
1. Introduction 
In 1993, Rockafellar did affirm that “the great
watershed  in  optimization  is  not  between
linearity  and  nonlinearity,  but  convexity  and
non-convexity” [1]. The main objective of this
work is to apply this sentence in the context of
the  convex  optimization  and  non-convex
optimization field [2]. 

The  optimization  provides  a  rich  algorithmic
framework for all areas of applied sciences. There
are two branches of deterministic optimization:
convex  programming  and  non-convex
programming. A convex optimization problem is
defined by the minimization of a convex function
(objective) within convex constraints. When the
double  convexity,  in  the  objective  and  the
constraints, is not satisfied the problem falls into
non-convex optimization field.

In this  paper  is  presented a  new approach to
solve the problem of quadratic stabilizability of
uncertain linear systems. The proposed idea is
to split the problem in two parts: a convex part,
involving a large number of decision variables
that  requires  solving  an  Algebraic  Riccati
Equation (ARE) [6],[7], and a non-convex part,
involving a small number of decision variables,
which  solution  is  estimated  using  a  Genetic
Algorithm (GA)  [8]-[10].  Genetic  algorithms
[8] are an optimization technique developed in
1975 by J. Holland that have been inspired by
Charles  Darwin's  theory  of  biological
population`s evolution. Genetic algorithms are
based  on  the  principle  of  the  survival  of  the
fittest,  which  means  that  the  best  suited

structures and the closest to the desired result,
using  genetic  operators  such  as  selection,
crossover  and  mutation.  The  fitness  of  a
particular individual is measured using a fitness
function,  which  evaluates  how  close  the
individual is to the objective [9]-[12].

When using a quadratic Lyapunov function, it
is  possible to  synthesize a control  law which
takes into account the variations of uncertainty
that guarantee the quadratic stability of a closed
loop system [13]-[15].

The  approaches  are  applied  to  determine
adequate  control  laws  for  an  uncertain
Permanent  Magnet  Synchronous  Motor
(PMSM).  Controlled  PMSM  performances
depend  on  the  applied  control  law,  the
parameters  uncertainties  and  the  existence  of
position and speed sensors.

The objective is to improve the performance of
mechanical  sensorless  vector  control  of
Permanent  Magnet  Synchronous  Machine
(PMSM) [3]. This control law requires accurate
knowledge of rotor  position that  provides  the
autopilot  of  the  machine,  which  can  be
obtained  directly  by  a  position  sensor  or
indirectly by a speed sensor.

The inherent  advantages related to the use of
mechanical sensors, placed on the shaft of the
machine, are multiple [4], [5]. 

Considering all these limitations that presents the
machine  with  a  mechanical  sensor,  numerous
studies have been made to remove the mechanical
sensor while maintaining the proper functioning
of the machine [3], [5]. These studies have shown
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different methods of sensorless vector control. To
estimate  the  position  and  the  speed  of  the
machine,  a  mathematical  model  should  be
represented based on the electrical parameters as
currents  and  voltages.  One  of  the  method  for
estimation  is  the  Kalman  filter  adapted  for  a
robust control in order to get maximum variables
for  observation.  The  Kalman  filter  algorithm
deploys the parameters of the machine in order to
get a minimization error on the state estimation.
Moreover, such a method is well known for the
easy  implementation  especially  with  the
permanent magnet synchronous machine. In this
paper,  the  measured  currents  and  voltages  are
transformed in the Clark referential and the speed
and the position are estimated by the use of the
Kalman filter algorithm.

When  the  parameters  of  the  PMSM  are
uncertain,  [3],  [29]  and  the  state  variables
estimated  by  EKF  [4],  a  robust  feedback
control  law  [29]  is  well  adapted  and  good
performances can be obtained by using a ARE-
GA approach.

The organisation of the paper is as follows. The
quadratic  stabilizability problem of an uncertain
linear system is given in the second section. Then,
in the third section, the application of the convex
optimization approach using Riccati solvers (ARE)
is presented.

The  ARE solvers  and  the  genetic  algorithms
(GA), introduced in section 4, are used to solve
the  problem  split into  a  convex  and  a  non
convex subproblem and to optimize the P and ε
parameters of the Riccati matrix Equation.

The studied servo-motor model diagram and its
Park  model  are  given  in  section  5,  then,  the
extended Kalman filter algorithm is introduced
to estimate the position and the speed from the
stator phase currents and voltage in Section 6
then  7.  The  approaches  are  applied,  with
success, to determine adequate control laws for
the  parameters  uncertainties  of  PMSM,  in
Section 8.

2.  Quadratic  Stabilization  of

Uncertain  Systems.  Problem

Statement

Consider the following linear system, described
in state space by 

{x (t )= Ax (t )+Bu ( t )
y (t )=Cx (t )

(1)

x (t )∈ R
n is  the  state  vector,  u ( t )∈ R

n is  the
control  vector,  A ∈ R

m × n and  B ∈ R
m ×n

constant  matrices,  such  that  (A,  B)  is  a
controllable pair and B has full column rank.

The  state  feedback  control  law  has  the
following general form

u ( t )=Kx (t ) (2)

the closed-loop system can be described by

x́ (t )=( A+BK ) x (t) (3)

The design of this control law, minimizing the
following cost function J [16]

J =∫
0

∞

( xT
Qx+u

T
Ru ) dt (4)

where  Q ≥ 0  and  R>0  are, respectively, the
state  and the input  weighting matrices  of  the
criterion  J ,  needs  the  resolution  of  an
Algebraic Ricatti Equation (ARE) in the form

A
T

P+ PA−PBR
−1

B
T

P+Q=0 (5)

It comes the solution P of equation (5) and the
control gain K such that

K=R
−1

B
t
P (6)

For computing the gain K, the matrices Q and
R should be introduced. Once we formulate the
closed  loop  characteristic  matrix,  the
eigenvalues  and eigenvectors  will  be  used  as
the new performances of the system.

In  the  case  where  the  uncertainty is  in  norm
bounded type, the system (1) can be described
by [5], [17]

x́ (t )= ( A+ ΔA) x ( t )+Bu ( t ) (7)

where  ΔA  represents  the  uncertainty  of  the
studied system such that

ΔA=DFE (8)

D  and E  are constant matrices of appropriate
sizes and F  a matrix satisfying the following
matrix inequality:

F
T

F ≤ 1 (9)

The  stability  of  the  resulting  closed-loop
uncertain system (7) is then established by the
use of a quadratic Lyapunov function.

2.1 Definition

The uncertain linear  system (7)  is  said  to  be
quadratically stabilizable, if there exists a linear
feedback  control  law  (2),  a  positive  semi-
definite  symmetric  matrix  P∊ R

n ×n  and  a
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constant  parameter  α>0  such  that  the
following  condition  holds:  Given  any
admissible  uncertainly  F,  the  Lyapunov
function V (x )= x

T
Px  is such that [17]

V́=x
T [ AT

P+PA] x+2 x
T

PDFEx≤−α‖ x‖
2 (10)

The  synthesis  of  such  control  law  algorithm,
needing  the  resolution  of  an  algebraic  Riccati
equation, is proposed in [17] where is introduced
a  necessary  and  sufficient  condition  for
quadratic stabilizability by linear state feedback.

2.2 Theorem

The uncertain linear  system (7)  is  said  to  be
quadratically stabilizable, if there exists a linear
feedback control  law (2),  a  constant  ε  such
that, for any positive-definite symmetric matrix
R , the Riccati equation

A
T

P+ PA−PBR
−1

B
T

P+
+εPDD

T
P+ε

−1
E

T
E+Q=0

(11)

or the inequalities

A
T

P+ PA−PBR
−1

B
T

P+
+εPDD

T
P+ε

−1
E

T
E<0

(12)

have a positive semi-definite symmetric matrix
solution P∊ R

n×n , expressed by (6).

For  fixed  parameter  ε ,  the  resolution  of
equation (11) corresponds to a convex problem
which becomes non-convex, for free ε .

2.3 Problem formulation

Find the  parameters  P  and  ε ,  solutions  of
equation (11) minimizing the criterion (4).  A,
B,  Q and  R are  respectively real  matrices  of
dimensions n x n,n x m,  n x n and m x m,  Q a
symmetric positive semi-definite matrix and  R
a symmetric positive definite matrix.

3.  Convex  Optimization  Problem

Resolution Algorithm

Many problems  of  uncertain  systems  can  be
solved  through  convex  optimization  tools.  In
this  case,  the  computation  time  to  find  a
solution is reasonable; the result corresponds to
a global minimum of the criterion [18], [32].

Let a function f : E ⊂ ℜn→ℜ  
such that E is a

convex set, Figure 1.

f ( λx1+(1−λ ) x 2) ≤ λf ( x1)+(1−λ) f ( x2 ) (13)

∀ λ∈[0,1 ]⊂ ℜ , ∀ (x1 , x 2)∈E
2  and  λ  a

constant parameter.

Figure 1. Convex function

3.1 Proposed algorithm

The stabilization approach by the control law of
the process (7), defined by (2), required for the
resolution of the Riccati equation (11), follows
the following steps

1. choose  the  weighting  matrices  Q and  R
such that R = Q = I and take ,

2. solve the equation (11); if the solution, the
system is  quadratically  stabilizable;  then,
calculate K. Otherwise, go to 3.,

3. replace  by  ;  if  ,  stop;  the  system is  not
quadratically stabilizable. Otherwise, return
to 2..

This  algorithm is  used,  in  section  8,  for  the
parameters uncertainties of PMSM.

4.  Non-Convex  Optimization

Problem Resolution Algorithm

Consider  the  problem  of  finding  a  positive
semi-definite solutions to the Riccati equation
(11)  which  appears  often  in  a  wide  range  of
control applications.

In  the  case  of  an  n
th -order  system,  the

parameters to determine are  ε >0  and  P>0 ,
P={ p

ij
} , such that p

ij
= p

ji
∀ i , j .

The optimization problem to solve becomes the
following one.

minimize ε  
subject to:

A
T

P+PA−PBR
−1

B
T

P+εPDD
T

P+ε
−1

E
T

E<0

P>0

For  any  fixed  value  ε=ε0 ,  the  problem  is
convex and can be solved via Riccati  solvers
and  the  solution  P,  which  depends  on
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N=1/2(n+1)n  decision  parameters  pij,  

∀ i , j , determined.

Then,  for  non fixed  ε ,  the  problem is  non-
convex  and  cannot  be  solved  using  standard
solvers. This observation motivates the idea to
split  the  original  problem  into  a  small  non-
convex part solved by Genetic Algorithm (GA)
and a large convex part solved with a Riccati
solver, as shown in Figure 1. Then, to do this,
we propose [7] to

- let a fast and efficient Riccati solver takes
care  of  the  large  convex  part  of  the
problem:  for  a  given  find  the  unique
solution P (if it exists), and

- let GA, which may be unreliable for a large
number  of  decision parameters,  deal  with
the  smaller  non-convex  part  and  search
over  (which  usually  depends  on  the
controller and other parameters)

Thus, GA is used to construct the constant  ε

and a Riccati solver applied to calculate P (if it
exists). The full chromosomes are constructed
by  adjoining  the  decision  parameters  in  and
P.If a standard GA is used alone to solve the
original  problem,  the  GA chromosomes  must
code  both  ε  and  P,  and  if  P is  large,  the
chromosome, consequently, will be too long for
an efficient and reliable solution.

Reducing the dimension of the solution space
for the GA which doesn’t only accelerate the
evolution  process,  but  also  increases  the
chances of converging to the global solution of
the problem. The overall algorithm is given in
Figure  2.  Once  the  full  chromosomes  are
constructed and the fitness evaluated.

It  is  applied,  in  the  next  section,  to  the
uncertain  PMSM  study  and  its  efficiency
compared to ARE approach.
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5.  Studied  Synchronous  Machine

with Permanent Magnets Case

Let  us  consider  the salient-pole  PMSM drive
system, given in Figure 3. 

Figure 3. Servo-motor analytical model diagram

It shows:

- the orthogonal two-phases (α and β) frame
fixed to the stator windings,

- the  (d  and  q)  frame  showing  the
synchronously rotating reference frame,

- the  d-axis  coincides  with  the  N  poles  of
the  rotor,  q  representing  the  rotor
angular position.

The dynamic model of the PMSM is developed
according to some simplifying hypotheses [3],
[4].  Thus,  saturation  and  iron  losses  are  not
considered. The back emf  is assumed to have a
sine form,  while  eddy currents  are  neglected.
Permanent magnets are buried in the rotor steel;
so,  the  machine  is  characterized  by  a
cylindrical  asymmetry causing the direct axes
inductance L

d  to be lower than the quadrature
one L

q .

The  dynamic  d-q model  for  a  salient-pole
PMSM, in the rotor reference frame, is given
as follows

[V d

V q
]=[R+L

d
s −L

q
ω

Ld ω R+ Lq s ][ l
d

l q
]+[ 0

K t ω ] (14)

s is the Laplace operator.

The  following  relation  limits  both  marks  γ-δ
and d-q

[x
λ

x δ
][cos Δθ −sin Δθ

sin Δθ cos Δθ ][x
d

xq
] (15)

where  x represents  either  the  current,  the
voltage or the flux.

The  stator  flux  equations  of  the  synchronous
machine with magnets in the d-q axes, linked to
the rotor, are written such as

Φ
d
=L

d
i

d
+ K

t

Φ
d
=L

q
i

q

(16)

with

K t=√3
2

Φ f
,  Ld= I s+

3
2

( L0−L2) ,  ω=
dθ

dt
,

Ld= I s+
3
2

( L0+ L2) . 

and

L
d :  synchronous  cyclic  inductance  of

direct axis,

L
q : cyclic inductance of the transversal axis,

Φ̂ f : inductor flux created by the magnets,

l
s : leak inductance,

L0 : constant term of the proper inductance of
the induced  winding,

L2 : amplitude of the harmonious term order 2
of the proper inductance of the induced.

The electromagnetic torque is defined by

C
e
=n

p (Φd
i

q
−Φ

q
i

d ) (17)

then, by substituting (16) in (17), by 

C
e
=n

p [ ( Ld
−L

q )id
i

q
+ K

t
i

q]
n

p  is  the  pole  pair  number  of  the  studied
machine.

The  mechanical  equation  is  given  by  the
following differential equation

J
dΩ

dt
+ fΩ=C e−C r (18)

with

f: moment of inertia of the rotating part,

J: coefficient of viscous friction,

C
r : load torque.

For  i
d  equal  to  zero,  the  electromechanical

torque  C
e  becomes proportional to the stator

current component i
q , such as

C
e
=n

p
K

t
i

q (19)

This  is  relation  is  similar  for  a  machine
with  a  continuous  current.  Then,  PMSM
can  be  described  by  the  following
Park model.
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[
did

dt

diq

dt

dω

dt

dθ

dt

]=[
−1
τ d

−Ld

Lq

ω 0 0

−Ld

Lq

ω
−1
τ d

−K e

Lq

0

n
p

2 Ld−Lq

J
n

p

2 K t

J

− f

J
0

0 0 1 0
] [id

iq

ω

θ
]+

+[
−1
L

0 0

0
1
Ld

0

0 0 −
n p

J

0 0 0
][ vd

vq

C r
]

(20)

where τ d=
L

d

R
  and τ d=

L
q

R
 are, respectively,

the  time  constants  of  direct  axis  and  in
squaring,  and  v

q  the  control  inputs,  C
r  a

disturbance input and K
t  a emf constant.

6. Extended Kalman Filter Algorithm

The Kalman filter is a mathematical tool able to
estimate  the  non  measurable  state  variables
from measurable physics parameters [3], [4].

This  filter  supposes  that  the  noises,  which
affect  the model,  are centered and white, and
the state noises have to be uncorrelative with
the measure noises.

Consider  the  following  stochastic  non  linear
model

{x (k +1)= f ( x (k ) ,U (k) )+w( k)

z (k )=h ( x (k ) )+v(k )
(21)

with x(k);  U(k);  z(k):  state  /  control  /  output
vectors, f(.); h(.): nonlinear vectors, w(k): state
noise vector, v(k): measure noise vector.

The procedure is split in a prediction step and a
correction step of the considered x estimation.

6.1 Prediction step

Estimation under the prediction form

x̂ ((k +1)/k )=F ( k ) x̂ ( k

k )+G (k )U (k ) (22)

with

F ( k )=
∂

∂ x
{ f ( x (k ) ) ,U ( k ) , k }|̂x (k ) ,U (k ) (23)

G (k )=
∂

∂ U
{ f ( x (k ) ) ,U ( k ) , k }|̂x (k ) ,U (k ) (24)

and  F:  partial  derivative  system  matrix,  G:
weighting matrix of noise.

At the instant k + 1 this step allows to build a
first estimation of the state vector.

Covariant  matrix  of  the  prediction
error determination

P (( k+1)/ k )=F (k ) P ( k

k )F
T (k )+Q (25)

with  P:  state  covariance  matrix,  Q:  system
noise covariance matrix.

6.2 Correction step

The phase  of  prediction  allows  having a  gap
between the predicted output and the measured
output  z(k+1).  We have to  minimize that  gap
and correct  it  by the use of the filter  gain to
improve the state.

Kalman filter gain is characterized by

K (k +1)=P (( k+1)/k ) H T (k+1)×

×( H (k )P ((k +1)/k ) H
T
(k)+ R )

−1 (26)

with

H (k)=
∂ h ( x(k ))

∂ x(k)
∣x(k )− ẋ (k) (27)

R:  measurement  noise  covariance  matrix.
The covariant matrix defined by

P ((k +1)/(k+1))=P (( k+1)/k )−
−K (k +1)×H (k +1) P ((k +1)/k )

(28)

and the state vector at the instant k + 1 by

x̂ ((k +1)/(k +1))= x̂ (( k+1)/k )+K (k +1)×

×(Z (k +1)−H (k +1) x̂ ((k +1)/k ) )
(29)

For the simulation, The extended Kalman filter
algorithm is  inserted  in  the  global  simulation
system diagram implanted as an ”S-function”.

7. Sensorless Control with EKF

The proposed PMSM controller is based on the
use of the stator phase currents and voltages to
estimate the position and the speed by EKF [4].

Let the studied machine described in the Clark
referential (α, β) by the following equations
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[v α

v β
]=[t 11 t12

t 21 t22
][iα

i β
]+[ f 11 f 12

f 21 f 22
][di

α
/dt

t

di β /dtt
]+

+[−ω K
t
sin θ

ω K
t
sin θ ]

(30)

with

t11=R1−ωL
ε
sin 2θ ,

t12=ω L
ε
cos2θ ,

t21=ω L
ε
cos2θ ,

t22=R1+ωL
ε
sin 2θ ,

f 11=
L

ε

2
+

L
Δ

2
cos 2θ ,

f 12=
L

Δ

2
sin2θ ,

f 21=
L

Δ

2
sin2θ ,

f 22=
L

ε

2
−

L
Δ

2
cos 2θ ,

L
ε
=L

d
+ L

q ,

L
Δ
=L

d
−L

q .

The  electromagnetic  torque  in  the  stationary
referential (α, β) can be expressed by the relation

C e=n p{K
t [ i p

cosθ−i
α
sin θ ]

+1
2

LD [ (i β
2−i β

2 )sin 2θ+2 iα iα cos2θ ] (31)

For  the referential  (α,  β)  linked to  stator, the
description of the PMSM (18) becomes

dy

dt
=Ay+ Bv (32)

with,

y=[ iα , i β ,ω ,θ ]T ,  v=[ vα , v β ,C r ]T , A an 4×4

matrix, A={a
ij
}  and B an 4×3 matrix, B={b

ij
} ,

such that

a11=
−R

2 Lπ

( L Σ−L∆ cos 2θ )+
ω L

Σ

2 Lo

LΔ sin 2θ ,

a12=
−ω L

∆

2 Lo

( L∆−LΣ cos 2θ )+
R

2 Lo

LΔ sin2θ ,

a21=
−ω L

∆

2 Lo

( L∆+LΣ cos 2θ )+
R

2 Lo

LΔ sin 2θ ,

a22=
−R

2 Lo

( L Σ−L∆ cos 2θ )−
ω L

Σ

2 Lo

L Δsin 2θ ,

a32=
−n0

2

J [K t sin θ+
L

∆

2
(i0 sin 2θ+2 i0 cos2θ )] ,

a31=
−n0

2

J (K t sin θ+
L

∆

2
i0 sin 2θ ) ,

b33=
−n0

2

J
,

b11=
−1
2 Lo

( L Σ−L∆ cos 2θ ) ,

b12=
−L

Σ

2 Lo

sin 2θ ,

b21=
−L

∆

2 Lo

sin 2θ ,

b22=
1

2 Lo

( LΣ+ L∆ cos2θ ) ,

a13=
K

t

L0

sin θ , ,

a23=
K

t

L0

sin θ , ,

a33=
− f

J

and

a14=a24=a 34=a41=a42=a 44=b13=
b23=b31=b32=b41=b42=b43=0

The currents  and  the  voltages  are  considered
the inputs for the extended Kalman filter where
as  the  position  represents  the  output.  In  the
Figure 4, a global representation of the vector
control for the PMSM is given.

Figure 4. PMSM sensorless vector control

Different  simulations,  for  several  values
of  θ,  are  developed  in  order  to  evaluate
the EKF performances.
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The real (rp), the estimated (ep) positions and
their error (e) for θ= 0° is given in Figure 5; the
errors of the position for θ=60° and θ=90° are
presented  respectively  in  Figure  6
and Figure 7. 

They  show  that  the  errors  between  real  and
estimated  position  decrease  with  the  rotor
position. The best result is obtained for θ=0°.

Figure 5. Evolutions of real (rp) and estimated (ep)
positions and e=rp-ep for a zero initial condition

obtained with the FKE

Figure 6. Position error (e) for the initial condition
θ=60°

Figure 7. Position error (e) for the initial condition
θ=90°

8. Simulation Results

The problem is to determine a feedback gain
K stabilizing the system for uncertain Rs, stator
resistance ±50% Rs, and  Jm, moment of inertia
±50% Jm, so that 

A=[
−25.8 Rs 60.6 0 0

43.7 −131.5 Rs −13.8 0

0 2.61/ J
m

−8.63410−4/ J
m

0
0 0 1 0

]

B=103 [
0.1828 0 0

0 0.1319 0
0
0

0
0

−5 /J m

0
]

To  show  the  performances  of  the  proposed
ARE-GA formalism in terms  of  convergence,
let  run,  several  times,  the  implemented
algorithm  of  optimization  in  order  to  obtain
data on  and P parameters.

Then, the best solutions of ARE-GA introduced in

Figure 2, obtained by the use of Matlab 7.10, are

ε=0.012

P=[
1.560 0.551 1.033 0.295
0.551 1.318 0.122 1.093
1.033
0.295

0.122
1.093

1.210
0.615

0.615
3.263

] .

and  the  best  solutions  found  by  the  use
of ARE are:

ε=0.032for ε in the interval [0.001,1]

P=[
1.230 0.412 0.962 0.512
0.412 0.851 0.226 0.930
0.962 0.226 1.103 0.416
0.512 0.930 0.416 3.263

]
K=103[0.4563 0.1318 0.4516 0.1976

0.0543 0.1122 0.0298 0.1227
3.3173 0.7793 3.8035 1.4345]

For these gains, the stability is satisfied for the
studied system.

By  running  30  times  the  proposed  ARE-GA
algorithm, regardless of the initial population,
we note that its convergence is always located
in  the  same  area  of  the  search  space.  This
means that the ARE-GA reaches each time the
most  interesting  region  of  the  search  space.
The  results,  obtained  by  simulation  using
the optimal settings of Figures 8, 9, 10 and 11,
show the effectiveness of  the proposed ARE-
GA  algorithm  compared  to  the
solution  obtained  by  the  Algebraic  Riccati
Equation (ARE).

9. Conclusion

In this paper, the proposed approach, based in
the use of the ARE technique associated to GA,
for solving a non-convex optimization problem,
is formulated and tested, with success, and for
the quadratic stabilizability study of the studied
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Figure 8. Position error (e)
for -50% Rs and  + 50% Jm

Figure 9. Position error (e)
for -50% Rs and -50% Jm
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Figure 10. Position error (e)
for +50% Rs and + 50% Jm

Figure 11. Position error (e)
for +50% Rs and -50% Jm



PMSM.  The  EKF  is  used  with  success  to
control  the position of  PMSM. The obtained
real  estimated  values  of  the  position  are
comparable with real ones.

The  comparison  of  these  results  with  those
obtained by the use of ARE technique shows
that  the best  performances,  in terms of speed
convergence,  quality  solutions  and  simplicity
implementation  and  robustness,  are  obtained
when the proposed ARE-GA is applied.
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