
1. Introduction

Problems  in  operations  research  are  usually

modelled as single objective ones even though

there  exists,  in  real  world,  several  goals  that

should  be  attained.  Multiple  reasons  of  why

inherently  multi-objective  problems  are

modelled  as  single  objective  ones  can  be

outlined:  better  understanding of  the problem

features and simplification of the mathematical

formulation  of  the  problem,  among  others.

However,  summarising  (usually  conflicting)

objectives into one objective function can be a

sign  of  over-simplification  in  the  problem

modelling process.

Multi-objective  optimisation  (MO)  aims  to

optimise  two  or  more  conflicting  objectives

simultaneously.  Unlike  in  single  objective

optimisation,  where solving a  problem means

to find its optimal solution w.r.t. some objective

function,  solving a problem in a MO context

means  to  find  a  set  of  solutions  such  that

improving an objective without impair at least

some  other  objective  is  not  possible.  These

solutions  are  called  efficient  solutions.

Mathematically, a general MO problem can be

formulated as follows:

min f ( x)=( f
1
(x) , f

2
( x) ,… , f

p
( x))

s . t . x∈ X ⊆ℝn (1)

where x is a vector of  n elements and X is the

set  of  feasible  solutions.  Consequently,

f ( x)= y∈Y⊆ℝ p
 is  the  image  of  solution

x∈X  in the objective space.

We say  that  a  solution  x
1∈ X  is  efficient if

there  is  no  x
2∈X  such that  f

i
(x 2)< f

i
( x

1)
for  some  i=1,… , p .  The  set  of  efficient

solutions is denoted by X
E
⊆ X . Consequently,

we  denote  the  image  of  x̂∈X
E  in  objective

space  as  f ( x̂)= ŷ ,  where  ŷ  is  called  non-

dominated  point.  The  set  of  non-dominated

points of the MO problem in (1) is Y
N
⊆Y .

In  this  work  a  model  for  a  MO  inventory

location  model  (ILM)  problem  is  proposed.

ILM  problems  aim  to  integrate  strategic

decisions with tactical  ones.  In particular,  the

ILM considered in this paper seeks to integrate

location  decision  making  (strategic)  with

inventory policies  (tactical).  We consider  two

conflicting objectives: On the one hand, we aim

to minimize the location/allocation cost, that is,

the cost of installing a warehouse and, on the

other hand, we want to minimize the inventory

cost, that is, the cost of holding products in our

warehouses and the cost of processing an order

from our customers. 

The problem of locating/allocating customer to

distribution centres is  one of the most  studied

problems  in  logistics.  Usually,  after  decision

makers determine the locations to be installed,
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the  inventory policy is  defined.  However,  this

sequential approach is sub-optimal in the sense

that  the  inventory  policy  is  restricted  by  the

network design determined in the previous step.

Thus,  integrating  location/allocation  decisions

and inventory policies lead to solutions that are

more efficient as they consider the entire system

as a whole. Figure 1 shows a schema of both the

sequential and the integrated approaches.

The remaining of this paper is  as follows: In

Section 2 we present a brief literature review of

previously  proposed  models  for  the  ILM.

Although  we  include  some  single  objective

ILMs,  the  review  is  mainly  focused  on  the

multi-objective  models  presented  so  far.  In

Section 3 we introduce a novel MO-ILM which

is  an  extension  of  the  single  objective  ILM

presented  in  [18].  In  Section  4,  the  multi-

objective local search we consider to solve the

MO-ILM  is  outlined.  In  Section  5,  the

computational  experiments  performed  in  this

paper are described and the obtained results are

discussed.  Finally,  in  Section  5,  some

conclusions and the future work are outlined.

2.  Inventory-Location  Modelling:

Literature Review.

During  the  last  two  decade,  several  single

objective  ILMs  have  been  proposed  in  the

literature.  Different  approaches  to  integrate

both  strategic  and  tactical  level  within  the

decision making process have been considered

[4, 6, 7, 10, 12, 15, 17, 19, 20, 21, 25, 26]. All

these  approaches  comprise  all  objectives  into

one single objective function. This has several

drawbacks.  As  mentioned  in  Section  1,

summarizing  all  the  goals  into  only  one

objective  function  can  be  a  sign  of  over-

simplification  of  the  problem  modelling

process.  Moreover,  the  importance  of  each

objective can be set  differently depending on

the  decision  maker  personal  preferences.

Furthermore,  solving  the  single  objective

problem  will  lead  us  to  one  solution  that  is

(hopefully) the optimal solution of the problem.

However,  having  only  one  solution  does  not

give us  any insight  on the existing trade-offs

between the objectives of the problem. 

Although less studied, MO-ILMs have also been

proposed in the literature (see [1, 3]). In [1] the

authors  design  a  distribution  network  model

considering  three-echelon  and  integrating

location and inventory decisions. The objectives

considered in their model are the overall profit

and  the  level  of  service  as  a  measure  of  the

customers’  dissatisfaction.  Authors  in  [3]

propose  a  MO-ILM  considering  different

transportation  modes.  Three  objectives  are

considered in  their  work:  total  costs,  earliness

and tardiness, and deterioration rate. 

Since  in  general  both  continuous  and  integer

decision variables are part of the models above,

the  ILM  problem  is  usually  described  as  a

mixed  integer  one.  Furthermore,  objective

functions are usually non-linear. Thus, solving

this problem to optimality within a reasonable

time is  simply not  possible as the number  of

decision  variables  becomes  larger.  Thus,

several  authors  have  considered  heuristic

methods to approximately solve this problem.

For instance, the authors in [3, 5] implemented

an  evolutionary  algorithm  called  NSGA-II.

Evolutionary algorithms are also used in [16]

3. Multi-Objective ILM

As  we  mentioned  before,  the  MO-ILM  we

present  in  this  paper  extends from the single

objective ILM in [18]. 

The mathematical model for the MO-ILM that

we introduce in this paper is as follows:
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Figure 1. Traditional sequential approach (on the left) versus the integrated approach (on the right).



Min∑
i=1

N

F i x i+∑
i=1

N

∑
j=1

M

C ij Z ij (1)

Min∑
i=1

N

CS i√V i+∑
i=1

N

CL i√Di (2)

Di=∑
j=1

M

d j zij ∀ i=1,… , N (3)

V i=∑
j=1

M

v j z ij ∀ i=1,… , N (4)

∑
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M

d j zij−I i

cap
x i (5)

x
i
, z

ij
={0,1} ∀ i=1,… , N

∀ j=1,… , M
(6)

Equation  (1)  is  the  first  objective  of  our  bi-

objective problem. The idea here is to minimise

both the location and the allocation cost of the

resulting network. The first term is the cost of

locating  a  specific  plant/warehouse  i ,  also

called setup cost. The second term is associated

to the cost of moving items from warehouses to

customers, with C
ij
=TH (TC

ij
+RC

i
)d

j  where

TH is the planning horizon, TCij is the transport

allocation  cost  for  allocating  client  j to

warehouse  i and  RCi is  the  transport  cost

associated to moving one unit of product from i

to  j.  The parameter  dj is the mean demand of

customer j.

Equation  (2)  is  the  second  objective  of  our

model. This objective aims to minimise the cost

associated  to  the  inventory  management.  The

first term is the cost of keeping a safety stock

which  minimises  the  stock  out  so  we  can

guarantee  a  service  level  at  least  as  good  as
Z

1−α .  Here  we  have  that

CS
i
=TH HC Z

1−α√LT
i  where  HCi

corresponds to the holding cost of warehouse i

and LTi is the time between an order is placed

and the products are available in the inventory.

This time is also called  leadtime.  The variable

Vi determines the total variance of the demand

for  warehouse  i.  The  second  term  in  the

objective function is the inventory cost, that is

the cost of keeping products in stock and the

administrative costs of putting an order to the

suppliers,  with  CL
i
=TH √ 2 HC

i
OC

i .  Here

OCi is the order cost of warehouse  i and  Di is

the total demand of warehouse i. Constraint (5)

ensures the capacity constraint of plant i, I
i

cap
,

will never be violated. As pointed out in [17],

this is a very hard constraint that was relaxed in

[18]. Finally, Equation (6) states integrality (0-

1) for the binary variables zij and xi.

4. Multi-Objective Local Search

Heuristic  methods  are  a  common  approach  to

solve  hard  combinatorial  optimisation  problems

such  as  the  MO-ILM.  In  single  objective

optimisation  a  large  number  of  (meta-)heuristic

algorithms have been proposed in the last 50 years.

This is different for MO optimisation where most

of the focus has been on exact methods. Only in

the  last  10  years  MO  heuristic  methods  have

attracted the attention of researchers.

One  common  approach  has  been  extending

algorithms  from single  objective  optimisation

to  MO  optimisation.  For  instance,  [24]  has

extended simulating annealing algorithm, [13]

did the same for tabu search algorithm and [2,

22] extended the steepest descent algorithm to

its multi-objective version. Moreover, one field

that  has  been very active during the last  two

decades  is  the  evolutionary  multi-objective

optimisation (EMO). The first EMO algorithm

was  the  vector  evaluated  genetic  algorithm

[23]. Since then several EMO approaches have

been proposed in the literature [9, 11, 14, 27]. 

In  this  paper  we  implement  the  Pareto  local

search  proposed  by  [2].  This  method  is

deterministic,  i.e.  given  an  initial  solution  it

always ends up in the same set of approximately

efficient  solutions  of  the  MO problem that  is

being  solved.  The  pseudo-code  of  the  PLS

algorithm is presented in Algorithm 1.
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Algorithm 1: Pareto Local Search

Begin

  s0 = getInitialSolution() ;

  N = generateNeighbourhood(s0) ;

  Mark s0 as explored ;

  SE = getNonDominated (S
E
∪N∪{s

0
})  ;

  while not terminationCriterion do

        N=∅ ;

       for each s∈S
E  with s not explored

         N=N∪generateNeighbourhood ( s) ;

         Mark s as explored ;

       End

       S
E
=getNonDominated (S

E
∪N )  ;

       if ( !∃ s∈S
E
∣s  is not explored)

           terminationCriterion = true;

       End

  End

  return S
E  ;

End



Before  we  explain  how  the  implemented

algorithm proceeds, we need to introduce both

the neighbourhood definition and the solution

representation we shall use in this paper. Let s

be a vector of integers where elements  si with

i=1,… , M  are  equal  to  the  warehouse

customer i is allocated to, and M is the number

of customers considered in the ILM problem.

Thus,  si ranges  between 1 and  N with N the

number  of  potential  warehouses.  Figure  2

shows an example of a solution for a problem

with 5 customers and 4 potential warehouses. 

2 2 1 2 3

Figure 2. An example of a solution representation.

Here customers 1, 2 and 4 are assigned to

warehouse number 2. Customer 3 is assigned.

As Figure  2  shows,  more  than  one  customer

can be assigned to the same warehouse while

some  other  warehouses  are  left  closed  as  no

customer  is  assigned  to  them.  Given  this

solution  representation,  the  neighbourhood

movement  we  consider  in  this  paper  is  as

follows: Solutions  s1 and  s2 are neighbours if

s
i

1=s
i

2
 for all  i but one. If that is the case we

say  that  s
1∈N (s

2 ) ,  i.e.  s1 is  within  the

neighbourhood  of  s2.  It  is  clear  that  if

s
1∈N (s

2) ,  then  s
2∈N (s

1) .  Figure 3 shows

two solutions (s1 and s2) that are neighbours.

s1 = 2 2 1 2 3
      

s2 = 2 3 1 2 3

Figure 3. An example of two neighbour solutions.

Here customer 2 has been moved from warehouse 2

to warehouse 3.

The number of elements in the neighbourhood

of a solution s is equal to (N−1)×M . As the

N and  M terms get larger exploring the entire

neighbourhood  might  be  difficult  and  time

consuming. For this reason we propose to set a

neighbourhood size equal to 50. Neighbours are

randomly generated.

The  algorithm starts  by  generating  a  feasible

initial solution s
0
∈S . This initial solution can

be  either  randomly generated  or  provided by

the decision maker. In our case we choose to

generate it randomly. Once the initial solution

has been generated,  i.e.  its  objective function

vector  f ( x
0
)  has  been  calculated,  its

neighbourhood is explored as explained in the

previous paragraph. After the neighbourhood of

s0 has  been  explored,  a  dominance  analysis

over the entire neighbourhood is performed and

solution  s0 is marked as explored.  Then,  only

those solutions that resulted in non-dominated

points  are  kept  in  SE.  If  the  set  of  efficient

solutions  SE contains  non-explored  solutions,

then the algorithm continue by exploring such

solutions. The algorithm stops otherwise.

5. Computational Experiments

We present  in  this  section  the  computational

experiments carried out in this work. We use an

Intel i5 processor and 8 GB of RAM to run our

experiments.  Linux  14.02  was  the  operating

system. The Pareto local search algorithm was

coded  in  JAVA 8  language  using  NetBeans

IDE. The instance set used in this work was the

same used in [8,  18].  Since we are solving a

MO problem, solutions obtained in [8, 18] are

not  necessarily  efficient  solutions  of  the  MO

problem. To provide a quality indicator of the

obtained  set  of  locally  efficient  solutions  we

use  the  hyper-volume proposed  by  [28].  The

hyper-volume  quality  indicator  H,  gives  the

volume of  the  portion  of  the  objective  space

that is  weakly dominated by a specific set of

non-dominated points  YN. Then, the higher the

hyper-volume value the better the set XE found

by the algorithm.

The  base  instance  that  is  presented  in  the

results section is denoted by B. Just as in [18],

we  create  four  additional  instances  that  are

based on instance B. These additional instances

are denoted by  B−50% HC ,  B−25 %HC ,  B+25 % HC

and  B+50 % HC .  These  instances  modify  the

holding  cost  of  the  original  B instance.  For

example, B−50% HC  means holding cost HC has

been reduced in 50%.

5.1 Results

A summary of the obtained results is presented

in  this  section.  Since  we  generate  a  set  of

solutions that are efficient for each instance, we

report the number of elements in  XE obtained

by PLS (column ‘#E’), the number of generated

solutions  (column ‘#’)  and  the  hyper-volume

value obtained by our algorithm (column ‘H’).

Table  1,  show the  obtained  results  when  the

service level, Z
1−α , is set to 97.5%.

As Table 1 shows, the PLS algorithm finds a set

of locally efficient  vectors  x∈X
E  for  all  the

instances tested in this paper. However, only a

small portion of the generated solutions resulted
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to be efficient. This might be a sign of a highly

focused search, something that is known to be a

drawback of MO local search algorithms. Figure

4 shows the set  of  generated solutions for the

instance  B. As we can see, 8 efficient solutions

were generated (solid squares).

Figure 4. Generated solutions in objective space for

instance B. Blue crosses are the generated solutions

and red solid squares are the locally efficient

solutions found by the PLS algorithm.

Moreover,  obtained  hyper-volumes  are  not

greatly  affected  by  changes  in  the  holding

costs.  However,  changing  the  holding  cost

affects the distribution of the efficient solutions

in the objective space. 

6. Conclusions and Future Work

In  this  article  we  have  introduced  a  novel

multi-objective ILM and solve it by means of a

multi-objective local search called Pareto Local

Search [2]. Although the bi-objective model we

present  here is  very hard to solve,  the Pareto

local  search  algorithm  implemented  in  this

work is shown to be very effective in finding

approximately  efficient  solutions  for  our

problem. Other  methods such as evolutionary

multi-objective  algorithms,  multi-objective

stochastic  search  and  multi-objective  swarm

intelligence  might  be  considered  in  order  to

improve  solutions  found  by  the  Pareto  local

search implemented in this paper. 

Moreover, solutions obtained for the MO-ILM

suggest that there exists a trade-off between the

objectives considered by the model that needs

to be further studied.
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