presented in Table (2). As we can see, all 
the three criteria were tested. When the 
allocation of paths is made based on the 
available capacity, the average cost obtained 
was 693,047.182. When the criterion for 
allocation of paths corresponds to the cost, the 
best average result obtained is 777,910.909 cost 
units. Finally when the allocation is made using 
the Cost/Capacity criterion, the best average 
result obtained is 715,670.636 cost units. Thus, 
we found that the best performance was 
obtained when  the generation of paths was 
made using a criterion based on the available 
capacity of the network. Consequently, in this 
paper we consider this criterion for our 
selection function 𝑓𝑝𝑟𝑜𝑏 . In case that the 
destination node is within the set of adjacent 
(and feasible) nodes, the algorithm will select it 
independently of the probability to be assigned. 
If during construction of the initial solution a 
node (different from the destination node) does 
not have adjacent nodes (either due to the 
configuration of the network or due to capacity 
constraints) the process restarts. 

 
Figure 4. All possible flows from a source $i_m$ to a destination $j_m$ divided into paths. 

The paths of the same flow $(i_m, j_m)$ interact sharing edges and their capacities. 
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As stated before, the implementation of the TS 
algorithm done in this paper is a variant of the 
general TS framework, since rather than select 
the best candidate deterministically selection is 
based on an evolutionary strategy. In next 
section this variation is presented. 

3.2 Probabilistic neighbour selection criterion 
As mentioned above, TS-based algorithm 
moves across the neighbourhood using a 
predefined neighbourhood-movement. Such 
movement generates a set of non-Tabu 
neighbour solutions which could be chosen to 
perform the movement. However, a problem 
arises when trying to define the criteria for this 
choice. On the one hand we have a completely 
random strategy to choice among the 
neighbours. This strategy should increase the 
algorithm exploration level. On the other hand 
we have several strategies to make the 
algorithm tends to perform in the way we 
desire, increasing algorithm exploitation level 
in detriment of its exploration level. Pure TS 
algorithm always chooses the best non-Tabu 
search alternative, at least there exists a tabu 
alternative with an objective function value 
better than the best solution found so far 
(aspiration criterion). 

Unlike pure TS and other elitist strategies, in 
this article we propose a probabilistic 
neighbours selection criterion (PNSC) inspired 
in selection criteria used by evolutionary 
algorithms, particularly by genetic algorithms 
(GA). PNSC firstly increases the number of 
candidates by mean of the well-known 
evolutionary operators namely cross-over and 
mutation. New candidates are generated 
starting from the original neighbourhood. 
After the entire set of candidates is generated 
we need to select one of these candidates as 
the new current solution. The selection 
criterion is the well-known roulette wheel. 
The roulette wheel assigns a proportion of the 
wheel to each candidate according to their 
objective-function value. Then a random 
selection is made similar to how the roulette 
wheel is rotated. Naturally, good candidate 
solutions will be less likely to be eliminated 
[16]. This way PNSC increases the 
exploration level of our hybrid algorithm. 
However, if any candidate improves the best 
objective function found so far by the 
algorithm, that candidate will have selection 
probability equal to 1 (aspiration criterion). 
This is done, firstly, to keep those very good 

candidate solutions and, secondly, to balance 
the relation between exploration and 
exploitation of the algorithm. 

4.  Experiments and  
Computational Results 

The hybrid TS-GA heuristic presented in this 
paper was implemented in Java, on a Ubuntu 
12.04 operative system. The tests were 
performed on a computer with an Intel i5 
processor and 4 GB of RAM. In next section, 
the used benchmark is presented. After that, the 
results obtained by the TS-GA heuristic and 
compares them with results obtained in [2]    
are presented. 

4.1 Benchmark 
In [2], the author design a random instance 
generator in order to generate instances 
classified according to the following: 

- Class I: High Fixed Costs, Loosely 
Capacitated Networks 

- Class II: High Fixed Costs, Tightly 
Capacitated Networks 

- Class III: High Variable Costs, Loosely 
Capacitated Networks 

- Class IV: High Variable Costs, Tightly 
Capacitated Networks 

The instances generator is the same used in [2]. 
It creates a text file (ASCII) with different 
records that will contain the information and 
characteristics of each instance of the network. 
The name of the file is defined according to the 
characteristics that the network it represents 
(number of nodes, number of products, type of 
network and type of costs). The generated file 
is then used as input for our TS-GA heuristic, 
which will read the file and store the data in the 
classes that represent the system. The instances 
generator has an additional option that allows 
us to obtain networks with different capacities 
and fixed costs weights. We used this option to 
obtain, from a given network instance, some 
additional instances with the same number of 
products and variable costs but with different 
characteristics of capacity and fixed costs. 

4.2 Results 
The algorithm was tested in a set of instances 
presented in [2, 6]. We present in Tables 3 to 5 
obtained results for each instance type. In each 
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Table the instance name (Instance column), cost 
obtained by our TS-GA algorithm (TS-PNSC 
column), cost obtained by the Scatter Search 
algorithm in [2] (SS column) and the difference 
between them (Δ column) is presented. 

Table 3 shows the results for the instances 
consisting of 30 customers and 10 commodities. 
On average, the savings for these instances 
reached 1.54% with a peak of 6.58% (p3010ft4 
instance, class II). Moreover, the lowest 
performance is obtained for instance p3010vt5 
with increased costs of 1.83%. 

Table 3. Results for instances with 30 Nodes 
and 10 commodities. 

Instance  TS-PNSC  SS  Δ 

p3010fl1  80,303 80,742 -0,54% 

p3010fl2  68,114 71,288 -4,45% 

p3010fl3  111,136 112,483 -1,20% 

p3010fl4  86,466 88,035 -1,78% 

p3010fl5  70,976 71,792 -1,14% 

p3010ft1  160,950 167,019 -3,63% 

p3010ft2  146,564 149,824 -2,18% 

p3010ft3  198,960 207,554 -4,14% 

p3010ft4  150,400 160,999 -6,58% 

p3010ft5  143,150 149,995 -4,56% 

p3010vl1  28,167 28,281 -0,40% 

p3010vl2  22,965 23,589 -2,65% 

p3010vl3  37,691 37,601 0,24% 

p3010vl4  29,029 29,154 -0,43% 

p3010vl5  24,267 23,997 1,13% 

p3010vt1  50,113 50,061 0,10% 

p3010vt2  44,471 44,361 0,25% 

p3010vt3  62,665 62,272 0,63% 

p3010vt4  48,153 48,812 -1,35% 

p3010vt5  44,610 43,807 1,83% 

Similarly, Table 4 shows the results obtained 
for instances of 30 customers and 50 
commodities. Our algorithm presents a better 
performance than the Scatter Search algorithm 
from [2] for the majority of the instances. 
However, in average this difference 
corresponds to 0.69% only, with a peak of 
5.5% (p3050fl4 instance, class I). Moreover, 
the average of those instances where there is no 
saving is 0.83%. 

Table 4. Results for instances with 30 Nodes 
and 50 commodities. 

Instance TS-PNSC SS Δ 

p3050fl1  600,826  594,872  1,00% 

p3050fl2  658,782  664,774  -0,90% 

p3050fl3  870,069  862,578  0,87% 

p3050fl4  712,844  754,294  -5,50% 

p3050fl5  713,464  697,016  2,36% 

p3050ft1  691,217  715,559  -3,40% 

p3050ft2  725,156  732,436  -0,99% 

p3050ft3  978,242  971,473  0,70% 

p3050ft4  827,636  845,984  -2,17% 

p3050ft5  817,905  816,569  0,16% 

p3050vl1  186,979  191,260  -2,24% 

p3050vl2  214,047  213,792  0,12% 

p3050vl3  270,508  269,559  0,35% 

p3050vl4  235,758  240,052  -1,79% 

p3050vl5  220,967  224,295  -1,48% 

p3050vt1  209,752  207,560  1,06% 

p3050vt2  232,811  233,405  -0,25% 

p3050vt3  294,363  295,885  -0,51% 

p3050vt4  254,949  255,879  -0,36% 

p3050vt5  245,178  247,309  -0,86% 
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Table 5 shows a very similar behaviour 
between both algorithms, being our algorithm 
slightly better on average (0.13%). The best 
performance of our TS-GA algorithm is 
obtained at the instance p30100vl1 class III 
(5.6%). Unlike the results shown in Tables 3 
and 4, in this case we have a significant 
increment in the average cost of those instances 
where there is no saving. This increment is 
2.45% on average, with a peak of 5.09% 
(p30100fl3 instance, class I) 

Table 5. Results for instances with 30 Nodes 
and 100 commodities. 

Instance TS-PNSC SS Δ 

p30100fl1  1,836,807  1,777,644  3,33% 

p30100fl2  2,134,616  2,063,516  3,45% 

p30100fl3  1,812,369  1,724,508  5,09% 

p30100fl4  2,183,939  2,160,174  1,10% 

p30100fl5  1,681,758  1,711,917 -1,76% 

p30100ft1  2,019,340  2,073,628  -2,62% 

p30100ft2  2,307,337  2,361,424  -2,29% 

p30100ft3  1,902,447  2,010,868  -5,39% 

p30100ft4  2,378,418  2,443,325  -2,66% 

p30100ft5  1,883,920  1,875,002  0,48% 

p30100vl1  577,123  611,379  -5,60% 

p30100vl2  699,374  700,556  -0,17% 

p30100vl3  577,334  572,004  0,93% 

p30100vl4  710,446  726,896  -2,26% 

p30100vl5  594,903  575,406  3,39% 

p30100vt1  608,137  627,080  -3,02% 

p30100vt2  715,723  708,939  0,96% 

p30100vt3  573,291  581,496  -1,41% 

p30100vt4  736,563  709,097  3,87% 

p30100vt5  603,449  592,142  1,91% 

Tables 6 to 8 show an analysis of the results 
grouped by class, cost, type of network and 
number of commodities, respectively. Our 
algorithm presents, on average, better results 
than the Scatter Search in [2] in almost all 
classes (I to III) with the only exception of 
class IV. 

Table 6. Comparison of instances grouped by class. 

Class TS-PNSC SS Δ 

I  2,977,749.60  2,687,126.60  0.00% 

II  3,285,099.00  3,136,331.80  -2.62% 

III  902,116.00  893,564.20  -0.72% 

IV  959,674.80  941,621.00  0.19% 

Table 7. Comparison of instances grouped by Cost. 

Cost  TS-PNSC SS Δ 

Fix  3,131,424.30  2,911,729.20  -1.31% 

Var.  930,895.40  917,592.60  -0.27% 

Based on the results presented above, it is 
possible to state that our algorithm shows a 
satisfactory performance for most of the instances. 

Table 8. Comparison of instances grouped by type 
of network (Loosely and Tightly Capacitated). 

Network  TS-PNSC SS Δ 

LC  1,926,666.10  1,790,345.40  -0.36%  

TC  2,109,424.40  2,038,976.40  -1,21% 

However, it can be noted that as the problem 
increases in size or complexity the performance 
of our algorithm tends to fall. Because of that, 
new strategies must be implemented to improve 
the performance of the algorithm in these more 
complex (bigger) instances. New strategies to 
select the best candidate solution as well as 
adding dynamic selection strategies could be an 
option to improve the algorithm performance.  
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Table 9 shows a summary of the results sorted 
by the number of commodities. 

Table 9. Comparison of instances grouped by 
number of commodities (#p). 

#p TS-PNSC SS Δ 

10  80,644.10  82,583.30  -2,57% 

50  498,072.65  501,727.55  -0,73% 

100  1,326,881.30  1,330,350.05  -0,26% 

From these results, some important remarks 
can be given: The algorithm performs better in 
those instances with predominant fixed costs, 
as seen in Tables 6 and 7. This is because of 
the strategy used in the generation of paths, 
which is preferentially guided to the 
destination node as long as this is in the list of 
candidate nodes. Our TS-GA algorithm 
performs better when applied to networks with 
restricted capacity. This may be due to another 
criterion used in the generation of paths: 
preference is given to those paths with greater 
available capacity. While this strategy aims to 
create a smaller number of paths-per-flow, 
might not be taking into account the creation 
of a greater number of new edges, which 
would translate into higher fixed costs. 

Table 9 shows that for the instances of 10 and 
50 commodities a non-negligible improvement 
exists compared to the benchmark. Finally, for 
instances with 100 commodities it can be seen 
a small deterioration in performance in relation 
to total costs obtained, which can be attributed 
to two situations: The method used to diversify 
is not the best one we can use and, therefore, 
we should look for strategies that increase the 
solution space and therefore increase the ability 
of our TS-GA algorithm of finding a solution 
better than the one obtained by the Scatter 
Search algorithm. Also it might be that the 
neighbourhood definition or movement 
definition is not the adequate for this problem. 

5. Conclusions and Future Work 

In this paper we have presented a hybrid 
algorithm of TS and GA. While TS guides 
the search, GA balances the relation between 
exploration and exploitation levels of the 
algorithm by means of evolutionary operators, 
such as cross-over and mutation, used during 

the selection process. We described in detail 
how we made decisions about parameter 
values of the algorithm as well as the 
different criteria used by our algorithm. The 
parameters in a meta-heuristic are a key 
factor in its performance. In the early stages 
of the implementation up to 300% difference 
were obtained in results compared to the best 
solution due to poor parameters calibration in 
the tabu list size and diversification threshold. 
Obtained results shown that our algorithm is 
able to find very competitive solutions 
especially for small instances or with non-
too-hard restrictions. However, it is 
necessary to try different strategies within the 
algorithm to keep the good performance 
obtained for small instances on those large 
instances with hard restrictions. 

Finally, the implementation of a number of 
strategies remains as future work. Among them, 
new probabilistic selection criteria, new 
neighbourhood definitions as well as the 
implementation of other path generation 
strategies could lead to improve results 
obtained by our hybrid algorithm. 
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