
ISSN: 1220-1766 eISSN: 1841-429X 365

ICI Bucharest © Copyright 2012-2017. All rights reserved

1. Introduction

Nowadays, the Internet of Things (IoTs) is
growing quickly as a subset of big data. Billions of
recent physical devices, such as smart devices [4]
and Wireless sensing Sensor Networks (WSNs)
area unit [15] are expected to be connected in
the near future. WSNs are available in various
applications and services, mostly organizations,
including public and private, especially in the
medical field and health care Therefore, the
data gathered and collected from the WSNs
are considered to be a great source of big data.
With the recent advancements in communication
technology, more and more data are generated
and collected, therefore, the big data will grow
exponentially and this will increase the challenges
of extracting and retrieving the complexity of
the valuable hidden data. There are more than
three billion users of smart objects including
smart phones, smart homes, as well as business
and entertainment applications [16]. These smart
devices allow Machine to Machine (M2M)
electronic communication with or without an
intermediary-user. This has led to what is known
as the “Internet of Things (IoTs) “[8]. The huge
amount of data generation has been useful in
various fields such as commercial, industrial,
scientific, social and medical [11], as shown in
Figure 1.

Big data is a collection of very huge datasets
with a great diversity of types so that it becomes
difficult to process by using state-of-the-art
data processing approaches or traditional data
processing platforms such as Processing Big

A Big Data Framework for
Mining Sensor Data Using Hadoop

Engy A. EL-SHAFEIY*, Ali I. EL-DESOUKY
Computers and Systems Department, Faculty of Engineering,
Mansoura University, Egypt
(*Corresponding author) e-mail: engy.elshafeiy@gmail.com.

Abstract: The data gathered from IOTs is considered of high business value. The IOTs devices sense the natural conditions
using sensor network comprised of sensor nodes. Mining of big sensor data for useful knowledge extraction is a very
challenging task. Frequent itemsets is one of the most effective mining techniques that find important itemsets from big
sensor data. In this paper, a MapReduce Frequent Nodesets-based Boundary POC tree (MR-FNBP) framework is proposed
for mining Frequent Nodesets for big sensor data. The MapReduce framework is used to implement MR-FNBP to enhance
its performance in highly distributed environments. Additionally, the proposed Boundary (FNBP) creates a Boundary as an
early stage to exclude the infrequent itemsets, and this may reduce the overall memory and time usage. Moreover, a number
of experiments were performed to evaluate the performance of MR-FNBP framework. The results show high scalability rate
and a less time consuming process for MR-FNBP framework over different recent systems.

Keywords: Big data, Internet of Things, MapReduce, Wireless Sensor Networks, Mining Frequent Nodesets.

Trajectory Data [19]. In 2012, Gartner retrieved
and gave a more detailed definition as: Big data
are high-volume, high-velocity, and/or high-
variety information assets that require new forms
of processing to enable enhanced decision making,
insight discovery and process optimization. The
main characteristic of Big data included the 3Vs
characteristics (Veracity, Viability, and Value)
and then was elaborated to include the following
characteristics known as the 6Vs:

Volume: Describes the huge data size.
Velocity: Describes the data communication,

processing speeds per time unit.
Variety: Describes the different data types

(structured, semi-structured, and unstructured).
Value: Describes the valuable data knowledge
Veracity: Describes the data quality, such as

data cleaning, filtering.
Viability: Describes the prediction
possibilities.

More generally, a dataset can be called big
data if it is formidable to perform capture,
analysis and visualization on it using current
technology. With diversified data provisions,
such as sensor networks, telescopes, scientific
experiments, and high throughput instruments,
the datasets increase at exponential rate [18].
Other Big data applications lie in many scientific
disciplines such as astronomy, atmospheric
science, medicine, genomics, biologic,
biogeochemistry and other complex and
interdisciplinary scientific researches. Web-based

Studies in Informatics and Control 26 (3) 365-376, September 2017

https://doi.org/10.24846/v26i3y201712

http://www.sic.ici.ro

366

applications encounter big data frequently, such
as recent hot spots social computing (including
social network analysis, online communities,
recommender systems, reputation systems, and
prediction markets), Internet text and documents,
Internet search indexing. Alternatively, there
are uncountable number of sensors around us
that generate less amount of sensor data which
in a need to be utilized, for instance, intelligent
transportation systems (ITS) [27] are based on
the analysis of large volumes of complex sensor
data. Large-scale e-commerce applications [10]
are particularly data-intensive as they involve a
large number of customers and transactions. Data
mining is one of the greatest tasks needed for the
management of big sensing data stream [2].

Figure 1. The Big data generate from Internet of
Things in various fields

WSNs are successfully deployed in detection
applications and diverse monitoring [16]. In these
applications, WSNs generate Big data in the form
of streams. Such data stream from WSNs can be
mined to extract knowledge in real time about
the sensed environment (e.g., mining certain
behaviours [8, 10]) and the network itself (e.g.,
predicting faulty nodes [1]), and this presents
new challenges for data mining techniques. Data
mining techniques, which are well established
in the traditional database systems [27], have
recently received a great deal of attention as
promising tools to extract interesting knowledge
from sensor data streams.

Discovering associated rules from WSNs can
be highly useful in applications that require a
fine-grain monitoring of physical environments
(e.g., buildings, transportation networks, and
battlefield) which may face critical situations
like fire, toxic gas leaks and explosion [18].
Behavioural patterns can also be used to predict
the source of future events. Knowing the source

of a future event may lead to detect faulty nodes,
if any, in the network.

Data Mining has introduced techniques and
tools to extract interesting Frequent itemsets
from Big data. Frequent itemsets mining is an
important subfield of data mining, which consists
of discovering interesting and useful patterns
in transaction databases. The traditional task of
Frequent itemsets mining is to discover groups
of itemsets that appear frequently together in
transactions made by customers. Although itemsets
mining was designed for market basket analysis,
it can be viewed more generally as the task of
discovering groups of attribute values frequently
co-occurring in databases. Because of its numerous
applications in domains such as bioinformatics,
text mining, product recommendation, e-learning,
and web click stream analysis, Frequent itemsets
mining has become a popular research area. FIM
is the most imperative techniques in Data Mining
and Frequent itemsets Mining can be classified
as follows: Apriori a based horizontal formatting
method is the most established algorithm for
finding Frequent itemsets from dataset, however;
it needs to scan the dataset many times to create
many candidate itemsets [1]. Elastic methods are
based on vertical formatting scanning. [24]. FP-
tree method that uses compressed data format
represented as a tree data structure and does
not require candidate itemsets generation [9].
FP-tree has a better performance than Apriori
algorithm, but when mining large amounts of
datasets its execution time increases, Wang, 2010
proposed Node-list (ppv)[5], Deng et al 2012
proposed N-list (PrePost) [6] and 2014 FIN [7].
The high efficiency of PPV and PrePost which
based on Node-lists and N-lists respectively is
accomplished by these two properties. FIN Fast
Mining itemsets using Nodesets [7] algorithm has
been introduced to encode each node either with
a pre-order or post-order. By avoiding scanning
database repeatedly and mining without candidate
generation. FIN achieves the high efficiency when
compared to others. However, execution time is
increased when facing large datasets. Emerging
platforms like IoTs will generate big amounts of
sensor data. Therefore, this type of assumption
will no longer be valid [18]. To process Big data in
transactional databases, researchers have focused
on large scale parallel and distributed frequent
itemsets mining techniques [8, 20, 25, 26] to
improve scalability and to resolve the sequential
bottlenecks and response time. However, these

Engy A. El-Shafeiy, Ali I. El-Desouky

 367

ICI Bucharest © Copyright 2012-2017. All rights reserved

techniques are not suitable to handle big sensor
datasets. Parallel and distributed big sensing
data stream techniques assume that data are
transmitted and partitioned to the computing
nodes in advance. This approach is impractical
in distributed systems for mining of large sensor
data. To handle big sensing data stream, some
researchers have proposed the use of MapReduce
[26] to mine the search space in a distributed
manner. It assumes a data-centric method of
distributed computing with the principle of
‘moving computation to data’. It uses a distributed
file system that is particularly optimized to
improve the I/O performance while handling big
sensing data stream. Hadoop is an open source
implementation of the MapReduce framework.
MapReduce needs to share and pass the support
of individual candidate nodesets rather using the
whole sensor dataset. Therefore, communication
cost is low compared to the traditional distributed
environments. These several parallel mining
algorithms [20, 25] which have been proposed
consist of parallel construction of Frequent
itemsets trees and parallel mining of the tree
structure in a distributed memory environment.
Parallel mining of Frequent itemsets using
MapReduce [23, 26]. MapReduce is a scalable
programming model in which the programmer
writes two functions; a map and reduced functions.
Each of these functions defines a mapping from
one set of key-value pairs to another [12]. The
map function takes an input as the key/value and
produces a set of intermediates key/values. It
groups all the intermediate values associated with
the same key and passes are grouped to be used
in the reduced function. The reduced function
takes an intermediate key and a set of values for
the key and merges all values together to form
smaller set of values [13]. One widely used
implementation of MapReduce is Apache Hadoop
[28] which is a collection of related services
that compose an infrastructure for distributed
computing. Hadoop is known for MapReduce and
its Hadoop Distributed File System HDFS [17] it
provides complementary services such as; Core,
MapReduce, HBASE and HDFS. MapReduce
is a distributed data processing model and
execution environment that runs on large clusters
of commodity machines. MapReduce provides an
abstraction that hides many system-level details
from the developer. Therefore, the developer can
focus on what computations need to be performed
as opposed to how those computations are actually

carried out or how to get the data to the processes
that depends on them [22]. MapReduce provides
a means for distributing computation without
burdening the programmer with the details of
distributed computing [3]. Because of the benefits
of MapReduce model it is used as a parallel
programming model. In [7] the PrePost algorithm
is implemented with MapReduce Framework as
it is the fastest algorithm among others [14, 21].
We will briefly introduce MapReduce Framework
(MR-FNBP) at the sink node based on Hadoop
platform for distributed big sensor data stream
mining technique over MapReduce. This paper
is structured as follows: Section 2 describes our
MapReduce Framework (MR-FNBP) which
is based on the FNBP algorithm which based
on the adaptive Nodesets, including POC-
Tree, Boundary as an early stage to exclude the
infrequent itemsets. Section 3 shows the effect of
implementing FNBP algorithm and MR-FNBP
framework, the results are compared with the
results of the recent work using real and synthetic
datasets. Section 4 introduces our conclusions and
future works.

2. The Proposed MapReduce Frequent
Nodesets-based Boundary POC tree
(MR-FNBP) framework

The MapReduce model for a parallelized
association rule for sensor data. This model
intends to process sensor data at the sink node
that stores the target data collected from sensor
nodes, unlike other studies that either process
data in Hadoop or edge node (sensor node). MR-
FNBP proposed approaches will use the IoTs
devices through a wired or wireless network. Our
proposed approach will work locally on the sink
node rather the cloud environment. The frequent
mining aims to discover the knowledge of a large
dataset, in our case, we will send the knowledge
discovered by the association rule mining at the
sink node instead of sending all the data streams
of the sensor, hence reducing the amount of data
transmission for a big data storage. The Modified
MapReduce Framework (MR- FNBP) is proposed
to solve the problem of processing large scale
datasets by mining the Frequent Nodesets using
the proposed FNBP algorithm. As shown in Figure
2 the Framework consists of four main layers:
1. Flume/Hadoop Data senor
2. MR- FNBP
3. Hadoop Cluster
4. Hadoop/MapReduce.

A Big Data Framework for Mining Sensor Data Using Hadoop

http://www.sic.ici.ro

368

2.1 Flume/Hadoop Data senor

Apache Flume tool is used to capture stream data
for transferring data to HDFS. Flume defines it
as a distributed, reliable, and affordable way to
efficiently aggregate, and move large amounts
of data streams to HDFS. It consists of a simple,
flexible, data-based architecture. Typical data
sources for Flume are data produced by sensors
and other IoTs devices. This data can be uploaded
to HDFS by Flume for further analysis or archived
only. Sensor nodes are distributed in this data
centre. Task Tracker and data node services run
on each Flume node/sensor in the centre. The
Task Tracker accepts tasks to provide task trackers
with the required sensor data, using HDFS in
MapReduce layer.

2.2 Hadoop cluster

Data analysis and management server based
on Hadoop cluster. Hadoop cluster for analysis
of multiple sensor data sources to create
reduced collections for higher level analytics.

Figure 2. MapReduce Frequent Nodesets-based

Boundary POC tree (MR-FNBP) framework

The master node is located in this layer. The
job Tracker services running on the master
nodes, is used to coordinate job requests sent
to and from the Task Trackers in client’s node
using MapReduce.

MR- FNBP layer

This layer implementation is distributed across
the nodes using Hadoop/MapReduce layer, and
it consists of three main modules: Frequent
Nodesets based on Boundary POC tree (FNBP).
The proposed FNBP algorithm is a modified

version of the FIN algorithm [7] and the Boundary
POC tree. Also, this algorithm handles each node
in the itemsets either with a pre-order or post-
order code to overcome the lack of FIN algorithm
in memory consumption and time used by creating
a Boundary at an early stage before creating the
POC tree used by FIN to exclude the infrequent
items and this may lead to a reduction in overall
memory and time usage. FNBP scans the dataset
two times:

1- The first scan is used to create a list of
initial Frequent single-itemsets F1 based on
the Boundary Bo to detect the infrequent items
and delete them before being used by POC
tree, if an item appears in less than Bo then
it is considered infrequent and excluded, this
will decrease the memory consumption and
run time. Finally, the POC tree is constructed
without the infrequent items.

2- Based on the created POC tree, the
second scan will be performed to create a list
of Frequent double-itemsets F2, with updated
Frequent items. Then F2 compared with each
transaction in dataset. The Frequent itemsets
count will be updated. Based on this list, the
POC tree is updated. Then, POC tree is scanned.
The FNBP algorithm shown in Figure2 is based
on heuristic 1.

Heuristic 1: let DB = {S1, S2, ..., Sn} is the
transaction database, M(s) is the Minimum support
threshold, |T| is the total number of transactions,
Bo is the Boundary for transactions, is the itemsets
Support, Tc is the current Transaction, ai is the
current itemsets where ai T⊆ . The main goal
of the Mining of Frequent itemsets is to find the
set of all Frequent itemsets. The Boundary is
calculated, as followsBo T M s= − () +1 (1)

 The FNBP algorithm: starts with calculating (the
Boundary for transactions) which is calculated as
follows:
Bo = number of total Transactions – min support +1.

The dataset is scanned according to Minimum
support threshold M(s) defined by the user
(depending on datasets size). The transactions of
each dataset are scanned whether the transaction
number Tc is less than or equal to the Boundary
value (Bo). Any item greater than Bo will be added
to the list Item (F1). Otherwise, it is excluded and
increment the count of the list Item (F1) that is

Engy A. El-Shafeiy, Ali I. El-Desouky

 369

ICI Bucharest © Copyright 2012-2017. All rights reserved

used to construct the POC-tree. Scan DB again
to form and use the POC-tree for mining the
Frequent itemsets in each record and rearrange
them in the same order of F1.

 -
 -
 -
 -
 -
 -
 -

Figure 3. The proposed FNBP Algorithm

For this purpose, we use FIN algorithm, which
is a breadth-first search algorithm used to
identify the association rules that highlight the
general trends of the database. Then apply the
FIN algorithm on the pre-processed dataset. The
FIN algorithm aims to identify the most frequent
items, and prunes the infrequent items from the
list, to generate the rules.

Assuming the List of items in each record is
[p|P],p] where, p the first item in the list, and P is
the reset of items. The function called ([p|P], Ti])
Insertis used to insert the first item and reminder
of the list and its transaction in the tree, the tree
formed respectively in pre-order traversal set pre
order of each node to establish Nodesets-list of
Frequent itemsets [7] as shown in Figure 3.

Example of working FNBP algorithm

Suppose we have a dataset of 10 transactions from
data sensor, as shown in Table 1:

Table 1. Sensor data stream flow

Dataset
Tid

Itemset Sorted
Frequent

items
1 S1, S2, S3, S4, S5 S3,S1,S5,S2

2 S1, S3, S5, S8 S3, S1,S5,S8

3 S2, S3, S4, S5, S7,S1 S3,S1,S5,S2

4 S1, S3, S5, S8 S3,S1,S5,S8

5 S2, S3, S5,S8 S3,S5,S2,S8

6 S2, S6, S7, S10, S11 ,S3 S3,S2

7 S1, S8, S10, S11 S1,S8

8 S1, S2, S6, S8, S10 S1,S2,S8

9 S2, S6, S8, S12, S5,S1 S1,S5,S2,S8

10 S1, S8, S9, S12, S13 S1,S8

Suppose that our Minimum support threshold
M(S) is 0.6, Minimum support to total transaction
database is 6 and Bo is 5. In the first scan, suppose
that Tc = {S1, S2, S3, S4, S5, S7, S8}items are
used for memory allocation and count updating
operation. Based on FNBP algorithm, the itemsets
are beyond the pre-defined Bo, as a result they
will not be used in memory allocation as they
aren’t Frequent after transaction T5. But according
to Minimum support Is count, the sorted one
Frequent items= {S3, S1, S5, S2, S8}.

• Suppose that our Minimum support threshold
M(S) is 0.4, Minimum support to total
transaction database is 4 and Bo is 7. T1 to T7
used for memory allocation= {S1, S2, S3, S4,
S5, S6, S7, S8, S10, S11} and new Tc = {S9,
S12, S13} will be considered as infrequent
items, and items {S4, S6, S7, S10, S11} will
be removed due to Minimum support Is
count and only {S1, S2, S3, S4, S8} will be
available as Frequent Items out of total unique
13 items, so the sorted one-Frequent Items=
{S3, S1, S5, S2, S8}. The example shows that
using Boundary in FNBP algorithms reduces
the execution time by reducing the storage
space of candidate items and their counting
operations. The Threshold and Boundary
Generation: Threshold and Boundary
Generation are implemented as: M(S) Let be
the predefined minimum support and |DB| be
the number of transactions in DB. An itemset

Output: F, (the set of all Frequent itemsets).Procedure:
F←Ø;
Calculate Boundary Bo T M s() = − () +1 ;
Scan Dataset once according to Bo;
For each Ti DB⊆ do
If TC Current Transaction No Bo Then_ _ ,() ≤
Split the transaction into items;
Get the item;
ai← currently item;
If ai new item Then
F1(the set of all Frequent 1-itemset) ← ai;
End if
End for
Filter Infrequent Items;
Sort F1 (the set of all Frequent 1-itemset) descending order as
L1;
Create of POC-Tree root, Tr, label ← Null;
For each Ti DB do ⊆

Sort the Frequent items according to order F1;
Sorted Frequent item List→ [p|P]; //p the first item and P the
reminder List
INSERT tree ([p|P], Tr);
If N.item - name = p.item-name Then// Tr has child N
increase N’s count by 1;
else
Create a new node N;
increase N’s count by 1;
END if
End for
Scan POC-Tree to generate pre-order of each node by pre-order
traversal;
F2←Ø; //store Frequent two-itemsets
Scan the POC-Tree by the pre-order traversal for each node N
do
F2← F2{two-items}; //Insert all Frequent two-itemsets→ F2
F2← F2-{p}; //Delete all infrequent two-Itemsets from
F2
P.Nodests← Ø; //Initial the Nodesets of all Frequent two-item-
sets
Scan the POC-Tree by the pre-order traversal for each node N do
Generate the Nodesets of all Frequent two-itemsets
F← F F1; // to Generate all Frequent k-itemsets(k≥3)
For each Frequent itemset, is it, in F2 do //for each Frequent
two-Itemsets such as is it
Create the root of a tree, Rst, and label it by List;
Call Pattern_Tree (Rst,{i | i ϵ F1,i ˃ is},Ø);
End for
Return F

A Big Data Framework for Mining Sensor Data Using Hadoop

http://www.sic.ici.ro

370

P is Frequent if its support is no less than
M(S) x |DB| Given a transaction database
DB and a threshold M(S), the old task of
Mining Frequent itemsets is to find the set of
all itemsets whose supports are not less than
M(S) x |DB|. But in this task the calculating
Bo (the Boundary for transactions), which
calculated as Bo = |DB| - M(S) + 1. The
dataset is scanned according to Bo.

Figure 4. The POC tree after running Algorithm 1 on
database shows in table

2.3 Hadoop/MapReduce

Hadoop/MapReduce service runs on each
node. It consists of Hadoop Distributed File
System (HDFS), used for data storage, mapper
and reducer functions used by MR-FNBP. This
layer contains three main phases as follows;
MapReduce1, MapReduce2 and MapReduce3.
These phases are responsible for calculating the
Frequent itemsets based on Nodesets-list using
the proposed FNBP algorithm. F1-list is created
in MapReduce1 while MapReduce2 creates POC
tree and finally all Frequent itemsets are created
through MapReduce3. These can be shown
from layer 4 in Figure 2. The core of this layer
is the FNBP algorithm and the three parallel
MapReduces.

The main steps of the proposed FNBP algorithm.
Each K-Frequent itemset FK corresponds to
Frequent itemsets-list is organized in descending
order according to the pre-order code. The results
of Frequent itemsets-list construct the POC-Tree’s
main purpose which is to generate Nodesets-list.
Finally, the POC tree is mining to produce all the
Mining Frequent itemsets based on Nodesets-
list. Then, we can delete the POC Tree to reduce
memory overhead. The main steps are:

 - Scan transaction database named DB
according to the given Boundary (itemsets

selected), output the F1-list in descending
order according to the number of its support.

 - Scan (itemsets selected), select the Frequent
items in each record and arrange them in the
order of F1, assuming the list of Items in each
record is [p|P], p which is the first item in the
list and P is the rest of the items to generate
the POC tree.

 - The formed tree created in preorder on each
node is grouped to establish Nodesets-list of
the Frequent itemsets.

 - Mining Frequent itemsets based on the
Nodesets-list using the FIN algorithm.

2.3.1 Phase 1: The MapReduce 1 functions

In the first MapReduce function two steps are
conducted (i) the database is divided into (m)
itemsets (ii) the itemsets processing is performed
using MapReduce computations.

Figure 5. Pseudo code of Map and Reduce functions
in the first phase

Each map function takes one split as input.
The output of this phase is Frequent itemsets
and their occurrence for each split as a list of
intermediate key/values. In this phase, each
nodes independently perform map function,
reduce function combined statistical results
and dropped infrequent itemsets according to
Boundary calculate. Figure 5 shows the map and
reduce function for phase 1. This phase blocks
the database level whereas the process uses the
default file block policy of Hadoop, and then the
data block is called shard which is allocated on
each worker node.

Count the number of items in each shard set in
map stage, reduce function merges output of map

The Pseudocode for Map 1 function
Output: F1-list {set of Frequent one Itemsets
list in descending order from sensor data}

1. Procedure: Mapper. (Key, value = Ti)
2. If Ti ≤ Bo Then
3. For each item ai in Ti do
4. Output (<key= ai , value=1˃)
5. end for
6. end if
7. end

The Pseudocode for Reduce1 function
1. Procedure: Reducer (key= ai, value=S (ai))
2. count = 0;
3. For each 1 in S (ai) do
4. count + = 1;
5. end for
6. If (count >= M(S))Then
7. Output (<key= ai ; value=count ˃); //output the
8. call function Sort (F1);

Output the F1-list

Engy A. El-Shafeiy, Ali I. El-Desouky

 371

ICI Bucharest © Copyright 2012-2017. All rights reserved

stage and generates Frequent itemsets Mining
(F1-list) according to the Frequent Boundary Bo,
generate descends F1-list. In this step the Frequent
itemsets are generated for each block resulted
from the previous step and the MapReduce model
outputs the itemsets along their occurrences in the
block using one map and one reduce function.

2.3.2 Phase 2: The MapReduce 2 functions

This phase generates Frequent itemsets and their
occurrence in all shards: based on the generated
itemset from the previous phase. The itemsets and
its occurrence in the whole shards are generated
using one map and one reduce functions. In Map
2 shard functions. Each map filters shard based
on the input F1-list, for each transaction of sort
Frequent items based on the sequence of F1-list
and outputs the same F1-list.

Figure 6. Pseudo code of Map and Reduce functions
in the second phase

Then, reduce function constructs the compressed
POC-Tree. Only Preorder traversal is made to
determine and generate Nodeset-lists of one
Frequent itemsets. Algorithm 3 is shown in Figure
6 depicts the pseudo code of the second map and
reduce functions 2.

2.3.3 Phase 3: The MapReduce 3 functions

The third phase: firstly group the generated
F-list resulted from phase 1 and phase 2 in a
single Frequent itemsets nodeset and 2’ Frequent

itemsets nodeset according to the Pseudo code 6,
Secondly, these Nodesets are mined using the last
POC tree as shown in Figure 7.

Figure 7. Pseudo code of generating F2-list of two
Frequent itemsets and grouped in Nodeset

Figure 8. Pseudo code of Map functions in the
third phase

Input: The shards and F1-list.
Output: (POC-tree)

1. Procedure: Mapper (key, Ti)
2. For each Ti do
3. Select the Frequent items in Ti sort out the accord-

ing to the order of F1-list
4. Produce a path [pIP] as the value to output

<key, [pIP]˃
5. end for
6. end

 The Pseudocode for reduce 2 Function
[POC- Tree Constriction]
Procedure: Reducer (key, [pIP])

1- F←Ø;
2- Create POC TreeNode root,Tr;
3- POC TreeNode label ← Null;
4- For each [pIP] do
5- Call INSERT tree([p|P],Tr);
6- If N.item - name = p.item - name Then//

Tr has child N
7- Increase N’s count by 1;
7. Else
8. Create a new node N with its count, Initialized to

1;
9. If P is nonempty then
10. Call INSERT tree([p|P],Tr) recursively
11. Scan POC-Tree to generate the pre-order of each

node by the pre-order traversal;
12. end if
13. end if
14. end

The Pseudocode of generation Nodesets- List
of 2’ Frequent Itemsets

15. POC-tree and group of the F1-List, the set of
Frequent one- itemset List

16. Output: the set of the Nodesets -lists of
Frequent two-itemsets.

17. F2←Ø; //store Frequent two-itemsets
18. Scan the POC-Tree by the pre-order traversal;
19. for each ancestor of two-node N,Nado
20. If p.support< M(S) ×|DB| Then
21. F2← F2-{p};
22. Else
23. P.Nodeset←Ø;
24. End if
25. End for
26. Scan the POC-Tree by the pre-order traversal;
27. for each ancestor of two-node Nd,Nda do
28. if two-item registered in Nd,Nda ϵ F2 then
29. two - item. Nodeset←

two - item. Nodeset ∪ Nda.N_info;
30. end if
31. end for
32. F←F ∪ F2
33. For i = 0 to F2.size() do
34. groups [i % grouped_size] add (F2[i]) ;
35. end for
36. end

The mining_kItemSetFreq (F, M(S), Nd, itemsets_
childnodesgenerate, parent Nd_frequent)

1. For (j=0 to F) do
2. Nd.equivalent_items ← Ø; //Nd is the current

node
3. Nd.childnodes← Ø;
4. Next_ itemsets_childnodesgenerate ← Ø; //

itemsets_childnodesgenerate is the available
items to generate child nodes of Nd

5. For
each i ϵ itemsets_childnodesgenerate do

6. X ←Nd.itemset
7. Y {i} ∪ (X _ X[1])
8. P {i} ∪ X;
9. P.Nodeset← X.Nodeset ∩ Y.Nodeset
10. If P.support = X.supportthen
11. Nd.equivalent_items=Nd.equivalent_items {i};
12. Else if P.support ≥ |DB| × M(S),
13. Create node Ndi
14. Ndi.label ←i;
15. Ndi.itemset← P;
16. Nd.childnodes← Nd.childnodes ∪ {Ndi};
17. Next_ itemsets_childnodesgenerate ← Next_

itemsets_childnodesgenerate∪ {i};
18. End if
19. End for
20. If Nd.equivalent_items ≠ Ø then
21. SS the set of all subsets of Nd.equivalent_items;
22. PSet {A | A = Nd.label , À ϵ SS};
23. If parentNd_Frequent =Ø, then
24. FIT_Nd← PSet;
25. Else
26. FIT_Nd {Ƥ | Ƥ = P1 [P2, (P1 ≠ Ø ^ P1 ϵ PSet)

and (P2 ≠ Ø ^ P2 ϵparentNd_Frequent };
27. End if
28. F ← F FIT_Nd;
29. End if
30. End for

A Big Data Framework for Mining Sensor Data Using Hadoop

http://www.sic.ici.ro

372

3. Performance Evaluation

A number of experiments were conducted to
evaluate the performance of both FNBP algorithm
and (MR-FNBP) Framework.

3.1 Evaluation of FNBP algorithm

To evaluate the performance of the FNBP, a
number of experiments are conducted on three
different datasets: BMS-Webview-2, Connect,
and T25I10D100 K which are often used in most
previous researches of Frequent itemsets Mining.
The BMS-Webview-2 and Connect datasets are
downloaded from SPMF repository. The BMS-
Webview-2 dataset contains click-stream data
from a web store used in KDD-Cup 2000 while
the connect dataset is derived from game steps.
The T25I10D100 K dataset is a synthetic dataset
and generated by the IBM generator.

Table 2 shows the characteristics of these datasets.
It shows the average transaction length (denoted
by Avg. Length), the number of items (denoted by
Items) and the number of transactions (denoted by
Trans) in each dataset.

Table 2. The characteristics of these datasets
under study

Database Avg.
length

 Items Transaction

BMS-
Webview-2

160 3.340 77.512

Connect 43 130 67,557
T25I10D100
K

25 990 100000

In FNBP implementation, the FIN, PrePost and
FP-growth algorithms are used as the baseline
algorithms. FIN and PrePost have proven to be
the best algorithms among all node-based methods
[6, 7]. FP-growth is the best algorithm among FP-
tree-based methods [9]. All these algorithms are
implemented in Java. Using 8G memory PC with
an Intel Core i5 processor. And windows server
2012 operating system standard x64 Edition.

3.1.1 Experiment one

These Experiment testes the running time of
FNBP algorithm, when compared with three
recent Frequent itemSets Mining algorithms. This
is made for the three datasets shown in Table 2.
The results obtained are shown in Figure 9.
Figure 9 shows the relation between running time

(measured in s) and Support (%) and Memory
consumption for the datasets.

Figure 9(a). Running time and consuming Memory
on T25I10D100 K

Figure 9(b). Running time and consuming Memory
on BMS-Webview-2

Figure 9(a) shows that the running time and
memory consumption of FNBP are much lower
than FP-growth and FIN with the same support
more than 3%. FNBP running time and memory
consumption get slightly higher and great

Engy A. El-Shafeiy, Ali I. El-Desouky

 373

ICI Bucharest © Copyright 2012-2017. All rights reserved

improvement in memory consumption than FIN.
Figure 9(b) and 9(c) also show that the running
times of FNBP algorithm is lower than the other
algorithms for all Minimum support values and
Memory consumption.

Figure 9(c). Running time and consuming Memory
on Connect

Figure 9: comparison study

3.2 Evaluation of MR-FNBP algorithm

3.2.1 Experiment two

A number of experiments have been performed
in order to validate and evaluate our framework.
These experiments are used to test the run time
and measure the performance of MR-FNBP
Framework compared with MrPrePost (3MR)
[14] and MrPrePost (5MR) Framework [21].
MrPrePost has proven to be the best parallel
algorithm based on Hadoop platform and
MrPrePost algorithm can adapt to mining large
data’s association rules. But, there have been
improvements in MrPrePost (3MR) algorithm
with using3 MapReduce and then it was developed
with the use of 5MapReduce till finding N-List
from Frequent Itemset. The datasets Connect
T10I4D100K and T10I18D1000K which are

used to test the performance of the (MR-FNBP)
Framework. The first two are available in http://
fimi.ua.ac.be/dataJ or http://archive.ics.uci.edu/
ml/datasets.html. The dataset T10I18D1000K
are generated with Spawner Data Generator tools.
Table 3 shows the parameters used to generate
T10I18D1000K datasets.

Table 3. The Parameters used to generate
T10I18D1000K dataset

Average maximal potentially
Frequent Itemsets size

4,10,000
distinct
items

Average transaction size 10

Number of transactions in the
dataset generated

1000 K

Number of transactions in the
different items used in the dataset

100 K

Three desktop computers are used with Ubuntu
14.4 and core i5 processor and memory size
8GB RAM to test the validity of the (MR-FNBP)
Framework in highly distributed environments.
The results obtained are shown in Figure 10.
The Figure show that the running time of MR-
FNBP Framework is much better than all others
frameworks in all Minimum support in large
or small dataset, but in small datasets we must
adjust the minimum support to improve time and
memory. The method setnumMapTasks (int num)
method in the configuration mapping is used to
test the validity of the MR-FNBP Framework
compared with the others framework, the number
of maps in each node is increased. The results
obtained are shown in Figure 10(d).

The method setnumMapTasks(int,num) method
in the configuration mapping is used to test the
validity of the MR-FNBP Framework compared
with the others framework, the number of maps
in each node is increased.

Figure 10(a). Running time of MR-FNBP on
T1014D1000K

A Big Data Framework for Mining Sensor Data Using Hadoop

http://www.sic.ici.ro

374

The results obtained are shown in Figure 10(d).
The results showed that increasing the number of
map will decrease the running time used for MR-
FNBP, this is due to MR-FBNP Framework pre-
defined the Frequent itemsets in an early stage.

Figure 10(b). Running time of MR-FNBP onT-
10118D1000K

Figure 10(c). The Running time of MR-FNBP on
Connect

Figure 10(d). The runtime of MR-FNBP with diffe-
rent of map tasks

Figure 10: compression study

This results in decreasing the number of blocks
in the input file of the MapReduce functions.
From the Figure 10(d) we cannot notice a slight

reduction in the running time after (3) maps due
to the limited capacity of the single node.

3.2.2 Experiment three

Our experiment has been using widely used
measures including sizeup and speeding up.
For the details of the measures refer to [21]
our experiments are performed in a Hadoop
2.7.2 cluster of 12 nodes, one of which worked
as master and the others worked as slaves. The
slave nodes are the same hardware settings: core
i7 processor, memory size 16G RAM, the (MR-
FNBP) Framework is implemented with Java. We
generate two datasets called (Dataset 1, Dataset
2). The synthetic datasets Dataset 1, Dataset 2 are
generated to be used in the experiments and the
size of these datasets 500 MB, 1GB respectively.

Figure 11(a). Dataset 1 (500MB)

Figure 11(b). Dataset 2 (1 GB).
Figure 11: runtime comparison by varying the Min

Support %

Experiments for different datasets and different
threshold (0.4 to 2) were done. The results are
shown in Figures 11, 12. Figure 11 shows very
much decreasing in running time of MR-FNBP
comparing to others. Figure 12 shows a running
time with enlargement of the size of the datasets.
Figure 13 shows Speed-up S(P) comparing to
others on different cluster size for the datasets
(Dataset 1, Dataset 2). The (MR-FNBP)
Framework can deal with large datasets better.

Engy A. El-Shafeiy, Ali I. El-Desouky

 375

ICI Bucharest © Copyright 2012-2017. All rights reserved

Figure 12(a). Dataset 1 (500MB, Minsupp=2.2%)

Figure 12(b). Dataset 2 (1 GB, Minsupp=2.8%)

Figure 12: runtime comparison by varying the
dataset size

Figure 13(a). Dataset 1 (500MB, Minsupp=2.2%)

Figure 13 is Speed-up for different cluster size.
Speed-up S(P) is defined in literature as follow:
S(P) =T(1)/T(m)(2).

Where T(1) running time of an algorithm on
one single node, and T(m): running time of an
algorithm on multiple (m) node.

The dashed line is the ideal workflow to linear
speed-up and it intersects the mean values of
all boxplots.

Figure 13(b). Dataset 2 (1 GB, Minsupp=2.2%).
Figure 13: speed-up S(P) for different cluster size

4. Conclusions and Future Work

This paper proposed a modified FNBP Nodesets
algorithm with an early Boundary stage based on
the Boundary POC tree to ignore the infrequent
items to resolve memory problems. The paper
also presents a modified MapReduce Framework
capable of implementing on several computing
nodes and achieves highly parallel computing.
Several experiments have been done; the results
obtained showed that either FNBP algorithm or
MR-FNBP Framework using MapReduce are
viable and efficient in Mining Frequent itemsets
for complex data or huge amount of data.

In the era of Big Data, cost efficient high
performance computing proved to be the only
viable option for most scientific disciplines.
Frequent itemsets Mining is one of the most
representative fields in this area, as the data
explosion has exceeded current hardware
capabilities. The rate of producing new data is
expected to increase significantly faster as well as
the cost in hardware computational capabilities.
Data-aware optimization can be a powerful weapon
in our arsenal when it is utilized from data mining
to develop sciences and to provide new insights.

REFERENCES

1. Agrawal, R., Imieliński, T., & Swami, A. (1993,
June), Mining association rules between sets
of items in large databases. In Acm sigmod
record (Vol. 22, No. 2, pp. 207-216). ACM.

2. Aggarwal, C. C. (Ed.) (2013), Managing and
mining sensor data. Springer Science & Business
Media.

3. Dean, J., & Ghemawat, S. (2008), MapReduce:
simplified data processing on large
clusters. Communications of the ACM, 51(1),
107-113.

A Big Data Framework for Mining Sensor Data Using Hadoop

http://www.sic.ici.ro

376

4. Dhope, T., Simunic, D., & Djurek, M. (2010),
Application of DOA estimation algorithms in
smart antenna systems. Studies in informatics and
Control, 19(4), 445-452.

5. Deng, Z., & Wang, Z. (2010), A new fast vertical
method for mining frequent patterns. International
Journal of Computational Intelligence
Systems, 3(6), 733-744.

6. Deng, Z., Wang, Z., & Jiang, J. (2012), A new
algorithm for fast mining frequent itemsets
using N-lists. Science China Information
Sciences, 55(9), 2008-2030.

7. Deng, Z. H., & Lv, S. L. (2014), Fast mining
frequent itemsets using Nodesets. Expert Systems
with Applications, 41(10), 4505-4512.

8. Elmangoush, A., Alhazmi, A., Magedanz, T.,
Schuch, W., Estevez, C., Ehijo, A., & Mukudu,
N. (2015, October), Towards Unified Smart City
Communication Platforms. In Proceedings of the
Workshop on Research in Information Systems
and Technologies, Chillán, Chile (Vol. 16).

9. Han, J., Pei, J., & Yin, Y. (2000, May), Mining
frequent patterns without candidate generation.
In ACM sigmod record (Vol. 29, No. 2, pp.
1-12). ACM.

10. Ionita, I. (2013). SAM-An Automated
System Based on Data Mining for Credit
Scoring. STUDIES IN INFORMATICS AND
CONTROL, 22(4), 291-298.

11. Ionita, I., & Ionita, L. (2016), Applying Data
Mining Techniques in Healthcare. STUDIES IN
INFORMATICS AND CONTROL, 25(3), 385-394.

12. 12. Lin, K. C., Liao, I. E., Chang, T. P., & Lin,
S. F. (2014), A frequent itemset mining algorithm
based on the Principle of Inclusion–Exclusion and
transaction mapping. Information Sciences, 276,
278-289.

13. Lin, K. C., Liao, I. E., Chang, T. P., & Lin, S.
F. (2014), A frequent itemset mining algorithm
based on the Principle of Inclusion–Exclusion and
transaction mapping. Information Sciences, 276,
278-289.

14. Leung, C. K. S., MacKinnon, R. K., & Jiang, F.
(2014, June), Reducing the search space for big
data mining for interesting patterns from uncertain
data. In big data (BigData congress), 2014 IEEE
international congress on (pp. 315-322). IEEE.

15. Liao, J., Zhao, Y., & Long, S. (2014, May),
MRPrePost—A parallel algorithm adapted for
mining big data. In Electronics, Computer and
Applications, 2014 IEEE Workshop on (pp. 564-
568). IEEE.

16. Merezeanu, D., Vasilescu, G., & Dobrescu, R.
(2016), Context-aware Control Platform for Sensor
Network Integration in IoT and Cloud. Studies in
Informatics and Control, 25(4), 489-498.

17. Rathore, M. M., Ahmad, A., Paul, A., & Rho, S.
(2016), Urban planning and building smart cities
based on the internet of things using big data
analytics. Computer Networks, 101, 63-80.

18. Shvachko, K., Kuang, H., Radia, S., & Chansler,
R. (2010, May), The hadoop distributed file
system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on (pp.
1-10). IEEE.

19. Sridhar, P., & Dharmaji, N. (2013), A comparative
study on how big data is scaling business
intelligence and analytics. Int. J. Enhanced Res.
Sci. Technol. Eng, 2(8), 87-96.

20. Stojanovic, N., & Stojanovic, D. (2015), A Hybrid
MPI+ OpenMP Application for Processing Big
Trajectory Data. Studies in Informatics and
Control, ISSN12201766, 24(2).

21. Tan, K. L., & Sun, Z. H. (2006), An algorithm for
mining FP-trees in parallel. Computer Engineering
and Applications, 13, 155-157.

22. Thakare, S., Rathi, S., & Sedamkar, R. R. (2016),
An Improved PrePost Algorithm for Frequent
Pattern Mining with Hadoop on Cloud. Procedia
Computer Science, 79, 207-214.

23. Woon, Y-K., W-K. Ng, and E-P. Lim. “A
support-ordered trie for fast frequent itemset
discovery.” IEEE Transactions on Knowledge and
Data Engineering 16.7 (2004): 875-879.

24. Woon, Y. K., Ng, W. K., & Lim, E. P. (2004),
A support-ordered trie for fast frequent itemset
discovery. IEEE Transactions on Knowledge and
Data Engineering, 16(7), 875-879.

25. Zaki, M. J., Parthasarathy, S., Ogihara, M., &
Li, W. (1997, August), New Algorithms for Fast
Discovery of Association Rules. In KDD (Vol. 97,
pp. 283-286).

26. Zaïane, O. R., El-Hajj, M., & Lu, P. (2001), Fast
parallel association rule mining without candidacy
generation. In Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference
on (pp. 665-668). IEEE.

27. Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J. Z.,
& Feng, S. (2010, November), Balanced parallel fp-
growth with mapreduce. In Information Computing
and Telecommunications (YC-ICT), 2010 IEEE
Youth Conference on (pp. 243-246). IEEE.

28. Zhang, J., Wang, F. Y., Wang, K., Lin, W.
H., Xu, X., & Chen, C. (2011), Data-driven
intelligent transportation systems: A survey. IEEE
Transactions on Intelligent Transportation
Systems, 12(4), 1624-1639.

29. Hadoop, A. (2016), Welcome to apache
hadoop. 2011-06-20]. http.-//hadoop, apache, org.

Engy A. El-Shafeiy, Ali I. El-Desouky

