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1. Introduction

In recent years, the vision sensors have further 
improved the accuracy, the versatility and the 
drawback of contemporary commercial robots by 
engaging the visual data in the feedback channel 
to control objects movement. Thus, utilizing 
the visual information in the feedback channel 
directly to the controller is called visual servoing 
system (VSS). Moreover, employing the visual 
information in feedback over the network system 
is called network visual servoing control system 
(NVSCS) [17, 26]. 

Even though, using a vision sensor to obtain the 
visual data confronts with the sampling effects 
due to the lower sampling rate of the vision 
sensor. Thus, utilizing visual data with the effect 
of lowering sampling rate to the controller might 
affect the performance and may lead to the closed 
loop instability [6, 16]. Moreover, using visual 
data as a feedback signal induces time delay which 
corresponding to time for image acquisition, 
image processing, and visual data transmission 
[9, 21]. It is worth mentioning that the time delay 
is the main cause of system instability [5,13,10].

To overcome the problem mentioned above, the 
standard vision sensor is substituted by a high-
speed vision sensor which improves the NVSCS 
performance and minimizes the sampling effects 
of the measurement as well as the time delay. 
However, high-speed vision sensors are very 
expensive and introduce a great quantity of 
visual data, which requires specific computational 

architectures to realize the data processing. In this 
way, the total cost of the system is prohibitive 
which is not appropriate for the common of 
manufacturing applications [12].

Another solution would consist in designing an 
observer to reconstruct the unavailable continuous 
system state from the sampled and delayed 
measurements. During decades, significant 
research efforts have contributed in the area of 
systems with sampled and delayed measurements. 
In [2], the continuous time observer is offered 
which is designed based on the continuous system 
model. In [11], the Kalman filter-based observer 
is introduced for the continuous model of flexible 
link robot with the sampled and delayed output 
measurements. It can be noticed that a significant 
drawback relies on the fact that continuous-time 
observers neglect the sampling period of the 
output measurement in the observer design which 
implies that the observer stability is valid only 
in the case of the non-large rate of the sampling 
period. Moreover, another technique is provided 
based on the Lyapunov–Krasovskii theorem 
which is called the delayed Luenberger observer 
and which is presented in [18, 7]. In [1], two 
particular classes of global exponential observers 
are provided for the continuous nonlinear system 
and the maximum allowable sampling period 
and the time delay are addressed. In this way, the 
minimum sampling period must be bigger than the 
maximum delay, while the time delay is greater or 
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smaller than the sampling period in real time. It 
should be pointed out that all the results in [18, 7, 
1] provide robust stability to plant uncertainties 
especially in the case of parameters variation. 
However, to achieve the linear matrix inequalities 
solution, a difficult software code is needed.

Recently, the hybrid system technique is 
used in the observation design which allows 
representing both the continuous and discrete 
system model in the form of the hybrid system 
[4]. Taking into account the hybrid system 
technique, the piecewise continuous observer 
was proposed to estimate the position of the 
x-y robot [22, 23], and then developed in [24]. 
The piecewise continuous observer is more 
straightforward compared with other methods 
like those introduced in [18, 7], and it provided 
better performance than the continuous-time 
Lyapunov–Krasovskii method. In [15], a hybrid 
state observer is presented based on the similar 
hybrid system technique. However, it considers 
the constant time delay equal to the sampling 
period. It is worth mentioning that the results 
in [22-24, 15] investigated the linear system 
without undesirable measurement and the 
sampling period is less than or equal to the 
time delay. However, the time delay is greater 
or smaller than sampling period in practical 
processes. However, based on hybrid system 
technique, the problem of the sampled and 
delayed (unknown time-varying) measurement 
subject to measurement noise is not considered.

This paper considers the sampled and delayed 
measurement subject to measurement noise 
for network visual servoing system. The time 
delayed in the NVSCS feedback are viewed 
as the particular type of the output disturbance 
and the time delay can be compensated by 
the proposed observer. The main contribution 
of this work can be concluded as follows: 1) 
Propose continuous state observer strategies 
for the particular continuous systems with the 
problem of sampled and unknown variable 
delayed measurements subject to measurement 
noise. 2) The designed observer estimates 
simultaneously the continuous state without 
delay and the disturbance from the sampled 
and delayed measurements. 3) Propose a simple 
strategy technique of state observation design 
which is composed of the extended functional 

observer and the piecewise continuous hybrid 
system. Furthermore, the proposed scheme is 
compared with the existing work which is the 
Chain observer, and the results illustrate the 
effectiveness of the designed observer.  

The rest of this paper is structured as follows: 
the problem statement of the feedback NVSCS is 
shown in details in section 2. Section 3 introduces 
the procedures for the design of the proposed 
observer method. After that, the proposed 
observer design stability is investigated through 
linear matrix inequality as presented in section 4. 
Then, the performance of the proposed observer is 
confirmed through an assessment with the Chain 
observer, and the obtained results are illustrated in 
section 5. Finally, section 6 offers the conclusions. 

2. Problem Formulation

The system of NVSCS that has been considered in 
this work is described by a continuous-time linear 
system (CTLS) which is represented as:

*

( ) ( ) ( ) (1 )
( ) (1 )

( ) ( ) (1 )k

x t Ax t Bu t a
y Cx t b
y t y t d cυ

 = +
 =
 = − +



  

(1)

where ( ) nx t ∈  is the plant state, ( ) ru t ∈  is 
the plant input, ( ) my t ∈  is the unavailable 
output, ( )y t  is the sampled and delayed available 
measurement which demonstrates the object 
position information in sampled form denoted by 
sampling period et with sampled notation * and 
delayed form d . n nA ×∈ , n rB ×∈ , m nC ×∈  are 
constant matrices. kυ  is the measurement noise 
which affects the camera sensor and it is assumed 
that kυ is bounded with the upper bound υ  
which is defined as: kυ υ≤ . In this work, the 
time delay between the digital camera sensor 
and the controller is considered; it is assumed 
that there is no time delay between the controller 
and the actuator. It is also assumed that ( , )A C  is 
observable and ( , )A B  is controllable. Furthermore, 
it is supposed that the time delay d is bounded 
with known values as 0 ( ) md t d≤ ≤  where md
is the maximum time delay.

The main objective of this study is to reconstruct 
the continuous system state without time delay 
from sampled and delayed measurement even if 
the vision sensor has the measurement noise by 
designing an observer. 
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3. Main Result

In this section, the state observer design which 
is called Continuous State Observer (CSO) 
is introduced to obtain the continuous state 
without time delay from sampled and delayed 
measurements subject to measurement noise. The 
CSO is constructed from the extended functional 
observer and the piecewise continuous hybrid 
system as shown in Figure 1.
By discretizing the system of (1a) and (1b) with 
ZOH, the discrete time system is derived as:

1k k k

k d k

x x u
y C x

+ = Φ +Γ

= 			          
(2)

where kx  is state in the discrete time domain, 

and eAteΦ = , ( )

0

( )
e

e

t
A te Bdτ τ−Γ = ∫ and dC C=  

are corresponding constant matrices in the discrete 
time domain.

It can be noticed that the pair ( , )dCΦ and ( , )Φ Γ  
is detectable and stabilizable, respectively and the 
matrices ,Φ Γ  and dC  satisfy

0d

n

C
rank n m

I
 

= + −Φ −Γ                                  
(3)

Before starting the observer design, some Lemmas 
are needed as follows:

Lemma 1 [27]: The pair ( , )dCΦ  is detectable if 
and only if it satisfies the following rank condition

d

n

C
rank n for all

I
λ

λ
 

= ∈ −Φ 


	        
(4)

Denote the sampled and delayed signal ( )y t  at 
time instant k  as ky . Thus, equation (1c) can be 
reformulated as:

k kk k d k d k

k k

y y Cx

Cx

υ

µ
− −= = +

= +                                  
(5)

where 
kk k d k kCx Cxµ υ−= − +  is the new notation 

which represents all the disturbances affected at the 
vision sensor. It considers the measurement noise 
and camera sensor. For the reason of simplicity kµ  
can be called special output disturbance.

Based on the similar unknown input observer 
approach, the extended state can be defined as 

[ ]Tk k kx x µ=

[ ]

0 0
, ,

0 0 0 0

0
,

n m n n m

m n m m n m m r

n m
d m

m

I
A E B

I

C C I P
I

ε

ε

× ×

× × ×

×

Φ Γ     
= = =     −     

 
= =  

    

(6)

where ε is the positive constant which is used to 
deduce the linear matrix inequality (LMI) feasible 
problem. kx  is the augmented system state which 
contains the system state kx in the discrete time 
domain and the disturbance noise kµ . It can be 
noticed that the system (6) is designed based 
on the descriptor system approach [19], which 
implies that the term mI in the matrix C  does 
not mean that the disturbance is measured at the 
observer side.
According to the equations (2), (5) and (6) the 
augmented descriptor model is expressed as follows:

1k k k k

k k

Ex Ax Bu P
y Cx

µ+ = + +

=                               (7)
Thus, if the extended state kx  can be estimated, 
then it is possible to achieve the state vectors kx
and kµ .

Figure 1. The proposed continuous state observer
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Now it is time to obtain the extended state estimate
ˆ

kx , the extended functional observer which is 
addressed as:

1 11 12 13

14
ˆ

k k k k

k k k

L L y L u

x L y

ξ ξ

ξ
+ = + +

= +



 		         
(8)

where ˆ n
kx ∈ is the estimation state of kx , and 

the auxiliary variable n
kξ ∈  is used. 11 12 13, ,L L L

and 14L  are the gains which have to be designed 

to confirm the estimation error between ˆ
kx  and 

kx converges to zero asymptotically.

Check the rank of the 
E
C
 
 
 

 to satisfy the 
following condition

0n n m

d m

IE
rank rank n m

C IC
×   

= = +   
   	        

(9)

The auxiliary matrices are used and denoted as 
1Ψ and 2Ψ as follows:

[ ]1 2
E
C

+
 

Ψ Ψ =  
  		                     

(10)

where +Ο represents pseudoinverse of Ο  
satisfying 1( )T T+ −Ο = Ο Ο Ο .

1 2 n mE C I +Ψ +Ψ = 		      	       (11)

Therefore, to verify equation (11) the matrices 1Ψ
and 2Ψ  are selected as:

1 2

0 0
,n n m n m

d m m

I
C I I

× ×   
Ψ = Ψ =   −    	      

(12)

In order to design the observer parameters 

11 12 13, ,L L L and 14L  that ensure the estimation 
error of the state estimation settles down to the 
origin. In order to design the observer parameters, 
the following Theorem is used.

Theorem 1: The estimation error for estimating 
system state in (7) is asymptotically stable if and 
only if there exists a matrix N such that 1A NCΨ −
is Schur and the observer’s gains satisfy. 

11 1 12 11 2

13 1 14 2

, ,
,

L A NC L N L
L B L

= Ψ − = + Ψ

= Ψ = Ψ 		      
(13)

Proof: Taking into account the first relation (7) 

and multiplying it by 1Ψ , one yields

1 1 1 1 1k k k kEx Ax Bu Pµ+Ψ = Ψ +Ψ +Ψ 	     (14)

Then adding 2 1ky +Ψ to each side of (14) and 
considering (11), one yields

1 1 1 1 2 1k k k k kx Ax Bu P yµ+ += Ψ +Ψ +Ψ +Ψ    (15)

It can be seen that system (15) can be modified in 
the following formula:

1 1 1k k k k

k k

x Ax P
y Cx

µ+ = Ψ +Θ +Ψ

=
		

	 (16)

where 1 2 1k k kBu y +Θ = Ψ +Ψ . 

Thus, for system (16), the following observer is 
designed as:

1 1

1 1 2 1

ˆ ˆ ˆ( )
ˆ ˆ( )

k k k k k

k k k k k

x Ax N y Cx

Ax Bu y N y Cx
+

+

= Ψ +Θ + −

= Ψ +Ψ +Ψ + −     
(17)

As a result, in equation (17) the term of 2 1ky +Ψ
can be omitted by using the auxiliary variable

2
ˆ

k k kx yξ = −Ψ . Thus, the observer system in 
(17) is reconstructed as: 

1 1 1

1 1 1 2

ˆ ˆ( )
( ) ( ( ) )

k k k k k

k k k

Ax Bu N y Cx
A NC Bu N A NC y

ξ

ξ
+ = Ψ +Ψ + −

= Ψ − +Ψ + + Ψ − Ψ     
(18)

The error between the extended state estimate 
and the real state is expressed as

1 1 1
ˆ

k k ke x x+ + += −          	                                 
(19)

Substituting (16) and (17) into (19) the esti-
mation error turns to

1 1 1( )k k ke A NC e Pµ+ = Ψ − +Ψ 		        (20)

Recalling equations (6) and (12), the term 1PΨ  
is defined as:

[ ]T1 0n m mP Iε×Ψ =                                     (21)

Similar to the manner presented in work [8], 
the term of 1 kPµΨ in (20) can be neglected if 
a sufficient small ε  is picked, that means the 
term 1 kPµΨ is adequately small with respect to 
the error state vector. Thus, equation (20) can be 
simplified as

1 1( )k ke A NC e+ ≅ Ψ − 		          	 (22)
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Finally, considering the auxiliary variable
ˆ

k k kx Jyξ= +  , comparing (18) and (8), it can be 
easily shown that the matrices gains 11 12 13, ,L L L
and 14L are obtained similarly to the equation 
(13). The proof is ended.

It can be noticed that based on (8) and (11) the 
extended state estimate ˆ

kx is realized. Therefore, 
the discrete state kx and the disturbance kµ
estimation can be determined as:

ˆ ˆˆ ˆ,k k k kx x xµ= Ξ = Ω                           (23) 

where [ ]0n n mI ×Ξ = and [ ]0m n mI×Ω = .

The next step is to estimate the non-delayed 
continuous time state ( )tx . Thus, the piecewise 
continuous hybrid system (PCHs) is used. PCHs 
was first introduced in [14], and then updated in 
[25]. It consists of two inputs time domain which 
determine the dynamic of PCHs. The first one 
refers to the discrete time input and the other to the 
continuous time input. The discrete time domain 
S  which is called the switching time is indicated 
by { }, 0,1, 2,...kS t k= =  where kt is the switching 
instant, and the continuous input is determined by

{ }t SΦ = ℑ− , where { }t +ℑ = ∈ . The PCHs are 
symbolized as { }[ , , , , ]e p p d pkt A B B C∑  with discrete 
input ( )dv t  and continuous input ( )u t  where 

, , ,p p d pA B B C  are constant matrices. The switching 
instants of PCHs are considered sampling instants 
of the digital camera sensor. Finally, the PCHs as 

[{ }, , , , ]e n nkt A B I I∑  with inputs ( ) ( )pu t u t= and 
ˆ( )d kv t x=  are used. Thus, the continuous time 

non-delayed state estimate ( )ˆ tx  is achieved from 
the output of the PCHs as:

( )ˆ̂( ) exp ( ) ( )
k

t
k

k
t

A t tx t e x A t Bu dτ τ τ−= + −∫
       

(24)

4. CSO Stability Analysis 

In the observation design, the estimation error is 
defined as a difference between the real state, and 
its estimation and it is denoted as ( )e t . Thus, the 
CSO is determined as 

ˆ( ) ( ) ( )e t x t x t= −
                                                    

(25)

Recalling equation (24), the real-time system state 
is defined similarly as follows:

( )( ) exp ( ) ( )
k

t
k

k
t

A t tx t e x A t Bu dτ τ τ−= + −∫
 	      

(26)

Substituting (24) and (26) into (25), one yields

( )( ) e
k

A t kte t e e−=                                           
(27)

where ˆk k ke x x= −  is the error of the discrete 
system state estimate. Taking into account the 
estimation errors in (19) the estimation error ke  
can be written as follows.

ˆ

ˆ

=
k

k k k

k

e x x
e
eµ

= −

 
 
                                                    

(28)

where ˆk
eµ  is the estimation error of the disturbance.

Before designing the observer gain N  that 
guarantees that 1A NCΨ − is Schur and the 
pair

1( , )A CΨ  needs to be detectable. Thus, to 
verify that, the Lemma 1 is considered, the pair 

1( , )A CΨ  is detectable if the following rank 
condition is satisfied

1n m

C
rank n m for all

I A
λ

λ +

 
= + ∈ −Ψ 



   

(29)

Remind that

1

( )
0

d m

d m
n m

n n m

C I
C

rank rank C I
I A

I
λ ε

λ
λ+

×

 
   = − Φ +   −Ψ   −Φ 

0 0
( ) 0

0 0 0

m m m m

d m m d m

n n m n m n n m

I I I
rank C I I C

I I
λ λ ε

λ× × ×

   
   = − +   
   −Φ   

                                                                        (30)

Notice that for λ ε∀ = one gets 

1

d

nn m

CC
rank rank m

II A λλ +

   
= +   −Φ−Ψ         

(31)

Considering equations (30) and (31), then (29) is 
the same conditions of equation (3).

Thus, the pair 
1( , )A CΨ  is detectable, and the 

observer gain is designed based on LMI which 
requires the following Lemma.
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Lemma 2 [3]: Schur complement is described 
as follows:

0 0

0 0

0T

Q S
S R
 

< 
                                                

(32)

and is equivalent to 0 0R < , 1
0 0 0 0 0TQ S R S−− < , 

where 0R and 0Q are symmetric.

Theorem 2: The system of dynamic 
errors provided in (22) are stable if there 
exists a symmetric positive definite matrix 

( ) ( )n m n mP + × +∈  which satisfies algebraic 
Lyapunov inequality

1( )
0

(*)

TP P A YC
P

 − Ψ −
< −                                

(33)

where (*)  in a matrix denotes the asymmetrical 
entry, and the proposed observer gain is designed 
as 1N P Y−= .

Proof: Let the Lyapunov function be defined 
as follows:

( ) ( )T
o k k kV e e Pe= 			        (34)

Recalling the estimation error in systems (22) and 
(34), one gets:

1( ) ( ) ( ) 0 , n m
o k o k o k kV e V e V e e +

+∆ = − < ∀ ∈

Therefore

1 1( ) ( ) ( )T T
o k k k k kV e e Pe e Pe+ +∆ = −

( ) ( )1 1( ) [ ] [ ]

( )

T

o k k k

T
k k

V e A NC e P A NC e

e Pe

∆ = Ψ − Ψ −

−

( ) ( )( )1 1( ) ( )
TT

k k ke A NC P A NC e Pe= Ψ − Ψ − −

( )1 1( ) 0 ( ) 0
T

kV e A NC P A NC P∆ < ⇔ Ψ − Ψ − − <

( )( )1 1( ) ( ) 0
TT

k ke A NC P A NC P e= Ψ − Ψ − − <

( )1 1( )
T

A NC P A NC P⇔ Ψ − Ψ − −                   
(35)

Remark 1: The observer gain N  guarantees that 
the matrix 1A NCΨ − is Schur. It can be noticed 
that the estimation error ke  in equation (28) is 
composed of two vectors errors ke  and 

k
eµ . As 

a result, the error in equation (28) is stable; this 
means that the error ( )e t  which is well-defined in 
(27) settles down to zero asymptotically. 

In order to simplify the proposed observer design 
method, a designing procedure is concisely 
summarized as follows

•	 Set the continuous system of equation (1) into 
the form of an augmented descriptor system 
as equation (7) with the parameters defined 
in equation (6).

•	 Set the matrices 1Ψ  and 2Ψ  from equation 
(12) to satisfy the necessary condition of 
equation (11).

•	 Solve the equation (33) by LMI to obtain the 
gain 1N P Y−= , and then use N  to compute 
the other observer parameters as provided in 
equation (13).

•	 Obtain the state estimation ˆkx  and ˆkµ  from 
the equation (23).

•	 Finally, set the PCHs as [{ }, , , , ]e n nkt A B I I∑  with 
inputs ˆ( )d kv t x= and ( ) ( )pu t u t=  then obtain 
the continuous system state without delay 
from equation (24).

5. Numerical Simulation Results

To investigate the CSO performance, the CSO 
is compared with Chain Observer (CO) which 
is introduced in [20]. The comparison has been 
performed in MATLAB Simulink for the similar 
system which was addressed in [20] without 
measurement noise. This comparison considers 
the same system with measurement noise which 
is defined as follows:

[ ]
*

0 1 0
( ) ( ) ( )

1 0 ( )

( ) ( ) k

x t x t u t
a b c

y x t

y t y t d υ

    
= +    
   

 =
 = − +



                            

(36)

where ,a b and c equals 3, 1− − and 1, respectively. 
The initial conditions for the system (36): 
Chain observer and the proposed observer are

[ ] [ ]ˆ(0) 2 4 , (0) 0 0T Tx x= − = , and [ ]ˆ (0) 0 0 0 Tx =
, respectively. The considered control signal is
6sin 6sin 3t t+  as it is shown in Figure 2. The 
value of the sampling period is 20et ms= . The 
Chain observer gain K  is selected such that the 
eigenvalues of the matrix mA are at 10− and 15− , 
respectively. where mA A KC= − . To compute the 
continuous state observer gain N , the constantε  
is chosen as 51 10−×  and the matrices 1Ψ and 2Ψ
are achieved from (12) as: 
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Figure 2. The control signal 

Figure 3. The piecewise constant delays

1 2

1 0 1 0
0 1 0 , 0
1 0 1 1

   
   Ψ = Ψ =   
   −   

The CSO gain N is obtained by solving the 
LMI of equation (33) in MATLAB which is 

[ ]0.4997 -0.0297 -0.4997 TN = , and then the other 
observer gains are obtained from (13) as follows:

5
11 12

13 14 2

0.4997  0.0198 -0.4997 0
-0.0297 0.9414 0.0297 , 10 0

-0.4997  -0.0198 0.4997 1

0.0002
0.0198 ,
-0.0002

L L

L L

−

   
   = = ×   
   −   
 
 = = Ψ 
  

It is worth mentioning that the comparison 
between CSO and CO has been derived in the 
case of the piecewise constant delay which was 
addressed in [20] as well as the varying time delay 
without and with measurement noise as presented 
in the following subsections.

5.1 The Piecewise Constant Delays

In this section, the CSO is verified to the 
piecewise constant delays which were illustrated 
in an ideal condition by Chain observer in [20]. 
The considered piecewise constant delay is in the 
range of (0.1,1)d s∈  as shown in Figure 3. 

(a)

(b)

Figure 4. Observer’s performance under piecewise 
constant delays. (a) 1( )x t  and its estimation, (b) 

2 ( )x t  and its estimation

Figure 5. The disturbance kµ  and its estimation

Remark 2: It can be noticed that the piecewise 
constant delays in Figure 3 are completely known 
for the Chain observer, while the time delay for 
the proposed observer is unknown. This means 
that the proposed observer considers the piecewise 
constant delays as the particular case of unknown 
delayed measurements.

Figure 4 illustrates the equivalent results and the 
results demonstrate that the performance of the 
CO is smooth from 0t =  to 6t s= . This occurs 
because the variation in the time delay is small, 
after 6t s= the change in the magnitude of the 
time delay is larger.
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In the transient response of CO, the performance 
shows significant overshoots, which accommodate 
the system state changes due to the time-
varying delays, while the CSO estimates well 
the continuous system state and the observer 
gain N  in (33) guarantees fast convergence 
response without overshoots. Furthermore, the 
CSO estimates the disturbance kµ  as provided 
in equation (23). As expected result, an accurate 
performance is obtained as shown in Figure 5. 

5.2 The Time-Varying Delay with 
Measurement Noise

In this section, the simulation has been investigated 
in the case of the unknown time-varying delay 
with measurement noise which makes it possible 
to validate the simulation in real environmental 
conditions. Therefore, it is assumed that the 
delay is an unknown time-varying as presented in 
Figure 6. In order to show the proposed observer 
performance under the measurement noise, the 
Gaussian noise signal with zero mean value and 
variance 7  is applied to the vision sensor as 
introduced in equation (1c), and the Gaussian noise 
is demonstrated in Figure 7. The obtained results 
are shown in Figure 8. It can be easily noticed that 
the proposed observer estimated the non-delayed 
continuous system state as accurately as expected, 
while the Chain observer is strongly affected by 
the fasting variation of the time delays values 
which were defined as observation accumulation 
errors in [20]. The results are that the Gaussian 
measurement noise is added to the disturbance 

kµ  with time-varying delay, and the effect of kµ  
is attenuated by the chosen small value of ε  as 
stated in equation (21). As expected, the results in 
Figure 8 show that the proposed observer under 
the effect of the Gaussian measurement noise 
estimated the non-delayed continuous state to 
the acceptable accuracy level and provided better 
performance than the Chain observer. As presented 
in Figure 9, one can achieve: the continuous state 
observer is robust to measurement noise and the 
proposed observer estimates well the disturbance 
in the existence of measurement noise.

Figure 6. The time-varying delay

Figure 7. The Gaussian measurement noise

(a)

(b)

Figure 8. Observer’s performance under time-
varying delays subject to measurement noise. (a) 

1( )x t  and its estimation, (b) 2 ( )x t  and  
its estimation

Figure 9. The disturbance kµ  and its estimation
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6. Conclusion

This paper studies the NVSCS with sampled and 
unknown time-varying delayed measurement 
problem subject to measurement noise. The 
continuous state observer is proposed to estimate 
the non-delayed continuous system state from 
the output measurement which is available in 
sampled and unknown time-varying delayed 
measurements subject to measurement noise. The 
gain that guarantees the estimation errors which 
asymptotically stable are designed by a linear 
matrix inequality. The CSO technique is assessed 
via a comparison with the Chain observer. As 
the obtained simulation results demonstrate the 
continuous state observer estimated the continuous 
system state without delay and the disturbance 
accurately from the available measurement in the 
form of sampled and unknown time-varying delayed 

signal under the condition of measurement noise. In 
addition, the continuous state observer illustrates 
a better performance than the Chain observer. 
Moreover, the continuous state observer provided 
robust performance to the measurement noise.
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