
1. Introduction

Proportional  Integral  Derivative  controller  is
one of the simplest and most commonly used
ones  in  various  industries  for  control
applications. Despite significant advancements
in control  technology,  over  80% of  industrial
control  loops  are  incorporated  with  PID
controller.  Though  it  is  widely  accepted,  it
should  be  properly  tuned  to  meet  desired
behavior.  Extensive  work  of  Ziegler  and
Nichols  [1]  is  the  breakthrough  in  tuning
methodology and Cohen Coon, Lambda tuning,
and Chen Hrown Reswick (CHR) methods are
a few of the other tuning methods reported in
the literature [2]. Existing tuning methods are
classified  [3]  based  on  nature  and  usage  as
analytical  methods,  Heuristic  method,
Frequency  response  method,  Optimization
method and Adaptive tuning methods. Among
those,  optimization  method  is  widely  utilized
around the globe as  it  is  conceptually simple
and  widely  accepted  one  for  tuning  PID
controller  [2].  In  this  method,  controller

parameters  are  adjusted  based  on  the  chosen
objective function chiefly integral performance
measures.  A classical  optimization  technique
namely gradient  method is  often used to find
optimal  values.  The  shortcoming  of  gradient
descent methods is sensitivity to the selection
of initial values and their tendency to lock into
a  local  extreme  point  [4].  Evolutionary
Computation techniques  are  proposed to  tune
the  PID controller  by taking  all  non-linearity
and  additional  process  characteristics  into
account [5],  [6].  Genetic Algorithm (GA) has
the capability to solve nonlinear and complex
optimization  problems  [7].  Porter  and  Jones
proposed  a  GA-based  simple  and  generic
method of tuning digital PID controller [8].

Numerous  work  is  available  in  the  literature
related to Distillation column control  strategy
[9-14].  Very  recently,  various  optimization
techniques  such  as  Covariance  Matrix
Adaptation  Evolution  Strategy  (CMAES),
Particle  Swarm  Optimization  (PSO),
Differential  Evolution (DE),  Tribes Algorithm
(TA),  Ant  Colony Optimization  (ACO),  Tabu
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Search Algorithm (TSA) and different  Binary
Particle Swarm Optimization are used to tune
the PID control  parameters  [15-19].  Modified
firefly algorithm for the tuning ofmultivariable
PID controller  is  implemented  for  distillation
column [20].

Iruthayarajan  and  Baskar  compared  the
performance  of  various  Real  Coded  Genetic
Algorithm (RGA), Differential Evolution (DE),
Modified  Particle  Swarm  Optimization
(MPSO)  and  Covariance  Matrix  Adaptation
Evolution  Strategy  (CMAES)  in  the
multivariable distillation column [21]. Discrete
Binary  PSO  (DBPSO)  algorithm,  Probability
based  discrete  binary  PSO  (PBPSO)  and
Modified Discrete Binary PSO (MDBPSO) are
proposed to tune multivariable PID controller
for  the  distillation  column  and  compared  the
results  with  the  RGA,  MPSO  and  CMAES
[22].  Amongst,  PBPSO  provided  the  best
optimal  value  for  all  the  three  cases  such  as
multivariable  PID  controller  with  decoupler,
without  decoupler  and  multivariable  PI
controller  without  decoupler.  Recently
proposed  State  transition  Algorithm (STA)  is
applied to different benchmark problems which
has  the  ability  to  reach  a  global  optimal
solution  and  shown  that  it  has  good
convergence  property  when  compared  with  a
Real  coded  genetic  algorithm  (RCGA),
Complementary  Learning  Particle  Swarm
optimization (CLPSO) and Strategy adaptation

Differential  Evolution  (SaDE)  [23].  Herein,
Implementation  of  State  Transition Algorithm
(STA)  and  STA-SBX  Algorithm  to  tune
multivariable PID controller for the distillation
column is proposed and compared with already
reported best results.

2. Distillation Column Plant Model

A  binary  distillation  column  plant  with  two
inputs and two outputs is considered [24]. The
pilot plant has eight trays  with condenser and
reboiler.  A mixture  of  methanol  and water  is
used as a feed in the system.

Controlled variables of the distillation column
plant  are  composition  of  top  and  bottom
products  which  are  expressed  in  weight
percentage  of  methanol  (%  wt.  MeOH).
Manipulated  variables  are  reflux  steam  flow
rate  and  reboiler  steam  flow  rate  which  are
expressed  in  lb/min.  Linear  dynamic  transfer
function model was developed by [24] which is
given in equation 1:

G
p
( s)=[G p11( s) G p12(s)

G p21(s) G p22( s)]
=[

12.8e
−s

16.7 s+1
−18.9 e

−3 s

21 s+1
6.6e

−7 s

16.9 s+1
−19.4e

−3s

14.4 s+1
] (1)
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Figure 1. Schematic diagram of Distillation column Pilot plant [24]



The  steady-state  decoupling  matrix  of  the
above plant model is given as [22].

D(s)=G
p

−1(s)=[ D11( s) D12(s)
D21(s) D22(s)]

=[0.1570 −0.1529
0.0534 −0.1036 ]

(2)

3. PID Controller

Proportional Integral Derivative (PID) controller
has been used in the process industry for several
years. A block diagram of a simple closed-loop
system consisting of a plant and a PID controller
with unity feedback is shown in Figure 2. The
purpose  of  the  system is  to  keep  the  process
output (Y) close to the desired output (Yds) in
spite  of  disturbances.  This  is  achieved  by
manipulating the process input (U) through the
controller. The performance of the closed loop
system is defined by the Integral  performance
measures and time response specifications.

The  PID  controller  makes  the  plant  less
sensitive  to  changes  in  the  surrounding
environment  and  facilitates  small  changes  in
the  plant.  The  transfer  function  of  the  PID
controller is:

( ) i
c p d

K
G s K K s

s
= + + (3)

where  Kp is  the  proportional  gain,  Ki is  the
integral gain and  Kd is the derivative gain. In
the PID controller, the proportional part deals
with  the  error  of  the  system  at  present;  the
integral part takes the past into account and the
derivative part estimates that will happen in the
future. The proportional gain of the controller
reduces  error  responses  to  disturbances.  The
integral of the error eliminates the steady state
error and the derivative of the error dampens
the  dynamic  response  and  thus  improves  the
stability of the system. The controller has three
parameters  that  can  be  adjusted  like

proportional gain (Kp), Derivative gain (Kd) and
Integral  gain  (Ki).  The  control  loop performs
well  if  the parameters are chosen properly. It
performs  poorly  otherwise.  Improper  tuning
may  make  the  system  become  unstable.  The
procedure of finding the controller parameters
is called tuning.

3.1 PID controller for multivariable process

The processes  consist  of  each more  than one
input and one output is termed as multivariable
process.  Process  transfer  function  model  of
nXn is represented as 

Gp(s)=[Gp11(s) ⋯ Gp1n(s)
⋮ ⋱ ⋮

Gpn1 ⋯ Gpnn
] (4)

Multivariable  PID  controller  of  nXn is
represented in coupled and decoupled form as
given in equations 5 and 6, respectively.

Kc(s )=[K 11(s) ⋯ K1n(s )
⋮ ⋱ ⋮
Kn1 ⋯ K nn

] (5)

Kdc(s )=[K11 (s) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ Knn

] (6)

The PID parameters of are represented as

[θ11 ,…,θnn]
=[Kp

11

, K i
11

,Kd
11

,…, Kp
nn
, K i

nn
, K d

nn
]

(7)

4. State Transition Algorithm

State  transition algorithm (STA) is  one of  the
heuristic random search algorithm based on the
concept of state transition [23]. The algorithm of
random search technique is given below [25].

– S1: Choose an x as starting point and keep
it as current solution;
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Figure 2. Block diagram representation of a closed-loop system



– S2:  Produce  dx,  random  vector  from  the
parameter  space  and  add  the  current
solution. Calculate the f(x+dx) value;

– S3: If f(x+dx) < f(x) keep the new solution
as the current solution (x=x+dx);

– S4:  If  the  finishing  criterion  is  reached,
Stop, otherwise go to S2.

STA has  the  formulation  as  a  basic  random
search for the function f(x) to be minimized as
given in equation 8:

{xk+1=Akxk+Bkuk

yk+1=f (xk+1)
(8)

where  xk+1 is calculated iteratively as given in
equation 9:

xk+1=xk+αkdk (9)

where  xk  is the  kth iteration point,  αk is the  kth

step, and dk is the kth direction. Transformation
operators  of  STA are  used  to  get  the  new
state/solution which is found in [23] as follows.

Rotational transformation

xk+1=xk+α 1

n‖xk‖2
Rr xk (10)

where R
r
∈ℜnXn  is the random matrix, α is the

constant  rotation  factor  with  positive  values.
This transformation has the useful capability to
look within the hyper sphere. 

Translational transformation

xk+1=xk+βRt

xk−xk−1

‖xk−xk−1‖2
(11)

It  has  the  flexibility  to  search  along the  line
with length of β is a constant translation factor

and  R
t
∈ℜ1  is  a  random  variable  with  the

range of (0, 1).

Expansion transformation

xk+1=xk+γRexk (12)

It has the function of expanding component in
the xk to search in the whole space. 

Axesion transformation

1k k a kx x R xδ+ = + (13)

It has functionality to look within the axes and
enhances the single dimensional search.  More
detailed explanation of the expansion, rotation,

axesion  and  translation  transformations  are
given in [23].

Communication strategy is used to improve the
premature  convergence  by  incorporation  of
individual  communication  through  crossover
functions  as  shown  in  equation  14  and
simulated binary crossover (SBX) is developed
by Kalyanmoy Deb [26]. The algorithm which
incorporated the crossover function in equation
14 and SBX crossover which is in equation 15
termed as STA and STA-SBX respectively.

{Y 1=δcx X 1+(1−δcx) X 1

Y 2=ηcx X 2+(1−ηcx) X 2

(14)

where xcδ  and xcη are independent cross over

operators, which obeys distribution in the range
[0 1].

{Y 1=0.5[(1−β) X 1+(1+β) X 2]
Y 2=0.5 [(1+β) X 1+(1−β) X 2]

(15)

where  β  is  a  random  variable,  obeying  the
following probability distribution 

{p (β)=0.5(ηc+1)βηc 0≤β≤1

p (β)=0.5(ηc+1)
1

βηc+2
β>1

(16)

where ( ) ·p is  the probability density function,

cη is the distribution index [26].

Pseudo code for State Transition Algorithm is
given below [23].

1:  repeat

2: if α < αmin then

3:     α←αmin 

4: end if 

5:  Best ← Expansion (funfcn, Best, SE, β, γ)

Expansion transformation

6:  Best ← Rotation (funfcn, Best, SE, α, β)

Rotation transformation

7:  Best ← Axesion (funfcn, Best, SE, β, δ)

Axesion transformation

8:   α← α
f c

9:  if mod (Iteration, Communication Frequency)==0 
then <- Intermittent exchange

10:  State←Communication_strategy(funfcn,State)

11:  end if

12:  [Best,fBest] ← fitness(funfcn,State)

13:  until the specified termination criterion is met
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5. Implementation of STA

STA implementation of 2 by 2 Input / Output
binary  distillation  column  plant  which  has  a
transfer  function  model  [24]  is  given  in
equation  1.  The  decentralized  PID  controller
structure shown in equation 17:

K
dc
( s)=[k 11(s) 0

0 k 22( s)] (17)

where  Kdc(s) decentralized  PID  controller
transfer function. The tuning of PID controller
is  formulated  as  an  optimization  problem by
minimizing the following Integral performance
measures in equations 18 &19.

IAE=∫
t=0

T

|e1(t )|.dt +∫
t=0

T

|e2 (t )|. dt (18)

ITAE=∫
t=0

T

t .|e1(t )|.dt+∫
t=0

T

t .|e2(t )|.dt (19)

where e1=[Y ds 1−Y 1 ] , e2=[ Y ds 2−Y 2] .

The parameters of ( )dcK s is represented as 

[θ11 ,θ22]
=[K

p11
, K

i11
, K

d11
, K

p22
, K

i22
, K

d 22
] (20)

Tuning  of  the  multivariable  PID  controller
problem  is  formulated  as  an  optimization
problem  considering  IAE  and  ITAE  as
objective  function  by  adjusting  controller
parameters through State Transition Algorithm. 

6.  Case Studies and

Simulation Results 

Simulations  are  carried  out  in  three  different
cases  for  the  tuning  of  multivariable
decentralized  PID  controller  such  as  PID
controller  with  decoupler,  without  decoupler
and PI controller without decoupler (Figures 3,
4, and 5 respectively) by considering Wood and
Berry distillation column model and are carried
out  for  20  independent  trials  using  STA and
STA-SBX algorithm for the maximum iteration
count of 200.

MATLAB-Simulink  is  run  in  Core  2  Duo
processor,  2.2GHz  and  2GB  RAM  PC.
Parameter settings of STA are kept unvarying
for all the three cases those are given in Table 1.

Table 1. STA and STA-SBX tuning parameters

SE,SN N

α 1

αmax 1

αmin 1e-4

β 1

γ 1

δ 1

fc 2

CF 10

δcx 0.6

ηcx 0.4

ηc 1
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PID

K22

PID

K11

-19.4

14.4s+1

Gp22
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-18.9

21s+1
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12.8

16.7s+1

Gp11

-0.1036

D22

0.0534

D21

-0.1529

D12

0.1570

D11

  

 

Figure 3. MATLAB-Simulink diagram for multivariable PID with decoupler



where N is the number of PID parameters, CF is
the  communication  frequency,  SE is  search
enforcements,  SN is the number of states and fc

is the lessoning coefficient.

6.1 Case study 1

STA  based  tuning  of  multivariable
decentralized  PID  controller  for  Wood  and
Berry  system  model  with  steady  state
decoupler,  given  in  equations  2  and  3,  is
considered  for  this  study  [22].  MATLAB-
Simulink  diagram for  this  study is  shown  in
Figure 3. Considering the performance indices
IAE and ITAE as objective functions, optimal
results  obtained out  of  20 independents  trails

using STA and STA-SBX algorithms which are
furnished in Table 2. 

For IAE and ITAE, the step response curves of
top  product  composition  (Y1)  are  shown  in
Figure  6  and  Figure  7  respectively  and  step
response  curves  for  bottom  product
composition  (Y2)  are  shown in  Figure  9  and
Figure 10 respectively for the obtained optimal
parameters. To compare the performance of the
algorithm  PBPSO  algorithm  based  PID
parameters is included in the Table 2 and also
in the step response plot.

STA and  STA-SBX algorithm is  given  better
optimal result and transient response (Table 5)
in both IAE and ITAE.
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Figure 4. MATLAB-Simulink diagram for multivariable PID without decoupler 
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Figure 5. MATLAB-Simulink diagram for multivariable PI without decoupler.
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Figure 6. Output response of top product
composition (Y1) for IAE
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Figure 7. Output response of bottom product
composition (Y2) for IAE
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Figure 8. Convergence characteristics for IAE 
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Figure 9. Output response for top product
composition (Y1) for ITAE
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Figure 10. Output response of bottom product
composition (Y2) for ITAE 
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Figure 11. Convergence characteristics for ITAE
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Table 2. Optimal PID parameters obtained for Case Study 1

Algorithm
Performance

Index

PID controller Parameter
Fitness
Value

11pK
11iK

11dK
22pK

22iK
22dK

PBPSO* IAE 2.0000 0.1178 -0.2493 1.9994 0.1250 -0.2412 20.4109

STA IAE 2.0000 0.1256 -2.0000 1.9964 0.1424 -0.9737 16.6369

STA-SBX IAE 2.0000 0.1256 -2.0000 1.9967 0.1424 -0.9768 16.6369

PBPSO* ITAE 1.9978 0.1121 -0.5443 1.9990 0.1485 -0.5619 159.5911

STA ITAE 2.0000 0.1221 -2.0000 1.9344 0.1488 -0.8891 113.7329

STA-SBX ITAE 2.0000 0.1221 -2.0000 1.9340 0.1487 -0.8872 113.7329

* PID parameters taken from [22]



6.2 Case study 2

STA based tuning of multivariable decentralized
PID controller for Wood and Berry system model
with steady state decoupler, given in equation 2,
is  considered  for  this  study  [22].  MATLAB-
Simulink  diagram  is  shown  in  Figure  4.
Considering  the  performance  index  IAE  as
objective function, optimal results obtained out of
20 independents trails using STA and STA-SBX
algorithms which are furnished in Table 3. The
step response curve of top product composition
(Y1)  and  bottom product  composition  (Y2)  are
shown  in  Figures  12  and  13  for  the  obtained
optimal  PID  parameters. To  compare  the
performance of the algorithms PBPSO algorithm
based PID parameters is included in the Table 3
and also in the step response plot. Convergence
characteristic for IAE is shown in Figure 14. 
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Figure 12. Output response of top product
composition (Y1) for IAE
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Figure 13. Output response of bottom product
composition (Y2) for IAE
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Figure 14. Convergence characteristics for IAE

STA and  STA-SBX algorithm is  given  better
optimal result and transient response (Table 5)
for IAE.

6.3 Case study 3

STA based tuning of multivariable decentralized
PI controller for Wood and Berry system model
without steady state decoupler given in equation
2 is considered for this study [21,22]. 

MATLAB-Simulink diagram is shown in Figure
5. Considering the performance index IAE as the
objective function, optimal result is obtained out
of  20 independent  trails  using  STA and STA-
SBX algorithm which is  furnished in Table 3.
The  step  response  curve  of  top  product
composition  (Y1)  and  bottom  product
composition (Y2)  are  shown in Figure 15 and
Figure16  for  the  obtained  optimal  PID
parameters. To compare the performance of the
algorithms  PBPSO  algorithm  based  PID
parameters is included in the Table 3 and also in
the  step  response  plot.  Convergence
characteristic for IAE is shown in Figure 17.

The time response specifications such as Rise
time (Ts), Settling time (Tr) and Peak overshoot
(Mp)  are  calculated  using  MATLAB  stepinfo

command  and are  furnished in  Table  5  or  the
optimal PID parameters obtained using STA and
STA-SBX algorithms.  For the comparison time
response specification of PBPSO is included [22].
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Table 3. Optimal PID parameters obtained in the Case Study 2.

Algorithm
Integral

Performance
Index

PID Controller parameters
Fitness
Value

11pK
11iK

11dK
22pK

22iK
22dK

PBPSO* IAE 0.9976 0.0025 0.3450 -0.0313 -0.0078 -0.0155 13.1976

STA IAE 1.0000 0.0026 0.3055 -0.0333 -0.0073 -0.0928 9.6692

STA SBX IAE 1.0000 0.0026 0.3049 -0.0324 -0.0073 -0.0899 9.6699

* PID parameters taken from [22]
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Figure 15. Output response of top product
composition (Y1) for IAE
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Figure 16. Output response of bottom product
composition (Y2) for IAE
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Table 4. Optimal PID parameters obtained in the Case Study 3

Algorithm
Integral

Performance
Index

PI Controller parameter
Fitness
Value

11pK
22iK

22pK
22iK

PBPSO* IAE 0.8261 0.0027 -0.0117 -0.0068 13.3833

STA IAE 0.8957 0.0027 -0.0133 -0.007 10.3409

STA-SBX IAE 0.8955 0.0027 -0.0133 -0.007 10.3409
*PID parameters taken from [22]
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Figure 17. Convergence characteristics for IAE 

Table 5. Comparison of time response specifications

Case
Study

Algorithm
Integral

Performance
Index

OUTPUT Y1 OUTPUT Y2

Mp (%) Tr (Min) Ts (Min) Mp (%) Tr (Min) Ts (Min)

Case
Study 1

PBPSO* IAE 0.58 11.82 18.16 0.55 9.65 15.10

STA IAE 0.86 10.09 15.95 5.84 8.11 19.15

STA-SBX IAE 0.86 10.08 15.95 5.79 8.12 19.15

PBPSO* ITAE 0.58 11.82 18.16 0.55 9.65 15.10

STA ITAE 0.43 10.43 16.41 6.48 7.72 20.96

STA-SBX ITAE 0.43 10.43 16.41 6.46 7.73 20.94

Case
Study 2

PBPSO* IAE 1.44 1.25 2.59 12.35 3.05 16.15

STA IAE 0.79 1.22 11.81 10.86 3.13 10.76

STA-SBX IAE 0.75 1.22 11.72 10.43 3.09 10.72

Case
Study 3

PBPSO* IAE 6.52 1.45 7.06 5.02 2.16 9.92

STA IAE 11.26 1.28 7.02 9.28 2.15 10.54

STA-SBX IAE 11.24 1.29 7.02 9.60 2.15 10.54
* PID parameters taken from [22] and calculated



In the case study 1, Rise time (Tr) is improved
while  there  are  no  appreciable  change  in  the
Peak Overshoot (Mp) and Setting time (Ts) in
both the output Y1 and Y2. In the case study 3,
Rise  time  is  improved  while  there  are  no
appreciable change in the Peak Overshoot (Mp)
and Setting time (Ts) in both the output Y1 and
Y2.  In  Case  Study  2,  Rise  time  and  Peak
overshoot  are  improved  and  slight  change  in
the settling time for the output Y1 and Settling
time and Peak overshoot are improved and also
slight change in Rise time for the output Y2.

6.4 Statistical performance measures of STA

Performance of STA and STA-SBX algorithms
are  assesed  based  on  the  statistical  measures
such as best (minimum of objective function),

worst  (maximum  of  objective  function),
standard  deviation  and  average  functional
evaluation for twenty independent trials for all
three  cases  is  reported  in  Table.6.  The
performance  of  the  STA-SBX  algorithm  is
better than STA algorithm.

7. Conclusion

STA  is  implemented  for  the  tuning  of
decentralized  multivariable  PI  and  PID
controller  with and without  decoupler  for  two
input and two output binary distillation column
plant model. Simulation results from the various
case  studies  imply  that,  STA and  STA-SBX
algorithms are provide the better optimal values
over  existing  reported results  in  the  literature.
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Figure 18. Convergence of optimal PID parameter with IAE for Case Study 1.

Table 6. Statistical performance measures of STA and STA-SBX Algorithm

Statistical Performance measures of STA and STA-SBX algorithm for three Case studies for 200 Iterations

Case

Study
Algorithm

Integral

Performance

Index

Best

fitness

Mean

fitness

Standard

deviation

of fitness

Worst

fitness

Average

computation

time (Sec)

Average

functional

evaluation

Case
Study 1

STA IAE 16.6369 16.6369 3.91E-05 16.6370 79 4360

STA-BTX IAE 16.6369 16.6369 5.39E-05 16.6370 171 4300

STA ITAE 113.7329 124.2259 27.7056 221.2250 182 4539

STA-BTX ITAE 113.7329 113.7915 0.2402 114.8113 183 4584

Case
Study 2

STA IAE 9.6692 9.9217 0.3723 11.0701 161 4481

STA-BTX IAE 9.6699 9.9048 0.3202 10.4414 176 4628

Case
Study 3

STA IAE 10.3409 11.0711 2.2468 17.6449 69 2844

STA-BTX IAE 10.3409 10.9545 1.9242 17.6232 113 2877



STA tuned parameters are given the improved
response  in  the  time  response  specifications
particularly in rise time (Tr) for all three cases
and  slight  improvements  in  Peak  Overshoot
(Mp) and Settling Time (Ts) in some cases. Two
algorithms  are  reported  by  changing  the
crossover as STA and STA-SBX algorithm. Two
algorithms are given the best fitness over already
reported  PBPSO.  It  is  apparent  from  the
statistical measures that the consistency of STA-
SBX algorithm better than the STA algorithm.

Acknowledgement

This work was co-funded by European Union
through  European  Regional  Development
Funds  Structural  Operational  Program
“Increasing  of  Economic  Competitiveness”
Priority  axis  2,  operation  2.1.2.  Contract
Number 621/2014.

REFERENCES

1. NICHOLS,  N.  B.,  J.  G.  ZIEGLER,
Optimum  Settings  for  Automatic

Controllers, Trans. ASME, 64, 1942.

2. ASTROM, K.,  PID Controllers:  Theory,

Design and Tuning, 1995.

3. ANG, K., G. CHONG, Y. LI, PID Control

System  Analysis  and  Design,  Control
Systems, IEEE 26, 2006, pp. 32-41.

4. GE,  H.-W.,  Y.-C.  LIANG,  M.
MARCHESE,  A  Modified  Particle

Swarm  Optimization-based  Dynamic

Recurrent  Neural  Network  for

Identifying  and  Controlling  Nonlinear

Systems, Computers & Structures, vol. 85,
2007, pp. 1611-1622.

5. BACK,  T.,  U.  HAMMEL,  H.-P.
SCHWEFEL,  Evolutionary

Computation: Comments on the History

and  Current  State,  Evolutionary
Computation, IEEE Transactions on, vol. 1,
1997, pp. 3-17.

6. DRACOPOULOS,  D.  C.,  Evolutionary

Learning  Algorithms  for  Neural

adaptive  Control,  Springer-Verlag  New
York, Inc., 1997.

7. KROHLING,  R.,  J.  REY,  Design  of

Optimal  Disturbance  Rejection  PID

Controllers  using  Genetic  Algorithms,
Evolutionary  Computation,  IEEE,  vol.  5
2001, pp. 78-82.

8. JONES, A. H., B. PORTER, Genetic Tuning

of  Digital  PID  Controllers,  Electronics
Letters, vol. 28, 1992, pp. 843-844.

9. LEMAIRE,  J.,  M.  MORARI,  B.
OGUNNAIKE,  W.  RAY,  Advanced

Multivariable  Control  of  a  Pilot  Plant

Distillation Column,  AIChE Journal,  vol.
29, 1983, pp. 632-640.

10. ESCOBAR,  M.,  J.  O.  TRIERWEILER,
Multivariable PID Controller Design for

Chemical  Processes  by  Frequency

Response Approximation, Chemical Eng.
Science, vol. 88, 2013, pp. 1-15.

11. COELHO,  L.  D.  S.,  M.  W. PESSÔA,  A
Tuning  Strategy  for  Multivariable  PI

and  PID  Controllers  using  Differential

Evolution  Combined  with  Chaotic

Zaslavskii  Map,  Expert  Systems  with
App., vol. 38, 2011, pp. 13694-13701.

12. KIM,  C.,  K.  LEE,  J.  LEE,  M.  LEE,
Analytical  Design  of  Multiloop  PID

Controllers  for  Desired  Closed-loop

Responses, AIChE Journal, vol. 50, 2004,
pp. 1631-1635.

13. DORMIDO,  S.,  F.  MORILLA,  F.
VÁZQUEZ,  An  Iterative  Method  for

Tuning  Decentralized  PID  Controllers,
Proc. 14th IFAC World, 1999.

14. GANGULY, S., S. MAITI, N. D. SARAF,
Some New Approaches for the Control of

a  Distillation  Column  and  Their

Experimental  Evaluation  on  a  Pilot

Plant,  Computers  &  Chemical
Engineering, vol. 19, 1995, pp. 399-404.

15. BERNERT, D. L. A., D. L. S. COELHO, L.
DOS,  PID  Control  Design  for  Chaotic

Synchronization  using  a  Tribes

Optimization  Approach,  Chaos,  Solitons
& Fractals, vol. 42, 2009, pp. 634-640.

16. DUAN,  H.,  D.  WANG,  X.  YU,  Novel

Approach  to  Nonlinear  PID Parameter

Optimization  using  Ant  Colony

Optimization  Algorithm,  J.  of  Bionic
Engineering, vol. 3, 2006, pp. 73-78.

17. JAN,  R.-M.,  R.-J.  LIU,  C.-S.  TSENG,
Robust PID Control Design for Permanent

Magnet  Synchronous  Motor:  A Genetic

Approach,  Electric  Power  Systems
Research, vol. 78, 2008, pp. 1161-1168.

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 377



18. KIM,  T.  T.-H.,  I.  MARUTA,  T.  SUGIE,
Robust PID Controller Tuning Based on

the  Constrained  Particle  Swarm

Optimization,  Automatica,  vol.  44,  2008,
pp. 1104-1110.

19. DU,  H.,  S.  WANG,  J.  ZHANG,  J.
ZHUANG,  Self-organizing  Genetic

Algorithm  based  Tuning  of  PID

Controllers,  Information  Sciences,  vol.
179, 2009, pp. 1007-1018.

20. COELHO,  L.,  V.  MARIANI,  Firefly

Algorithm  Approach  based  on  Chaotic

Tinkerbell Map Applied to Multivariable

PID  Controller  Tuning,  Computers  &
Mathematics  with  Applications,  vol.  64,
2012, pp. 2371-2382.

21. BASKAR,  S.,  M.  IRUTHAYARAJAN,
Evolutionary Algorithms based Design of

Multivariable  PID  Controller,  Expert
Systems with Applications, vol.  36,  2009,
pp. 9159-9167.

22. FEI,  M.,  M.  I.  MENHAS,  H.  PAN,  L.
WANG,  Comparative  Performance

Analysis of  Various Binary Coded PSO

Algorithms  in  Multivariable  PID

Controller  Design,  Expert  Systems  with
Applications, vol. 39, 2012, pp. 4390-4401.

23. GUI,  W.,  C.  YANG,  X.  ZHOU,  State

Transition  Algorithm,  Journal  of
Industrial  and  Management  Optimization.
vol. 8, 2012, pp. 1039-1056.

24. BERRY,  M.,  R.  WOOD,  Terminal

Composition  Control  of  a  Binary

Distillation  Column,  Chemical  Eng.
Science, vol. 28, 1973, pp. 1707-1717.

25. HAMZAÇEBI, C., F. KUTAY, Continuous

Functions  Minimization  by  Dynamic

Random  Search  Technique,  Applied
Mathematical  Modelling,  vol.  31,  2007,
vol. 2189-2198.

26. DEB,  K.,  A.  KUMAR,  Real-coded

Genetic  Algorithms  with  Simulated

Binary  Crossover:  Studies  on

Multimodel  and  Multiobjective

Problems, Complex Systems, vol. 9 1995,
pp. 431-454.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015378


