
1. Introduction

As a classical algorithm,  adaptive control  has
been  applied  in  many  types  of  industrial
systems  including  nonlinear  and  time-vary
systems  and  also  attracts  many  scholars’
attentions.  Because  of  the  advantage  of  self-
adaptation, adaptive controller can tolerate the
uncertainties  and  external  disturbances  in
closed-loop  system  [7,  11,  19,  21].  In  the
adaptive control system, a common method for
dealing  with  uncertainties  including  the
parameters or structure is to design an adaptive
parameter  estimates  algorithm or  an auxiliary
controller  [3,  4,  14].  A  nonlinear  system  is
difficult  to  use  a  mathematical  equation  for
modelling because of the lack of knowledge of
plant or disturbances [9, 10].

As for the issues, many research results have
been  put  forward  for  applying  a  range  of
different perspectives.  Their methods can be
classified  into  two  types  according  to  the
approximation form. The first type is called a
direct  approximation  method  such as  model
reference  adaptive  control  (MRAC)  [1,  15],
which is used as a reference model to obtain
the disturbance immediately.  In  this  type  of
system,  by  comparing  with  the  nominal

model  or  reference  model,  the  disturbance
can be acquired directly. The other type used
an indirect method [2, 8, 26]. In this type of
system,  it  requires  knowing  about  the
information  of  structure  and  some
parameters.  Its  performance  depends  on  the
model parameters.

Recently,  as  a  new type  of  adaptive  control,
model-free  control  and  its  corresponding
intelligent proportion integration differentiation
(iPID)  controller  which  has  been  applied
successfully to the real-time systems,  such as
DC-DC converters  [17],  vehicle  control  [16],
agricultural  greenhouses  [13],  High  pressure
common  rail  injection  system  [22]  etc.,  was
firstly  introduced  in  the  references  [5].  It
requires  only the systems  input gain,  and the
output measurements. The critical issue for this
kind model  free control  is resided on how to
obtain  and  compensate  rapidly  the  lumped
unknown dynamics (LUD) which it covers the
high-order term, uncertain parameters, external
and  or  internal  perturbations. Reference  [17]
puts  forward  an  algebraic  identification
technique  to  estimate  the  LUD.  In  reference
[20],  a  Savitzky-Golay  filter  is  proposed  to
obtain the LUD for a servo system. However,
these  methods  regard  the  gain  of  input  as  a
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known constant and ignore its parameter-vary.
In  addition,  its  performance  depends  on  the
quality  of  the  observer  which  requires  the
ability  of  rapidity  and  reliability.  Moreover,
these methods cannot guarantee the stability in
closed-looped system [12, 16].

Considering  these  factors,  an  extra  sliding
model  control  is  adopted into the model  free
control  for  compensating the estimation error
of LUD [18]. However, the gain of input is also
neglected,  which  stems  from  the  ultra-local
model.  Thus  in  this  paper,  a  radial  basis
function neural network is introduced to make
up for  the  estimation  error  of  the  LUD.  The
referred  neural  network  has  an  ability  of
universal approximation and been applied to a
nonlinear  system  for  estimation  LUD.
Combining  the  advantage  of  neural  network,
the novel model-free control strategy which is
called as an intelligent Proportion Differential
Neural  Network  (iPDNN)  controller  ensures
not  only  the  stability,  but  also  has  a  high
efficiency for trajectory tracking performance.

The paper is organized as follows. In section 2,
the problem of a classical model free control is
introduced.  In  section  3,  an  improved  model
free  iPDNN  control  is  proposed  while  in
section 4, to validate the proposed method, an
inverted  pendulum  numerical  system  is
implemented. Finally, some conclusion remarks
are given in section 5.

2. Problem Statement

For a general SISO unknown nonlinear system
described in  [18], its  corresponding  ultra-local
model can be denoted approximately as follows

y
n (t )=F (t )+αu(t ) (1)

where  n is  the derivative order of the  system
output,  α is  an input  gain,  u(t) is  the  control

input,  y(t)is the  system output,  the integer  n is
usually selected as 1 or 2, and F(t) is treated as
an  LUD,  which contains  the high-order  term,
the  unknown  parts  of  a  practical  system,
measuring noise or various disturbances.

According to [6], the proposed iPIDis defined as

u (t )=
1
α (k p e (t)+k i∫ e (t)dt+

+k d ė (t )+ ÿ
*(t )−F (t ))

(2)

where  y*(t) is the desired  reference, and  kp,  ki

and kd are the equivalent proportional integral
differential  (PID)  coefficients.  The  LUD
which  varies  with  time  is  obtained  by  an
algebraic estimator.

In a short time interval, its estimation value is
approximately  equal  [23].  Suppose  that  the
time  interval  is  marked  as  L.  The estimation
value F̂ (t )  is

F̂ (t )≈F (t−L)=y
n(t−L )−α u(t− L) (3)

The  value  of  parameter  L will  influence  the
estimation value. The entire iPID based on time
delay shows in the Figure 1.

Assume that the order n is equal 2 and the error
is defined as e=y*-y.

Substituting  equation  (2)  into  (1),  the  error
equation  of  the  closed-loop  system  can  be
derived as follows:

ë (t )+k
d
ė (t)+k

p
e (t )+k

i∫e (t )dt=0 (4)

The kp, ki, kd are treated as Hurwitz polynomial
coefficients.  According  to  the  error  equation,
the  performance  of  a  close-loop  system  is
designed by the Hurwitz theorem.

However,  the  established  condition  of  error
equation  is  that  the  estimation  of  F(t) is
accurately,  and  its  estimation  value  can
compensate  a  real  value  in  the  equation  (1).
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Figure 1. Structure of iPID control



The estimation of  F(t) is  a crucial  issue.  The
controller of performance is strongly depended
on an observer. The ideal input is not easily to
attain  by  the  observer.  In  addition,  if  the
estimation error and the uncertain parameter of
α are considered, the input can be rewritten as

u (t )=
1
α0

(k p e(t)+k i∫ e(t )dt+

+k
d
ė(t )+ ÿ

*(t)−F̂ (t ))
(5)

where α0 is the nominal value of α. Substituting
(5) to (1), the system model can be described as

ÿ(t)=F (t )+α[ 1
α0

(k p e (t )+k i∫e(t )dt+

+k
d
ė(t )+ ÿ

* (t )−F̂ (t ))]
(6)

Moreover, we can obtain the error equation

ë(t)+k d ė(t )+k p e(t)+k i∫ e(t )dt= f (t) (7)

with

f (t )=(α /α0) F̂ (t )−F (t )+(α/α0−1) ÿ(t ) .

And  f  is  the  error  of  disturbance  and  is
estimated  by  an  observer.  The  value  of  f  is
related not only to the estimation error, but also
to  the  parameter  α and output.  To  solve  this
problem and improve the  estimated  precision,
an auxiliary component is added to the input in
the  next section  for  compensating  the
estimation errors.

3.  Designing  iPDNN  Controller

and Analysing Its Stability

3.1  Intelligent  proportion  differential

neural network controller

In  this  part,  we  will  design  a  controller  to
compensate the  unknown  disturbance  and
reduce  the  candidate  parameter.  In  order  to
reduce complexity of the controller, two terms
of  proportion  integration  differential  are
considered simply.  If  the ultra-local  model  is
treated as one order (n=1), the differential term
is  neglected.  Here,  we  select  proportion  and
differentiation  (PD)  parts  as  an  example  to
elaborate  iPDNN  controller  in  detail.  The
architecture of iPDNN is shown in the Figure 2.

The extra input is defined as  ue(t). The whole
input of iPDNN control is

u (t )= 1
α0

(k p
e (t )+k

d
ė (t)+ ÿ*(t)− F̂ (t )u

e
(t )) (8)

Define  a  state  vector  x=[x 1 x2]
T =[e ė ]T .

The  error  equation  (7)  is  rewritten  as  state-
space form, we have

ẋ= Ax+B⋅f (9)

where A=[ 0 1
−k p −k d

] , B=[01] .

Suppose  that  the  ideal  approximation  by
neural network is f̂ ( x , w

*) , it also satisfied
max‖ f̂ (x , w

*)− f ‖<ε .  And  w* is  the
optimal weights.

Studies in Informatics and Control, Vol. 25, No. 4, December 2016 http://www.sic.ici.ro 444

Figure 2. Structure of iPDNN control



Considering  the  advantage  of  university
approximation,  a  radial  basis  function  (RBF)
neural  network  is  selected  to  approach  the
disturbance [24].  A Gaussian function for the
hidden layer function is

φ=exp(‖x−c‖
2σ ) (10)

where  c=[c1 c2 … c
n
]  is  the  center

vector of the receptive field and σ is the width
of Gaussian function.

Hence, the ideal output of neural network for
estimating the disturbance is

f̂ ( x , w
*)=w

*T φ (11)

Define  μ= f − f̂ ( x , w
*)  and  substituting

equation (15) to equation (13), we have

ẋ= Ax+B [ f − f̂ (x ,w
*)+ f̂ (x ,w

*)] (12)

ẋ= Ax+B ( f̂ (x , w
*)+μ ) (13)

The  estimation  of  disturbance  by direct  RBF
neural network is marked as

f̂ ( x , ŵ)=ŵ
T φ (14)

where ŵ  is the neural network weight vector.
In  order  to  compensate  the  disturbance,  the
extra input ue is designed as

u
e
=− f̂ ( x , ŵ) (15)

The weight error is defined as ~w=w
*−ŵ , the

error equation can be simplified as

ẋ= Ax+B ( f̂ (x , w
*)+u

e
+μ )=

= Ax+ B (~wT φ+μ )
(16)

Also,

ẋ= Ax+B(~wT φ+μ) (17)

3.2 Stability of iPDNN control

Assume  that  P,Q is  a  symmetric  positive
definite matrix and satisfy the equation (18).

A
T

P+ P
T

A=−Q (18)

Then,  a  candidate  Lyapunov  function  can  be
selected as

V=
1
2

x
T

Px+
1

2 γ
~wT ~w (19)

Take its derivative, we have

V̇=
1
2

( ẋT
P x+ x

T
P ẋ )+ 1

γ
~̇wT ~w=

=−
1
2

x
T

Qx+φT ~w B
T

Px+

+μT
B

T
Px− 1

γ ˙̂w~w

(20)

Considering  that  ~w∈ℜn×1 ,  φ∈ℜn×1 ,
B∈ℜ2×1 ,  P∈ℜ2×2  and  x∈ℜ2×2 ,  it  is

obvious  that  B
T

Px∈ℜ ,  φT ~w∈ℜ ,  and
φT ~w⋅B

T
Px=B

T
Px⋅φT ~w . Therefore, we have

V̇=− 1
2

x
T
Qx+(BT

Px φT− 1
γ ˙̂wT )~w+

+μT
B

T
Px

(21)

If the learning algorithms for weight is selected
as

˙̂w=γ B
T

Px φT=γφ x
T

PB (22)

Cancelling the middle polynomial, we have

V̇=−
1
2

x
T
Qx+μ B

T
Px (23)

Since  ‖μ‖=‖f − f̂ (x , w
* )‖≤μ0 ,  ‖B‖=1  and

‖Px‖≤λmax(P)‖x‖ , we have

V̇=−
1
2

x
T
Qx+μ B

T
Px≤

≤−1
2
λ

min
(Q)‖x‖2+μ0λmax

(P)‖x‖=

=−
1
2
‖x‖[λmin(Q )‖x‖−2μ0λmax(P) ]

(24)

If  λ
min

(Q)‖x‖−2μ0 λmax
(P )>0 ,  we  obtain

V̇ <0 . Therefore, in the closed loop system, it
is stable, if ‖x‖>2μ0λmax

(P)/λ
min

(Q) .

4. Simulation Results

In  order  to  illustrate  performance  of  the
proposed method, an inverted pendulum plant
which is illustrated in Figure 3 is employed and
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Figure 3. The inverted pendulum system



tested  under  three  different  conditions.  And
according [25], this referred model is described
as follows

ẋ1=x2

ẋ2=a ( x)+b(x )u (t )
(25)

where

b ( x)=
cos x1

4
3
(M +m)l−ml cos2

x1

,

a ( x)=
g sin x1−

mlx2
2sin (2 x1)

2(M +m)

4
3

l−
ml cos2

x 2

M +m

and x1 is  the angle displacement whose  unit is
rad.  g=9.8m/s is  the  gravity  acceleration
coefficient,  M=1.0kg  and  m=0.1kg are
respectively the mass of cart and pole,  l=0.5m

is the length of the pole, and u(t) is an input for
the applied force control.

If we set the initial point in  x=[0.25,0 ]T , we
have  α0=3 /(4 Ml+ml ) .  And  k

p
=100 ,

k
d
=10 , Q=[50,0 ;0,50 ]T , γ=10 .

4.1 Case I – Balance point

In  order  to  demonstrate  the  performance,  a
direct adaptive neural network (NN) controller
is  applied to compare [25] with the proposed
iPDNN controller  to  the  balance  point. Their
corresponding simulation results are illustrated
in Figures 4-6.The Figures 4-5 show the output
of angular displacement and its error. The input
is shown in the Figure 6.

Comparing with the NN method, both iPD and
iPD methods  have  a  good  transient  response
from the response time. From the error curve in
the Figure 5, the steady error of iPDNN control
is less than the others. Furthermore, the extra
controller by the RBF neural network can track
the disturbance.

4.2 Case II – Tracking performance of a

sinusoidal signal

In  this  case,  we  select  a  sinusoidal signal
sin(πt/6) as  a  reference.  Their  corresponding
simulation  results  are  shown in Figures  8-11.
The values of parameters  in controller  are the
same with the case I.
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The Figures 8-9 show respectively the output of
angular displacement and its error. The Figure
10 shows the output of controller. The Figure

11 shows the estimation error of disturbance by
Neural  Network. From these  results,  we  can
conclude that  the  proposed iPDNN controller
can reduce its steady errors by comparing with
the NN controller and iPD controller.

4.3  Case  III  –  Parameter  variations  of

input gain and time interval

In this case, the input gain α = 20, 15, 10, 8, 5,

2and  time  interval  L=0.0001,  0.001,  0.002,

0.005 are  selected.  We  also  choose  the  sine
signal sin(πt/6) as  a  reference. Under  these
different  conditions,  the  obtained  simulation
results  are illustrated in Figures 12-13,  which
show respectively  the  errors  of  output  under
parameter  variation  of  input  gain  and  time
interval. From these results, we can see that the
iPDNN control maintains good robustness even
under different parameter variation values.
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Figure 12. Errors of output by
varying input-gain (a)

Figure 13. Errors of output by
varying time interval (L)
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5. Conclusions

In  this  paper,  an intelligent  Proportion
Differential  Neural  Network (iPDNN)
controller which is based on the iPID controller
and  RBF  neural  network is  proposed. By
adding an augmented neural network observer
and  compensating  the  estimation  error,  the
iPDNN  controller has  effective  ability  of
estimating  the error  of  LUD and  reduces the
stable error in the closed-loop system. Also, it
guarantees the stability of a closed-loop system.
In order to demonstrate the performance of the
proposed  iPDNN  controller,  an  inverted
pendulum  system  has  been  tested  on  three
different  conditions and  compared  with
methods of NN and iPD controller.  Moreover,
the proposed iPDNN controller maintains good
robustness even  under  different parameter
variation values.
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