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1. Introduction

Due to its simplicity, low manufacturing cost 
and low maintenance, the induction cage 
machine has earned its leading position in 
applications requiring very high dynamic and 
static performance [24]. On the other hand, this 
simplicity is accompanied by a low starting torque 
and at constant frequency, it transmits a constant 
speed. Power electronics has recently emerged 
as a complex and multidisciplinary technology 
which brought the variable frequency, and also 
flow control to provide high torque [26]. Thanks 
to this, the asynchronous motor was able to take 
a step ahead.

This machine is not easy to control due to the 
nonlinearity of its dynamic model. Moreover, its 
state variables are not all measurable and it is under 
the influence of parametric variations. Therefore, a 
good control is necessary to guaranty the stability 
of its proper functioning. In the literature, most 
of the works deal with steady state vector control 
[8-10, 21, 25], Direct Torque Control (DTC) [19], 
Sliding Mode Control (SMC) [13,27]. In addition, 
nonlinear control applied to induction machine has 
been developed such in [14]. 

The advantages of such approaches are their 
robustness to disturbances and their simplicity of 
implementation. The major disadvantage of the 
set-up is that all controls rely on the reliability 
of the measurement provided by sensors, 
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which makes these commands vulnerable. The 
occurrence of an output sensor fault and especially 
the actuator faults which directly affect them, 
hence the development of fault-tolerant controls 
is needed [6,11,15].

The first step of active fault tolerant control is the 
detection and the location of faults. Fault detection 
uses up to now signal processing techniques 
[17], for operating phases, which highlights 
and localizes a dysfunction. Moreover, most of 
the techniques are based on observers [1, 23] or 
analytical redundancy based on parity space [3].

The second step, is the estimation of faults. 
Several works have been presented such us [2, 
20]. However, the nonlinearity of the IM model 
makes the estimator’s synthesis difficult. This 
problem is solved by separating the system into 
two subsystems, performing a linearization to 
obtain a linear model whose parameters depend 
on the rotation speed. Then a Linear Parameter 
Varying model (LPV) has been obtained and 
developed in several works. Reference [21] is 
dedicate to design a nonlinear method for a fault 
diagnosis method based on a polytypic linear 
parameter varying (LPV) formulation, and [12] is 
interested in a stability analysis of the double feed 
induction machine using LPVs. On the other hand, 
in [4] a design of a linear parameter varying model 
is used to control the speed of the shaft angle of 
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an induction motor. Moreover, to eliminate the 
nonlinear character of the model, the authors of 
[16] use a Takagi-Sugeno approach for the design 
of an unmeasurable premise variable nonlinear 
observer for determining parameters inside a PEM 
Fuel Cell which is able to estimate the pressures 
and mass flow rates.

There are several methods developed for fault 
diagnosis and estimation, and the large challenge 
resides in the pairing between the LPV model 
and the estimator. A solution has been made by 
using observers with unknown input, which is 
considered one of the most effective observers, 
and it is used in [7] for state estimation applied to 
particular class of uncertain systems. Reference 
[22] deals with a nonlinear unknown input 
observer based on linear matrix inequality 
approach and propose an observer for the fault 
actuator detection and isolation scheme. Reference 
[5] deals with a nonlinear observer to detect for 
actuator fault (Exhaust Gas Recirculation) of 
diesel engines.

In this context, the main objective of this study 
is to put in place an observer with unknown 
input based on an LPV model that can efficiently 
estimate the faults of the actuators and the output 
states of the IM. This problem will then be 
translated into a convex optimization problem that 
will be solved using the Linear Matrix Inequalities 
(LMI) tools.

Section 2 deals with the presentation of the 
dynamic model of IM. The model given in section 
2 is transformed in LPV model where the rotation 
speed represents the nonlinearity of LPV model. 
The LPV model will be used, in Section 4, to 
perform the synthesis and design of an observer 
with unknown inputs (faults and disturbance). 
In Section 5, simulation results shown the 
performance and the effectiveness of the proposed 
approach.  Finally, section 6 concludes this study 
and presents the future works.

2. Dynamic model of induction 
machine

The current modelling approach of the 
asynchronous machine is based on the 
transformation of the three-phase system into a 
bi-phase system equivalent to Park.

Thus, in order to study the diagnosis of the 
asynchronous machine, both the stator variables 

and the rotor variables of the Park transformations 
are generally applied under assumptions on the 
magnetic circuits. It can also be asserted that the 
model is nonlinear as shown by the following 
equations [9,11,19,21,26]:

Here, the stator and rotor current components 
with Flux and speed velocity are considered as 
state variables, the stator voltage components are 
considered as inputs, stator current components 
and rotation speed are considered as outputs as 
given in Equations (1)-(7). Then the induction 
machine model written in state space form is:







x x x kx pkx u
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x

s

s
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
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(1)

In addition, the equation of the rotor speed is 
the following:

ω ω ψ= − + −( ) + −
K
J

x x x x
J
Cf
r2 3 1 4

1
,

where the state vector x is given by:

x x x x x T= [ ]1 2 3 4                                         (2)                                        

and: 

x i x i x xds qs dr qr1 2 3 4= = = =; ; ; .φ φ

1 1 ,  ,, , m m
sm

s r s r r

L pLR k
L L L JT T

β γ β ψ α
σ σ

= = = = =      

nx∈ℜ is the state vector, u p∈ℜ is the vector of 

control inputs and my∈ℜ is the output vector and 
variables are functions of time t. All vectors are 
in appropriate dimensions. The output vector is:

[ ] [ ]2 1 2 1
T Ty y y x x= =                              (3)

The input vector is:

[ ]1 2

TT
ds qsu u u V V = =                             (4)
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The input function matrix B can be written as:

1

2

1 0 0 0

10 0 0

s

s

T

LB
B

B
L

σ

σ

 
    = =    
 
 

               (5)

All parameters with their values can be found in 
the Nomenclature Table. 

3. Linear Parameter Varying (LPV) 
model of induction machine

Reference is made to the nonlinear state–space 
model of a squirrel–cage IM considered in 
equation 1 [4, 18]. Under the assumption of linear 
magnetic circuits, the electrical and mechanical 
state equations turn out to be:

( ). ( ) . ( )x A x x t B u t= +  	        (6)
where: 

0
( )

0 ( )
0 ( )

s

s

m s

m s

k pk
pk

A x
L p

L p

γ ω α ω
ω γ ω
α α ω ω

α ω ω α

− 
 − − − =
− − − 
 − − − − 

The rotor speed is considered as a varying 
parameter ρ ω= , the equation (6) can be 
interpreted as the state equation of an LPV system 
with state [ ]1 2 3 4

Tx x x x x= . This state 
equation (6) can be rewritten in the usual form:

( ) ( ). ( ) . ( )
. ( )

x t A x t B u t
y C x t
ρ= +

 =



                                     (7)

where:

0( ) iA A Aρ ω= +                                                (8)
with:

0

0
0

0
0

s

s

m s

m s

k
k

A
L

L

γ ω α
ω γ α
α α ω

α ω α

− 
 − − =
 − −
 − − −                   

(9)

and: 
1 0 0 0

C
0 1 0 0
 

=  
                                             

(10)

Due to physical limits, we assume that all the 
components of the state are measurable or 
estimable and this allowed us to say that:

min maxρ ρ ρ≤ ≤                                               (11)

For this purpose the following variation interval 
is obtained:

min
1 min 1

max min

max
2 max 2

max min

A A

A A

ω

ω

ω ωρ
ω ω
ω ωρ
ω ω

− = ⇒ = −
 − = ⇒ =
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with:
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p
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ω
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ω
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A
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ω

ω
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ω
ω
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 
 

So we will have:

( ) 1 min 2 max
1

r

i i
i

A A A Aω ωρ ρ ρ ρ
=

= = +∑
     

(13)

and 
1

1
r

i
i
ρ

=

=∑ is verified.

4. UIO design for a nonlinear system 
(LPV model)

4.1 Description and preliminaries on  
the observer

The method adopted in this article is related 
to the work carried out in [3] which deals with 
the design of fault detection and isolation (FDI) 
for an induction machine using Non-Linear 
Analytical Redundancy (NLAR) and the residuals 
are generated by analytical redundancy relation. 
As mentioned in the introduction, this work will 
focus on the estimation of the actuator fault and 
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the state estimation. The scheme presented in 
Figure 1, gives a presentation of the principle 
of the observer with unknown input, where U 
represents the command, f the actuator fault, d 

the perturbation, f̂  and x̂  are respectively the 
estimate of the fault and the estimate of the state, 
and y the output of the machine [5,7,22].

Figure 1. Schematic block of the approach

4.2 Design of unknown input observer  
for IM

Consider the variable system of linear parameters, 
described by an LPV model affected by actuator 
faults as follows:

( ) ( ( )). ( ) . ( ) ( )
. ( )

x t A t x t B u t Ff t
y C x t

ω= + +
 =



                   
(14)

Where f represents the faults vector. A (ω), B and 
F are matrix of appropriate dimension.
The equation (14) can be rewritten as follows: 

1
( ) . ( ) . ( ) ( )

. ( )

r

i i
i

x t A x t B u t Ff t

y C x t

ρ
=


= + +


 =

∑

                  

(15)

Where r is the number of varying parameter. 
In this paper, in order to compute the unknown 
observer the following assumptions should  
be checked:
	Ai is an invariant matrix over time.

	 (Ai , C) is observable.

	C is full row rank.

	f (t) are derived and bounded functions.
Based on the system (15), the unknown observer 
can be written as follows:

1

ˆz( ) .z( ) . ( ) ( ) ( )

( ) ( ) ( )

r

i i
i

t N t G u t Ly t Tf t

x t z t Ex t

ρ
=


= + + +


 = −

∑

        
(16)

where:
-- z (t) is the state vector related to x(t).

-- Ni, G, L, T and E are matrices of appropriate 
dimension and they satisfy the following 
conditions:

Knowing that the error e (t) is defined such that:

ˆ( ) ( ) ( )e t x t x t= −                                                (17)
then: 

2( ) (I ) ( ) z(t)e t EC x t= + −

Where I2 is an identity matrix with appropriate 
dimensions.

Let 2  M I EC= +  Then the expression of the  
error becomes:

( ) . ( ) z(t)e t M x t= −                                            (18)

Therefore the dynamic error can be determined 
such that:

( ) ( ) (t)e t Mx t z= −  

[ ]

1 1

1
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ˆ( ) ( ) e(t)

r r
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r
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i

t M A N LC x t MFf t

MB G u t Tf t N

ρ ρ

ρ

= =

=

 
= − − + 
 

+ − − +

∑ ∑

∑



In order to compute the observer, he following 
conditions which guarantee the convergence of 
the estimation error should be hold:

1 1
M 0

0

r r

i i i i
i i

M A N LC

MB G
MF T

ρ ρ
= =


− − =

 − =
 =

∑ ∑

                     

(19)

On the basis of the convergence conditions 
equation (19) one obtains:

1

ˆe( ) e(t) ( ) ( )
r

i i
i

t N MFf t Tf tρ
=

= + −∑

                  (20)

The following change of variable is made:

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )f t f t f t f t f t f t= − ⇒ = +               (21)

Knowing that .M F T=  and based on equation 
(21), the dynamic error given in (20) becomes:

1
e( ) e(t) ( )

r

i i
i

t N Tf tρ
=

= +∑ 



                                 (22)
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Based on the residual calculations, the following 
relationship is obtained:

ˆ ˆ( ) ( ) ( ) ( ) ( )er y t y t Cx t Cx t Ce t= − = − =               (23)

The equation (24) gives the fault estimation:

ˆ ( ) e ef t QS r r dtδ = − ∫                                    (24)

where Q  is defined positive with  
appropriate dimension.

In order to make the LMIs feasible, the stability 
is checked by the following Lyapunov function 
which depends on the error of fault estimation:

11 QT TV e Pe f f
δ

−= +                                        (25)

By deriving the equation (25), the equation (26) 
is obtained:

1 11 1Q QT T T TV e Pe e Pe f f f f
δ δ

− −= + + + 

   


        (26)

Knowing that T Tf f f f= 

    , we can obtain the 
following derivative Lyapunov function:

12 QT T TV e Pe e Pe f f
δ

−= + + 

 


                           (27)

Replacing the value of the derivative of the error 
in equation (27):

1

1

e 2

2 Q

r
T T T T

i i i
i

T

V N P PN e f T Pe

f f

ρ

δ

=

−

 = + + 

+

∑ 




 

            

(28)

By replacing equation (25) in the last equation, 
the expression of the derivative of the stability 
equation is obtained us follow: 

1

1

2e Q

2

r
T T T

i i i
i

T

V N P PN e f f

f SCe

ρ
δ

δ

−

=

 = + + 

−

∑  






         

(29)

Replacing equations (22) in the last equation:
1

1

1

2e Q

2 2e

r
T T T

i i i
i

r
T T

i i
i

V N P PN e f f

f SC N f SCTf

ρ
δ

ρ
δ δ

−

=

=

 = + + 

− −

∑

∑

 


  

       

(30)

Lemma 01:

Given a scalar μ and a positive symmetric matrix 
P1, the following equality is true [28]:

1
1

12 T T Tx y x Px y P yµ
µ

−≤ +                               
(31)

On the basis of lemma 01, we can deduce the 
following inequality:

1 1 1 1
1

2 1 1T T T Tf Q f f P f Q f P Q fµ
δ δ µ

− − − − 
≤ + 

 
     

        
(32)

According to the proposed hypothesis, the 

derivative of the fault f is bounded then: 1f α≤

Such as 10 α ∞   and Tf f≤ 

Then we have the following inequality

1 2 1 1 1
1 1 max

2 1 1T T T
af Q f f P f Q P Qµ α λ

δ δ µ δ
− − − −≤ +   

      
(33)

In order to not charge the notation, we put: 

2 1 1 1
1 max

TB Q P Qµ α λ
δ

− − −=

Replacing the latest results in equation (30):

1
1

1

1 1e

2 2e

r
T T T

i i i
i

r
T T T

i i
i

V N P PN e f P f B

f T N f SCTf

ρ
δ µ

ρ
δ δ

=

=

 ≤ + + + 

− −

∑

∑

 


  

       

(34)

We define the vector:

Te

f
ε

 
=  
                                                            

(35)

We can write now the vector V as follows:

1

r
T

i i
i

V Bρ ε ψ ε
=

≤ +∑                                           (36)

Such as:

1
1 1 1 2

T
i i

T T T
i

N P PN

T PN P P T
ε

δ δ µ δ

 + ∗
 =  −
             
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Algorithm of Unknown Input Observer design

Step 1: Compute H from the next equation then 
obtain the matrices M, E:

[ ] [ ]0
I

H M E I
C

+
 

= =  −                                
(37)

Step 2: Compute G and T from the next equations: 

  ;    G MB T MF= =                                         (38)

Step 3: Solve the next LMI form equalities, obtain 
the matrices P, and calculate Ki:

1

01 1 1 2

T
i i

T T T
i

N P PN

T PN P P T
δ δ µ δ

 + ∗
  ≤ − −
                          

(39)

In order to resolve the LMI let: i iK P K= ⋅  and we 
replace Ni by the following equation: 

 i i iN M A K C= ⋅ − ⋅                                            (40)

Then we have the following inequality to solve:

1

01 1 1 1 2

T T
i

T T
i ii

T T T T
i i

A M P PA M

T PA M T P

K C K C

K C P P T
δ δ δ µ δ

 + − ∗
  ≤ − + −
 

⋅



⋅ −

               

Step 4: Compute matrices Ni, Li and Si from the 
equations (40), (41) and (42) respectively:

( ) i i iL K I C E M A E= + ⋅ − ⋅ ⋅                         (41)

' 1S T PC−=                                                       (42)

5. Application to Induction Machine 

We will simulate the model of the induction 
machine whose current outputs are considered as 
input variables for the observer has unusual inputs 
and the rotor speed is chosen as time variable as 
given in the section (3). 

The computation will be done with the toolbox 
YALMIP, according to the equations of the 
observer and with the following conditions: 

-- The speed varies between a minimum 

value min 0ω = , and a maximum value

max 157 rad sω = .

-- We take 100µ =  and 410δ −=  .

In order to demonstrate the effectiveness of 
the study method, a simulation of the dynamic 
behaviour of the machine are performed and the 
observer has been tested for two faults possible of 
the actuator, i.e. a fault in the stator direct voltage 
(Vds) and (Vqs), the results are given in the figures 
(2-6) and this for the following conditions:

	We will simulate only one actuator fault 
at a time, which will be around of 15% of 
the nominal values.

	Test 1: state without fault.

	Test 2: state with a quasi-square fault 
between 3s and 7s.

	Test 3: state with a variable fault between 
0s and 8s.

The matrix values obtained are as follows:

1

264.71 314.15 420.91 0
314.15 264.71 0 420.91
3.58 0 13.89 314.15

0 3.58 314.15 13.89

A

− 
 − − =
 −
 − 

2

264.71 314.15 420.91 9517.4
314.15 264.71 9517.4 420.91
3.58 0 13.89 0.2

0 3.58 0.2 13.89

A

− 
 − − =
 −
 − 

32.1898 0 1 0
0 32.1898 1 0 0 0 0 1

; ;
0 0 0 1 0 0 0 0
0 0 0 0

B C F

   
       = = =     
   
   

0.25 0.25 0 0 0.75 0.25
0.25 0.25 0 0 0.25 0.75

;E
0 0 1 0 0 0
0 0 0 1 0 0

M

− −   
   − − −   = =
   
   
   

1

330.65 307.15 105.23 105.23
330.58 308.40 105.23 105.23
1.357 15.793 18.887 314.16
34.656 6.8448 314.16 13.887

N

− − 
 − − =
 − −
 − − − 
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2

747.4 759.9 2484.6 2274.1
747.2 763 2484.6 2274.1

0.9 2.4 13.9 0.2
0.7 1.9 0.2 13.9

N

− 
 − − − =
 − −
 − 

1 2

171.81 14.73 389.19 232.11
172.11 15.03 389.91 232.84

;
0.705 4.288 2.756 0.826

10.375 6.79 0.644 4.226

L L

− −   
   − −   = =
   −
   − −   

8.0475 8.0475 0.25 0.25
8.0475 8.0475 0.25 0.25

;
0 0 0 0
0 0 0 0

G T

− −   
   − −   = =
   
   
   

3 2.0171 2.3658 0.33 0.06
10 ;Q

2.0171 2.3658 0.06 0.33
S

− −   
= ⋅ =   

   

Figure 2 shows the evolution of currents (Ids 
and Iqs) and the estimation of fault in the case of  
free system.

Figure 2. Free system: Estimation without  
actuator faults

Since the machine is initially stopped, a transient 
state less than half second is noted. Subsequently, 
a permanent regime is established and the observer 
follows the evolutions of the state variables and 
the fault.

Figure 3 shows the evolution of the reference and 
estimated fault, as well as the errors of estimating 
the states and the fault with actuator faults in 
Vds. The results show that the errors converge 
to zero, which makes it possible to obtain good 
estimation results.

Figure 3. Estimation of square actuator faults in Vds

The results obtained for a square error on Vqs are 
presented in Figure.4, and it is noted that the error 
is well estimated and the estimation errors are 
around zero.

Figure 4. Estimation of square actuator faults in Vqs
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From the results shown in Figures 5 and 6, it can 
be noted that for a variable fault on Vds and Vqs, 
we can say that there is no difference between the 
square fault and the variable fault. This confirms 
the results obtained in the preceding figures.

Figure 5. Estimation of variable actuator faults in Vds

Figure 6. Estimation of variable actuator faults in Vqs

In the previous figures, we observe that the 
observer’s estimated error values converge 
towards their steady-state references with short 
transitional regime and the estimation error tends 
to zero. We also notice that the output currents 
of the observer follow those of the machine and 

the error is almost zero. So the estimation by this 
method gives almost good results.

From these results, also we can say that the 
unknown inputs observer applied to an induction 
machine has very satisfactory performance.

7. Conclusion

The results obtained show our contribution to 
the problem of state and fault actuator of the 
induction machine modelled by a linear parameter 
varying model. 
In order to obtain the observer gain by the 
resolution of LMIs, we choose a Lyapunov 
function which depends not only the error of 
estimation but also the error of fault estimation. 

The estimation of faults and states has been 
reached despite the complexity of the system. On 
the basis of the results obtained, we can conclude 
that the approach also presents an interesting 
application in the field of fault-tolerant control 
design which will be the subject of future work 
in addition to the application of this study on a 
real machine.
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Appendix A
The parameters of the induction machine cage 
used are shown below:

Rated power 1.5 Kw PN

Nominal voltage            220/380 V.       VN

Speed 1420 rad/ min       ω
Nominal frequency          50 Hz f
Stator resistance          4.85 Ω Rs

Rotor resistance           3.805 Rr

Stator cyclic inductance   0.274 H.         Ls

Rotor Cyclic inductance 0.274 H Lr

Cyclic mutual inductance   0.258 H.         Lm

Number of pole pairs 2 P
Moment of Inertia          0,031 Nms2/rad  J
Friction 0.008 Nm s/rad     Kf
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Appendix B

Synchronous Pulsation [rad/s].        ωs

Electrical angular Pulsation [rad/s]. ωr

Electromagnetic torque [N.m].       Cem

Resistive torque [N.m].          Cr

Rotor time constant [s].         Tr

The direct stator voltage        Vds

The quadrature staor vltage Vqs

The direct stator current            ids

The stator quadrature current iqs

The direct stator flow           Φdr

The stator quadrature flow Φqr

REFERENCES  

1.	 A. Abbasi, J. Poshtan & A. Moarefianpour. 
Decentralized Approach Based on Unknown 
Input Observers for Actuator Fault Detection 
and Isolation of a Class of Interconnected 
Nonlinear Systems.  Studies in Informatics 
and Control, 25(4), 2016, pp. 453-460.

2.	 M Allouche, M Souissi, M Chaabane, D 
Mehdi & F Tadeo. Takagi-Sugeno Fuzzy 
Observer Design for Induction Motors with 
Immeasurable Decision Variables: State 
Estimation and Sensor Fault Detection. 
International Journal of Computer 
Applications, 23(4), 2011, pp. 44-51.

3.	 A. Amrane, A. Larabi, & A. Aitouche. 
Fault Detection and Isolation based on 
Nonlinear Analytical Redundancy applied 
to an Induction Machine. 6th International 
Conference on Systems and Control, Batna, 
Algeria, 2017, pp. 293-298.

4.	 F.  Blanchini , D. Casagrande, S. Miani & U. 
Viaro. An LPV control scheme for induction 
motors, 51st IEEE Conference on Decision 
and Control (CDC), Maui, HI, 2012,  
pp. 7602-7607.

5.	 B. Boulkroune, A. Aitouche & V. 
Cocquempot. Observer design for nonlinear 
parameter-varying systems: Application 
to diesel engines, International Journal of 
Adaptive Control and Signal Processing, 
29(2), 2015, pp. 143-157.

6.	 O. Chenaru, D. Popescu & D. Enache, 
L. Ichim.  Fault-Tolerant Control System 
Implementation Based on Parameter 
Analysis. Studies in Informatics and Control, 
25(2), 2016, pp. 227-236.

7.	 W. Jamel, A. Khedher, N. Bouguila, K. 
Benothman, State Estimation via Observers 
with Unknown Inputs: Application to a 
Particular Class of Uncertain Takagi-Sugeno 
Systems, Studies in Informatics and Control, 
19(3), 2010, pp. 219-228.

8.	 J. Kan, K. Zhang & Z. Wang. Indirect vector 
control with simplified rotor resistance 
adaptation for induction machines. IET Power 
Electronics, 8(7), 2015, pp. 1284-1294.

9.	 R. Kavitha, S. Nagaraju. Modeling and 
Implementation of fuzzy vector control for 
Induction motor Drive. International Journal 
of Engineering Research and General 
Science, 3(4), 2015, pp. 371-382.

10.	 N. Kobayashi, F. P. Wijaya, K. Kondo & O. 
Yamazaki. Induction Motor Speed Sensorless 
Vector Control Using Mechanical Simulator 
and Disturbance Torque Compensation. 
IEEE Transactions on Industry Applications. 
52(3), 2016, pp. 2323-2331.

11.	 H. Liu, Z. Mao, B. Jiang & K. Zhang. 
Robust fault-tolerant control design for 
induction motor with faults and disturbances. 
35th Chinese Control Conference (CCC), 
Chengdu, 2016, pp. 6795-6800.

12.	 F.R. Lopez-Estrada, J.-C. Ponsart, D. 
Theilliol, Y. Zhang, & C. Astorga-Zaragoza. 
LPV Model-Based Tracking Control 
and Robust Sensor Fault Diagnosis for a 
Quadrotor UAV. Journal of Intelligent & 
Robotic Systems, 84, 2016, pp. 163-177.

13.	 M. Louri, A. Amrane & L. Barazane. 
Comparison between the performances of 
variables structures control and the theory of 
synergetic on applied to the squirrel motor 
drives.   3rd International IEEE Conference 
on Systems and Control, Algiers, 2013,  
pp. 293-298.

14.	 M. Majdi Mansouri, N. Hazem Nounou & 
N. Mohamed Nounou. Nonlinear control 
and estimation in induction machine 
using state estimation techniques. Systems 
Science & Control Engineering. 2 (1), 2014,  
pp. 642-654.

15.	 H. Mekki, O. Benzineb, D. Boukhetala, M. 
Tadjine, & M. Benbouzid. Sliding mode 
based fault detection, reconstruction and fault 
tolerant control scheme for motor systems. 
ISA Transactions, 57, 2015, pp. 340–351.

Actuator Fault Estimation Based on LPV Unknown Input Observer for Induction Machine



http://www.sic.ici.ro

304

16.	 S.C. Olteanu, A. Aitouche, L. Belkoura & 
A. Jouni. Embedded P.E.M. Fuel Cell Stack 
Nonlinear Observer by means of a Takagi-
Sugeno Approach. Studies in Informatics and 
Control. 24(1), 2015, pp. 61-70.

17.	 A. Ratni, C. Rahmoune & D. Benazzouz. A 
new method to enhance of fault detection 
and diagnosis in gearbox systems. Journal of 
Vibroengineering. 19(1), 2017, pp. 176-188.

18.	 M. Rodrigues, M. Sahnoun, & D. Theilliol, 
J-C. Ponsart. Sensor fault detection and 
isolation filter for polytopic LPV systems: 
A winding machine application. Journal of 
Process Control, 23(6, 2013, pp. 805-816.  

19.	 J. Rodriguez, J. Pontt, C. Silva, S. Kouro & 
H. Miranda. A novel direct torque control 
scheme for induction machines with space 
vector modulation. IEEE 35th Annual Power 
Electronics Specialists Conference, 2004,  
pp. 1392-1397.

20.	 T. Roubache, S. Chaouch & M.S. Nait Said. 
Backstepping design for fault detection and 
FTC of an induction motor drives-based 
EVs. Automatica, 57(10), 2017, pp.736-748.

21.	 U. Saranya and S. Allirani. Model Reference 
Adaptive System based Speed Sensorless 
Control of Induction Motor using Fuzzy-
PI Controller. International Journal of 
Computer Applications, 110(5), 2015,  
pp. 23-28.

22.	 M. Sharifuddin, C. Goutam & B. Kingshook. 
Robust Unknown Input Observer for Non-
linear Systems and Its Application to Fault 
Detection and Isolation. Journal of Dynamic 
Systems Measurement and Control, 130 (4), 
2008, pp. 1-5.

23.	 Q. Shen, B. Jiang and V. Cocquempot. 
Adaptive Fuzzy Observer-Based Active 
Fault-Tolerant Dynamic Surface Control for 
a Class of Nonlinear Systems with Actuator 
Faults. IEEE Transactions on Fuzzy Systems, 
22 (2), 2014, pp. 338-349.

24.	 Y. Trachi, E. Elbouchikhi, V. Choqueuse & 
M. E. H. Benbouzid. Induction Machines 
Fault Detection Based on Subspace Spectral 
Estimation. IEEE Transactions on Industrial 
Electronics, 63(9), 2016, pp.5641-5651.

25.	 V. Verma, C. Chakraborty, S. Maiti and Y. 
Hori. Speed Sensorless Vector Controlled 
Induction Motor Drive Using Single Current 
Sensor. IEEE Transactions on Energy 
Conversion, 28(4), 2013, pp. 938-950.

26.	 Y. Wang, T. Ito & R. D. Lorenz. Loss 
Manipulation Capabilities of Deadbeat 
Direct Torque and Flux Control Induction 
Machine Drives.  IEEE Transactions on 
Industry Applications, 51(6), 2015, pp. 4554-
4566.

27.	 H. Xu, F. Zhao, W. Cong & W. Peng. 
Study of a New Rotor Flux Estimator for 
Induction Machine Based on Sliding Mode 
Control. IEEE Vehicle Power and Propulsion 
Conference (VPPC), Hangzhou, 2016, pp.1-5.

28.	 Y. Zhang, J. Jiang, Bibliographical review on 
reconfigurable fault-tolerant control systems, 
Annual Reviews in Control, 32(2), 2008,  
pp. 229-252.

Ahmed Amrane, Abdelkader Larabi, Abdel Aitouche


