
1. Introduction

Despite  a  large  use  of  hydraulic  system  in

industry applications, their control problem still

remains  an  interesting  challenge.  Indeed,  the

dynamic behaviour of electrohydraulic systems

is  highly  nonlinear  which  makes  targets

difficult  to  achieve.  In  practice,  the  most

common  type  of  control  used  for  hydraulic

servo-systems  is  a  linear  controller  which  is

designed  basing  on  the  linear  approximated

model  at  an  equilibrium  point,  [20],  [17].

However  in  such  work,  some  important

dynamic information may be lost. Therefore, it

is  judiciously  to  choose  a  nonlinear  control

method to benefit greatly from the application

of advanced control  techniques, [7].  In recent

years,  a  various  studies  of  modern  control

technique  have  been  applied  on

electrohydraulic  actuators.  Some  number  of

them  has  rested  on  feedback  linearization

techniques,  [23].  Other  nonlinear  approaches

based  on  neural  or  fuzzy algorithms are  also

applied,  [30],  an  adaptive  controller  is

considered too for  an electrohydraulic system

[9],  [15],  [31].  An  alternative  approach  have

been  investigated  which  is  based  on  classic

sliding  mode  which  is  added to  the  adaptive

technique,  [2].  For  strict-feedback  model

system, a nonlinear controller can be designed

with  a  Backstepping  technique,  [8].  This

approach  has  been  used  in  this  paper  in  the

context of electrohydraulic application.

All  of  the  previous  mentioned  feedback

controllers  require  generally measurements  of

velocity  and  acceleration  for  feedback.

However,  accelerometers  are  seldom used  in

practical  drive  systems.  Indeed,  the  use  of

accelerometers adds cost, energy consumption,

increases the complexity of the overall system,

and reduces its reliability. Then all controllers

are  highly  sensitive  to  noisy,  inaccurate  or

delayed  velocity  and  acceleration  estimates.

Nowadays,  the  problem  of  differentiation

signal  given in  real  time is  an  old  and well-

known  problem,  but  it  still  remains  an

important  challenge.  Sometimes  the  synthesis

of a differentiator requires a good knowledge of

the model system. In this case the differentiator

synthesis  is  reduced  to  an  observation  and  a

filtration  problem.  Many  structures  for  state

variables  estimation  are  based  on  nonlinear

observer  theory,  such  as  high  gain  observer

[10],  sliding  mode  observer  [24]  and

Backstepping observer [14]. However, the lack

information  or  insufficient  knowledge  on  the

dynamics  of  the  system  makes  the

implementation  of  a  nonlinear  state  observer

difficult.  Another  attractive  method  for

estimation of the state variables, particularly for

mechanical  systems,  is  the  numerical

algorithms.  In  [12]  the  properties  and  the
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limitations of two different structures for linear

differentiation  have  been  discussed.  For

example,  a  predictive  algorithm  applied  to

angular acceleration measurements is presented

in [28].

In  other  cases,  the  construction  of  a

differentiator  is  inevitable.  Indeed,

differentiators  are  very  useful  tools  to

determine and estimate signals without basing

on  the  dynamics  system.  The  design  of

differentiator unit is a traditional aim for signal

processing  theory.  For  instance,  using

differentiator unit, the velocity and acceleration

can  be  computed  only  from  the  position

measurements.  But,  the  design  of  an  ideal

differentiator  is  a  hard  and  challenging  task.

For construction a differentiator, some features

of the signal and the noise must be considered.

However,  in  some  cases  the  structure  of  the

signal  may  be  unknown  except  some

differential inequalities, differentiators that are

based  on  algebraic  parametric  estimation

techniques  can  be  well  employed,  [21].

Although the algebraic algorithms allow a good

capability  to  attenuate  efficiently  the  noise,

they are sensitive to the truncation order also to

the size of the sliding window estimation and

essentially to the setting of its parameters.

Alternative methods based on the higher order

sliding  mode  technique  can  be  used  [27].  In

[18],  a  robust  first  order  differentiator  via

second order sliding modes is proposed. Other

works, [19]; employs an arbitrary-order robust

exact  differentiator  with  finite-time

convergence.  The  main  advantage  of  such

differentiators  is  the  easiness  of  its

implementation in real time.

Even though large applications of these kinds

of  differentiators  have  been  performed,  its

major drawback concerns the tuning of its gains

in  real  time.  This  adjustment  requires  the

exactly knowledge beforehand of the Lipschitz

constant of the derivative signal. Moreover, it is

so difficult  to obtain in  advance the value of

this  constant  in  real  time  since  we  do  not

necessarily know the signal to estimate. In the

prior  researches,  different  new  schemes  of

sliding  modes  differentiators  have  been

proposed to improve the performance of basic

schemes. Some works that can be cited are: [1],

[6], [31]. In these last, a new forms of the first-

order differentiator are proposed.

In the current paper, we are going to develop

the results from [19] in order to propose novel

scheme of second-order differentiator which is

based on third-order sliding mode.  A dynamic

are added to the differentiator  gains to adjust

them in real time and to avoid the condition of

knowledge  of  the  Lipschitz constant  of

Levant’s  differentiator.  Moreover,  in  all  the

previous works, generally, all contributions that

have  been  made  relate  to  the  first  order

estimator which is based on the second order

sliding  mode  and  as  for the  made real-time

applications.  Our  contributions  consist  to:  1)

Present a new extended form of the 2nd-order

sliding  modes  differentiator  to  estimate

simultaneous the velocity and the acceleration

of  the  electro-hydraulic  system,  not  the  1st-

order what is usually done in the literature.  2)

Synthesis  and  implement  a  Backstepping

controller  on  high  dynamic  electro-hydraulic

system  for  a  tracking  position  trajectory.  3)

Discuses  experimental  results  with  different

desired  trajectories  of  position  to  show  the

performance  of  the  proposed  algorithm  with

compare  it  to  some  classical  numerical

differentiation algorithm. 

The  paper  is  organized  as  follows.  The  first

section  outlines  the  2nd-order  Adaptive

Differentiator  (ARD)  is  developed.  Section2

describes  the  model  of  the  electrohydraulic

actuator.  Section  3  presents  the  controller

design  via  a  Backstepping  technique  for

position  tracking  trajectory.  Section  4  is

devoted to the experimental results.

2.  Differentiator  Construction  via

Higher Order Sliding Modes

The  differentiation  algorithm  must  ensure  a

trade-off between the noise level of the output

signal and its phase shift relative to the exact

derivative signal. Some of those algorithms are

based on the technique of sliding modes. This

technique  is  mostly  used  to  elaborate  the

control laws [5], [16], [19]. The main features

of the sliding modes control are its robustness

to  variation  in  system  parameters,  external

disturbances and modelling errors, [27]. For all

the above reasons, this technique shows good

results in the synthesis and the implementation

of robust differentiators, [19], such as the Super

Twisting algorithm, [18]. In practice, the major

problem associated  with  this  algorithm is  the

tuning  up  of  the  convergence  gains  of  the
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differentiator. It is not always easy to determine

these gains for a given bandwidth of the input

signal.  A simple  modification  of  the  spectral

content of the input signal or its amplitude can

cause a significant error in the estimation of the

derivative.  Indeed,  the  parameters  of  the

algorithm  strongly  depend  on  the  Lipschitz

constant of the nth derivative of the input signal

and,  generally  this  constant  is  not  accurately

known  beforehand.  This  problem  can  be

resolved  with  adding  an  adaptive  law  to  the

gains of the classical Super Twisting algorithm.

In this paper, we have chosen to use a second

order  differentiator,  rather  than  using  several

cascade  first  order  differentiators  for  a  better

estimation.  The  differentiator  is  based  on  a

recursive  diagram  of  arbitrary-order  robust

differentiators  with  finite  time  convergence

proposed  in  [19].  However,  the  number  of

gains related to this method is more important

than a Super Twisting. So the main problem of

this  recursive  algorithm is  actually related  to

the choice of the differentiator parameters. We

must  choose  judiciously  the  gains  of  this

algorithm  to  derive  an  input  for  which  the

spectrum  has  rich  frequencies.  The  fact  that

these parameters depend on the input signal is

an effective limit of the method performances. 

The accuracy of  this  classic  robust  algorithm

depends  on  the  choice  of  three  parameters.

Moreover,  the  choice  of  these  parameters  is

difficult.  Furthermore their  choices are not  to

be too large in order not to be differentiating

the noise. So the most suitable parameters can

be defined by using the adaptive mechanism, in

order to regulate these gains of such algorithm.

Consider an input signal of differentiator f (t )
as a function defined on [0 ,∞ [  measurable in

Lebesgue’s  sense which can be considered as

the sum of two following terms

f (t )= f
0
(t )+ζ (t ) (1)

f
0
(t )  is  an  unknown  clear-off-noise  signal

with  the  (n+1)th derivative  having  a  known

Lipschitz constant C>0 .  ζ (t)  is  a bounded

Lebesgue-measurable  noise  with  unknown

features and it is defined by:  |ζ (t)|<= , with ε

is sufficiently small so | f (t )− f
0
(t )|≤= .

For  the  2nd-order  differentiator,  three  gains

(λ̂1
, λ̂

2
, λ̂

3)  must be adjust in real time. Let us

define  now  the  schema  of  the  2nd order

differentiator by system of equations (2).

{
ż

0
=v

0

v
0
=−λ̂

0
|s

0
|

2

3 sign( s
0
)+ z

1
−K

0
s

0

ż
1
=v

1

v1=−λ̂1|s1|
1

2
sign (s1)−

−λ̂
2∫

0

t

sign (s
1
)dt−K

1
s

1

(2)

λ̂
1
, λ̂

2
, λ̂

3  are  dynamic  gains,  K0 and  K1

convergence gains and s0, s1 the sliding surfaces

defined as:

{s0=z0− f

s
1
=z

1
−v

0

(3)

Function sign(.)  is defined by:

sign(.)={ 1 for (.)≥0

−1 otherwise
(4)

The dynamic gains λ̂ i
, i∈{0,1,2 }  are defined by:

{
˙̂λ0=[|s0|

2

3
sign(s 0)]s0 ,

λ̂
0
(0)≥0 ;

˙̂λ
0
>0∀ t>0

˙̂λ1=[|s1|
1

2 sign( s1)]s1 ,

λ̂
1
(0)≥0 ; ˙̂λ

1
>0∀ t>0

˙
λ̂2=s1∫

0

t

sign (s1)dt

(5)

Theorem. For  K0
, K

1
≻0  and  with  the

dynamic  gains  λ̂ i
, i∈{0,1,2}  defined  by (5),

the system trajectories (2) converge locally and

asymptotically  towards  the  equilibrium  point
s

0
=s

1
=0  under the assumption that as there

are  a  positive  constants  λ0

*
,λ

1

*
 and  λ@

*
,  a

priori unknown, defined by:

{ḟ =−λ0

*|s0|
2

3 sign (s0 )+z1

f̈ =−λ1

*|s 1|
1

2 sign( s1)−λ2

*∫
0

t

sign(s 1)dt
(6)

See the proof  and the details  of  the previous

theorem are given in [25].

3. Electrohydraulic Model System

The  considered  system  (see  Figure  1)  is  a

symmetric double acting electro-hydraulic servo-

drive using a double-rod cylinder controlled by
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two  five-way servo-valves.  Table  1  shows  the

specifications of the hydraulic actuator.

Figure 1. Electrohydraulic test bench.

Table 1. Specification of the hydraulic actuator.

Diameter of piston 50 mm

Diameter of rod 30 mm

Total moving load 5.9 kg

The  used  power  modulators  are  an  electro-

hydraulic servomechanism that constitutes the

main  interface  between  the  electrical  control

signal  and  the  fluid  power  actuator,  which

integrated  a  two  stage.  These  modulators

developed by MOOG, can provide a quite large

bandwidth,  thus  a  short  response time,  and a

good  precision.  As  indicated  in  the  MOOG

technical  bulletin,  the  bandwidth  reaches  to

1kHz for 5H of spool displacement with a rated

flow up to 19 l/min at 70 bars pressure drop for

full  opening.  The  perforated  block  was

conducted  specifically  for  this  test-bench.  It

allows  implement  the  two  servo-valves  and

other components in order to ensure different

operating  mode  of  system.  Thus  the  actuator

chambers  can  be  fed  either  by  a  5/2  single

servo-valve or by two servo-valves in parallel

to increase throughput, or use its in two three-

way mode to supply only one single actuator

chamber  by  one  servo-valve.  To  enable  this

modularity,  the  perforated  block  is  equipped

with two electro-distributors and two regulated

flow  orifice.  Finally,  to  filter  the  pressure

variation upriver of servo-valves, two spherical

accumulators are also mounted on this block.

The presence of this perforated block enhances

versatility  to  the  test-bench.  However,  this

interface introduces parasite phenomenon (drop

pressure,  capacitive  and  inertial  effects)  that

could  present  a  significant  influence  on  the

overall  behaviour  of  the  system,  in  some

circumstances of use.

In  this  paper,  a  single  mode  is  considered

which consist to control the actuator by two 5/2

servo-valves  in  parallel.  The  proposed  model

used  for  synthesizing the  control  law rest  on

some  assumptions.  The  first  one  consists  to

take  into  account  only  the  resistive  effect

produced by the interface bloc. This hypothesis

will be justified later by the trajectory choice.

According  to  second  law  of  Newton,  the

dynamic  equation  of  the  inertia  load  is

given by:

Ma=SΔ p−Mg−bv+h (v(t )) (7)

where  M is  the  mass  of  the  moving  part,
Δ p= p

1
− p

2  is the drop across load piston S is

the effective area of the actuator chambers,  b

represents the coefficient of the viscous friction

force, v,  a are respectively the velocity and the

acceleration  of  the  load.  Dry  friction  force

depend  explicitly  by  velocity  which  is

represented  by  the  function  h (v(t)) .  In  our

work, nonlinear model will be adopted basing

on the well-known Tustin friction model [26].

The proposed model is given by

h (v(t))=

=[F sdyn+(F sdyn−FC )e
(−C |v|)] tanh (v(t))

(8)

The  flow evolution  law  in  a  chamber  with

variable  volume  which  depends  on  the

piston  position  y is  obtained  assuming  the

following assumptions:

i) Both the temperature and the pressures of

the oil are supposed to be homogeneous in

each chamber.

ii) Neglecting  the  variation  density  to  the

average density.

iii) Assuming that the temperature variation is

negligible  with  respect  to  average  and

equal to the supply temperature. 

In  our  work,  the  two  servo-valves  are

considered as identical and a symmetrical one,

which are controlled by the same input signal u.

These  power  modulators  present  a  large

bandwidth  compared  to  the  dynamics  of  the

actuator. Neglecting the laminar flow of fluid,

the flow laws defined can be written to give an

expression of the  laws used for actuator input

(Q1,Q2) [20]:
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{Q1
=R .χ

1
( p

1
, p

P
, p

T
, sign(u ))u

Q 2=R .χ2 ( p2 , pP , pT , sign(u ))u
(9)

Where R is a parameter that implicitly depends

on the feature of the system and the pressure

drop  induced  by  the  perforated  block.  This

variable  R is considered a constant one and is

identified experimentally for a turbulent flow.

With pp, pt are respectively the supply pressure

and the exhaust pressure of the fluid.

Where,

{
χ1(.)=γ(u )√|pP− p1|sign( pP− p1)+

+γ(−u )√|p1− pT|sign ( p1− pT )
χ

2
(.)=γ(u)√|p2

− p
T
|sign ( p

2
− p

T
)+

+γ(−u )√|pP− p2|sign ( pP− p2)

(10)

The  function  γ(u)  is  given  by

γ(u)=
1+sign (u)

2
,  where  “ sign(.) “  is

defined as in (4).

Under  normal  practical  operating  conditions,

the  physical  domain  of  system  can  be

described by:

D0={( y ,v ,Δ P)∈ IR
3/|y|≤ l

2
,

p
1
, p

2
∈Ω

p
≡ ]pT

, p
P [}

(11)

Using  (16),  the  terms  sign( pP
− p

j
)  and

sign( p
j
− p

T
)  with  j={1,2 } ,  introduced  in

(15)  can  be  eliminated.  Define  the  state

variable  as:  X=[ y , v , a ]T .  Thus,  the  model

system can  be  defined  by  a  nonlinear  affine

form with a single input as follows:

Ẋ= f (X )+g (X )u (12)

with X , f ( X ) , g ( X )∈ IR
3

 and u∈ IR

f (X )=

=(
v

a

−
b

M
a−

ḣ(v (t ))
M

−
S

2β
M ( 1

V 1( y)
+

1

V 2( y))v ) (13)

and

g ( X )=(
0

0

S β
M (Rχ1

(.)

V
1
( y)

+
R χ

2
(.)

V
2
( y) )) (14)

V1(y)  and  V2(y) are  the  total  volumes  of  the

cylinder, defined respectively by:

{V 1
( y)=V

0
+Sy

V 2(y)=V 0−Sy
(15)

where:  V 0=V D+
Sl

2
 is  the piping volume of

the chambers for the zero position, VD is a dead

volume  present  on  each  extremities  of  the

cylinder, y is the displacement of the load and l

is the cylinder stroke.

4. Controller Design

Note that  yd,  vd,  ad are respectively the desired

trajectories  for  the  position  velocity  and

acceleration. Our objective is to find the control

law u in order to track a desired position yd.

With different steps of design a Backstepping

controller, it is so simple to obtain the general

form of u as following:

u=
1

Sβ
M [Rχ1(.)

V 1 (y)
+
Rχ2(.)

V 2 (y ) ]
[− f 3(.)+ ȧd−

−k
1
e

1
−k

2
e

2
−k

3
e

3 ]

(16)

Where

{k1
=2−c

1

2−c
2

2−c
1
c

2
,

k
2
=c

1

3−2c
1
−c

2
,

k 3=c1+c2+c3 .

(17)

With c1
,c

2
, c

3
>0 .

From  the  different  variables  errors  defined

during the construction of the control law, this

error system is then defined:

{
ė1=−c1e1+e2

ė 2=e 3−c 2e2−e1

ė3=ȧ−α̇ i (e1 , e2 , yd ,v d , ad )=
= f

3
(.)+g

3
(.)u−α̇

i
(.)

(18)

With

f 3(X )=−
b

M
a−

ḣ(v(t ))
M

−

−
S

2β
M ( 1

V 1( y)
+

1

V 2( y) )v
(19)

g
3
(X )=

Sβ
M (R χ1

(.)

V
1
(y)

+
Rχ

2
(.)

V
2
( y) ) (20)

The Lyapunov function of the overall system is

given by :
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V (e1 ,e2 , e3)=
1

2
e1

2+
1

2
e2

2+
1

2
e3

2
(21)

It  is  clear that  the singularity of the equation

(16) happens when χ1
(.)=χ

2
(.)=0 , which can

be  occur  when  the  pressure  in  the  two

chambers are equal respectively to the supply

and the exhaust pressure.

5. Experimental Result

Experiment  results  are  provided  here  to

demonstrate  the  effectiveness  of  the

Differentiator/controller Design on the electro-

hydraulic servo-system.

Results  of  the  Backstepping  control  law  are

also  compared  with  those  given  by  a  linear

state-feedback controller. Both control laws are

implemented  using  a  Dspace  1104  controller

board  with  the  dedicated  digital  signal

processor.  The  sampling  frequency  of  the

control  loop  is  equal  to  1  kHz.  The  sensed

signals,  all  analogs  were  passed  through  the

signal conditioning unit in order to filtrate and

amplify  these  analog  outputs  before  being

supplied to the Analog/Digital Converters. Five

sensors  are  implemented  on  the  test  bench:

position sensor and four pressures sensors. Two

of them are related to measuring the pressure

level of cylinder chambers; there the static error

with combining nonlinearity and hysteresis  is

equal to 0.1H. The two other pressure sensors

are used respectively for measuring the supply

and the exhaust pressure. The precision for the

supply pressure sensor is equal to 0.15H and it

is  equal  to  0.25H  for  the  exhaust  pressure

sensor. The position is measured by an LVDT

measurement  with a maximal  displacement  is

equal to 330 mm.

There are two methods to obtain velocity and

an acceleration feedback, namely using sensors

to measure them or using position information

to  generate  the  both.  In  the  last  case,  the

differentiation method represents the key step

that helps a best estimation of the derivative of

measured  state  variable.  In  order  to  use  a

minimum number of sensors on the test bench,

a proposed ARD is used to recover the velocity

and the acceleration signal. 

A linear state-feedback control with fixed-gains

is also implemented on the servo-system. This

controller is based on the local linearization of

the  nonlinear  dynamics’  system  around  a

nominal operating point. So the state-feedback

linear control can be synthesized with position,

velocity and acceleration, which are defined as

state variables. Then, this linear control law can

be given by the following equation:

u
1
=u

e
+K

y
(y−y

d
)−K

v
v−K

a
a (22)

with Ky, Kv and Ka are respectively a feedback-

gains  of  position,  velocity  and  acceleration.

The  coefficients  of  the  feedback  state  are

setting in order to obtain the dynamics of the

closed loop system as a canonical  Brunovsky

form [4].

The aim of the synthesized control law is to keep a

good accuracy in terms of the position tracking

trajectory.  The relative degree of the position is

equal  to  three.  This  means  that  the  electro-

hydraulic system can only track position trajectory

at  least  three  times  differentiable.  The  desired

trajectory has been carefully chosen in order to

respect the differentiability required. In addition,

this  trajectory  must  be  chosen  to  satisfy  the

assumptions already considered when performing

model system. Two types of trajectories are used.

First,  a  sinusoidal  trajectory  is  defined  with

respectively a frequency and a maximal magnitude

of displacement equals to 0.5 Hz and 330 mm (see

Figure 2).  The dynamics of the actuator around

30mm as position is equal to 285  Hz. Therefore,

the  dynamics  of  the  servo-valves  may well  be

neglected compared to the actuator.

Figure 2. Position and desired position with u1

During the modeling phase, both capacitive and

inertial  effects  due  to  the  presence  of  the

perforated block are not considered. In effect,

for trajectories at low frequencies, the inertial

effect is neglected. Moreover, the variation of

the  chambers  volumes  generated  by  the

imposed trajectory is considered dominant over

the volume of fluid in the perforated block.

5.1 Results with the linear controller

In the first way, a closed loop controller which

designed by equation (22) is performed while

the  system  is  tracking  a  sinusoidal  signal.
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Figures 2, 3 and 7 are show the position and

the desired position, the position error and the

control  input  which  obtained  by  the  linear

controller  computed  with using  the ARD.  In

order  to  prove  the  effectiveness  of  the  new

form  of  the  robust  differentiator,  a

comparative  study  with  some  classic

algorithm (23) is carried out which is given by

following expression:

output ( k )=
input (k )−input (k−2)

2T e

(23)

with Te is a sampling period.

Figure 3. Position error for u1: with ARD

Figures 4, 5 and 6 illustrate the velocity and the

acceleration  which  are  computed  by  the  both

methods, the ARD and the classic algorithm. In

effect, from the measured position, the velocity

is building once by the classic scheme and once

by the  ARD  (sees  Figure  4).  With  using  the

cascade  form  of  classic  algorithm,  the

acceleration  is  also  estimated  (see  Figure  4).

From Figure  6,  the  second output  of  the  unit

proposed  differentiator  is  given.  From  these

figures, it  is noteworthy that the estimation of

the outputs obtained with the ARD is less noisy

than  the  classic  algorithm,  especially  for  the

estimation  of  the  acceleration  (see  Figure  5).

Therefore,  the  adaptive  differentiator  is

insensitive to high frequency components of the

position signal  and consists  to  obtain accurate

outputs. For each method of differentiation, the

calculated outputs are injected into the control

law  (see  Figure  7).  Clearly  the  control  input

computed with using the classic scheme is more

affected by the chattering phenomenon, what is

due to the velocity and mostly the acceleration

signal.  From  this  figure  and  with  using  the

classic  algorithm,  the  control  input  does  not

present a high level of chattering in comparison

to the one found on the velocity and acceleration

estimated signal (see Figures 5 and 4). This is

explained by the low velocity and acceleration

gains  imposed at  the  control  law.  In  fact,  the

large  values  of  gains  lead  to  a  high  position

error. For this reason, the Figure 7 does not show

very  well  the  difference  between  the  two

differentiation methods. Figure 6 illustrates the

evolution  of  the  error  position  with  using  the

ARD, for the state-feedback controller. Then the

resulted average position error is about 0.85 mm.

5.2 Results with the nonlinear controller

Now,  the  results  of  Backstepping  controller

defined by (16) are presented with using only

the  ARD  for  recover  the  velocity  and  the
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Figure 4. Velocity estimated by both ARD and the

classic algorithm

Figure 5. Estimated acceleration with classic algorithm

Figure 6. Estimated acceleration with ARD

Figure 7. Control input u1



acceleration  signal.  In  this  case,  using  the

classical  scheme  is  impossible  since  the

velocity  and  the  acceleration  gains  are

respectively about 20 and 10 which amplifies

enormously chattering effect. This control law

depends  on  three  parameters  c1,  c2 and  c3,

which must be tuning to ensure an acceptable

tracking trajectory. As is shown in Figure 8, the

average position error is about 0.39  mm.  This

value is  twice times less than the error value

given by linear  control  law.  This  can explain

the  importance  of  the  consideration  of  the

nonlinearities  system  and  especially  the

resistive  effect  that  is  generated  by  the

perforated  block.  Moreover,  a  good  tracking

trajectory  is  observed  in  Figures  9  and  10.

Figure  11  shows the evolution  of  the  control

law  u.  In  the  second  way,  another  kind  of

trajectory is used. This trajectory is defined by

a  fifth-order  polynomial  function.  The

amplitude of displacement is  equal  to 50  mm

which represents 0.15H of the total stroke. The

maximum desired velocity is  equal  to  0.0938

m/s.  Figures  12  and 14  present  the  evolution

position  error  given  by both  control  laws.  In

static  stage,  the  mean  position  error  for  the

state-feedback controller  is  about  80  μm.  For

the  controller  based  on  a  Backstepping

technique, this value is equals to 40  μm. This

low value of the static error is explained by the

low value  of  dry friction.  Since  at  very low

velocities,  a  partial  lubrication  regime  is

reached. So the dry static friction is negligible

in  comparison  to  other  effects  as  the viscous

and the Coulomb effect. In dynamic stage, the

maximum position tracking error is about 0.94

mm, for the linear controller compared to 0.38

mm given by the nonlinear one. This value is

nearly twice times less than the value founded

by the state-feedback strategy law.

With  using  the  ARD,  the  control  laws

evolutions  are  without  high-frequency

excitation (see Figures 13 and 15), which is a

good property from an energetically efficiency

point  of  view.  Figures  16  and  17  represent

respectively  velocity  and  desired  velocity,

acceleration  and  desired  acceleration.  Indeed,

these successive derivatives of position output

are filtered and introduce practically no phase

shift.  From the  experimental  results,  the  best

performances are obtained using Backstepping

controller in terms of position tracking.
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Figure 8. Position error with the

Backstepping controller.

Figure 9. Desired velocity and estimated velocity

with ARD

Figure 10. Desired acceleration and estimated

acceleration with ARD.

Figure 11: Control input u.

Figure 12. Position error with the feedback

linear controller.



6. Conclusions

In  this  paper,  a  unit  adaptive  robust

differentiator  has  been  proposed  in  order  to

compute  the  successive  derivatives  of  the

position.  The  direct  validation  highlights  the

performances  of  the  proposed  algorithm.

Experimental results are carried out in order to

show the important to the choice differentiator

design  on  the  control  of  the  high  dynamic

electro-hydraulic  system.  The  adaptive  robust

algorithm shows a satisfactory result compared

to  some  other  classic  differentiator.  The

algorithm  efficiently  attenuates  the  noise  for

these two outputs.
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