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1. Introduction

The multi-period investment portfolio is focused 
on solving the allocating investors’ wealth at hand 
reasonably, achieving a stable and rapid growth in 
capital investment and controlling the investment 
risks. Traditionally, the rebalancing problems of 
the portfolio during the investment period are 
not taken into consideration. It is assumed that 
investors will purchase a certain portfolio in their 
initial investment stage and hold it to the end of 
the investment period (Achour & Rezg, 2007). 
However, in real life situations the investor will 
constantly rebalance the capital (that is buys and 
sells assets) in order to consider the portfolio 
issues as a multi-stage or dynamic adjustment 
process. In order to make their model be closer 
to the stock market situation, many scholars 
have expanded the portfolio optimization model 
into a multi-stage investment scenario under 
the single case of random uncertainty, taking 
consumption, taxes, transaction costs, inflation 
and other factors into consideration (Rădulescu 
& Rădulescu, 2015). 

Detemple (2014) formulated the mean-variance 
portfolio selection model as a two-standard 
optimization problem with the continuous time. 
The goal is to maximize the expected return on the 
terminal and minimize the variance of the terminal 
wealth. Forsyth et.al. (2012), study a continuous-
time version of the proposed Markowitz mean-

variance portfolio selection model and a market 
consisting of one bank account and multiple 
stocks is analyzed. The Markov regime conversion 
financial market was studied as a generalization 
of the model for individual investors with random 
liabilities (Kolm et.al., 2014). Dang, et.al., 
(2016) investigate the continuous-time mean-
variance portfolio selection problem such as all 
market coefficients are random, and the wealth 
process under any acceptable trading strategy 
is not allowed to be below zero at any time. 
In Markowitz’s portfolio selection model, the 
variance is replaced by a semi-variance. To that, 
a period portfolio option is extended to multiple 
periods. Yang et. al., (2015) originally proposed 
and developed a multi-cycle semi-variance model. 
The hybrid genetic algorithm (GA) is used to 
solve the multi-period and semi-variance model 
by using the displacement strategy of particle 
swarm optimization (PSO) as the mutation 
operation. Solving the multi-stage combinatorial 
optimization problem is a very challenging task 
due to its nonlinearity and its high computational 
time consumption. A number of heuristics have 
been employed to solve this problem. Zhang, 
et.al., (2012) propoesd a new particle swarm 
optimization algorithm, called drift particle swarm 
optimization algorithm and applied it for solving 
multi-stage combinatorial optimization problems. 
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In all the above-mentioned portfolio selection 
models, it is assumed that the investors are 
facing random uncertainty, ignoring the vague 
uncertainty in the financial market. These models 
assume that the historical data on the assets from 
the financial market are available. However, 
sometimes due to the rapidly changing financial 
market the historical data may not be available. 
Liu et. al., (2013), study the concept of interval 
numbers and uses it to extend the classical 
mean–variance portfolio selection model with 
consideration of transaction cost to mean–
variance–skewness model using fuzzy set theory. 
In addition, the future financial market is defined 
by three different models, pessimistically and in 
the combined form to model the fuzzy mean–
variance–skewness portfolio selection problem. 
Aouni et al.( 2014) investigate several uncertain 
portfolio selection issues, where asset returns 
represented by interval data are discussed. Since 
the parameter is an interval value, the returned 
gain is also an interval value. The concept of the 
mean-absolute deviation function accordance with 
a two-level mathematical programming model is 
applied to compute the lower and upper limits of 
the investment returns of the portfolio selection 
problem. Using the dual theorem and applying 
the variable transformation technique, the two-
level mathematical program is converted into a 
traditional single-level mathematical program and 
the interval returned by the portfolio, which would 
cause problems for the math program, is solved. 
In addition, the probabilistic methods are used 
to detect the uncertainty in the financial market, 
and to determine the probability distribution of 
risk assets. However, the probability distribution 
function is often very difficult to predict 
accurately. Even if it is accurately predicted, it 
cannot guarantee that the return on assets follows 
this distribution. Many studies proposed the 
artificial intelligent in portfolio selection such 
as using the fuzzy mathematics. However, the 
study on the multi-portfolio problem is still in the 
exploratory stage. The investment time period 
decisions is always a multi-stage cases in the real 
market, so investors need to constantly adjust 
portfolios to achieve their investment intentions. 

Since the proposed models are all programming 
models containing interval coefficients, the usual 
approach is to convert them into clear type models 
for the solution. In order to solve the proposed 
multi-period investment portfolio selection 
models, the interval programming method is used. 

In this paper, the research is conducted by adopting 
interval analysis method, and establishing four 
optimized multi-period investment portfolio 
selection models. In the first section, the multi-
period investment portfolio selection models 
are designed by using inequalities equations of 
interval coefficients. The concept of possibility for 
denoting the inequality relationship of the interval 
numbers, and convert the interval coefficient 
inequality constraints involved in modelling 
into clear type inequalities is used. Secondly, the 
quantum particle swarm optimization algorithm 
is modelled for solving the converted models. 
Finally, in the experimental results, the actual data 
is used to analyze each decision-making factors 
and compare the existing selection of portfolio 
strategy with the proposed model. 

2. Multi-Period Investment Portfolio 
Selection Optimization Model of 
Interval Coefficient

In an emerging market, as the historical 
information available to investors for reference 
is rather limited, it is usually very hard for 
investors to accurately provide precise values 
for the securities return. Under such conditions, 
investors can rely only on their own expertise and 
experience as well as on their sense of the market 
in order to estimate its rough fluctuation range. 
Under the above-mentioned conditions, this paper 
will utilize interval analysis method. Suppose 
that the return, risk and liquidity securities are 
all interval numbers. At the same time, suppose 
there are n kinds of securities in the securities 
market available for transaction, and investors 
holding initial capital enter the market to plan an 
investment decision-making activity with a period 
of T. To facilitate expression, relevant symbols 
involved in this paper will be described first:

, ,,[ , ]i t i ti tr r r=  refers to the yield rate of the i 
securities at period t, where ,,0 i ti tr r≤ ≤ .
 , ( , ),[ , ]

t tt
i k i ki kδ δ δ=  refers to the covariance 

between securities i and securities k at period t, 
where ( , ),0

tt
i ki kδ δ≤ ≤ ; ,t iC  refers to the rate of 

transaction expense collected for the transaction 
of securities i at period t;

,1 ,2 ,( , ,..., )t t t t nx x x x=  refers to the investment 
ratio vector of period t stock portfolio, where 

, 0t ix ≥  is the condition that forbids short 
selling;  ,p tR  refers to the interval income of 
period t stock portfolio;  ,N tR  refers to net 
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interval return of period t stock portfolio after 
deducting transaction costs; tW  refers to the 
wealth gained by investors at the end of period 
t,  1,  2, ,t T= … . In real investment process, 
the return and risk of securities are the two main 
factors considered by the investors. According to 
the above assumptions, the securities return ,i tr
and risk  ,

t
i kδ  are both interval numbers. Besides, 

as the investment rate vector is not a real number, 
i.e. invest , 0t ix ≥ ( )1,2, , ; 1, 2, ,i n t T= … = … . 
According to interval number operation rule, the 
return and risk of period t stock portfolio are also 
interval numbers that can be expressed as follows:

 , , ,,, , ,
1 1 1

[ , ]
n n n

p t i t i ti tt i t i t i
i i i

R x r x r x r
= = =

= =∑ ∑ ∑

       
(1)

 

, ,
1 1

,( )
t
i k

n n

t t i t k
k i

x x xδ δ
= =

= =∑∑

( ,, , ,
1

,
1

),
1 1

[ , ]
tt
i ki

n n n n

t i t k t i t k
k i k i

kx x x xδ δ
= = = =
∑∑ ∑∑

            

(2)

For transaction cost function, the commonly seen 
V function can still be used for expression, i.e. the 
total transaction cost of period t stock portfolio 
can be expressed as:

( , ) ( , ) ( 1, )
1

| |, 1, 2 ,...,
n

t t i t i t i
i

C c x x t T−
=

= − =∑
      

(3)

The net income of period t stock portfolio after 
deducting transaction cost can be expressed as:

( 1) ( , ) ( , ) ( 1, )
2

,,
1 1

[ | |]
n n

i tt i
i i

t

t t t i t i t i
j

x rW W c x x
=

− −
==

= − −∑∏ ∑ 

                                                                              
                                                                          (4)
In Eq.(4), the terminal wealth that investors can 
get after T investment can be expressed as:

0 ( , ) ( , ) (,
1

1,
1

,
1

)[ | |]
T

T t

n n

i tt i
i

i t i t i
j i

W W c x xx r −
= ==

= − − =∑∏ ∑ 

     

0 ( , ) ( ,,,
1

) ( 1, )
1 1

| |,[  
T

t i t i t i
j

n n

i tt i
i i

x rW c x x
= =

−
=

− −∑ ∑∏

0 ( , ) ( , ) ( 1,
1

,,
1 1

) | |]
T

t i

n

t i t

n

i tt
i

i
j

i
i

xW r c x x −
= = =

− −∏∑ ∑
       

(5)

To simplify description, the upper and lower limits 
of terminal wealth can be expressed as:

( )TW x = 0 ( , ) ( , ) ( 1,
1

,,
1 1

)[ | |]
T

t i

n

t i t

n

i tt
i

i
j

i
i

xW r c x x −
= = =
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( )TW x = 0 ( , ) ( , ) ( 1, ),,
11 1

[ | |]
n n

i t

T

t i t i t it
ij

i
i

xW r c x x −
= ==

− −∑∏ ∑

                                                                          (6)

In addition to securities return, risk and skewness, 
liquidity of securities is also a key factor affecting 
investment decision. The measure of the liquidity 
of securities is important, being one of the key 
indicators reflecting the quality of the market 
operation. The so-called liquidity of securities 
refers to the quantity or amount of securities which 
can be bought or sold under current price situation 
or under lower price volatility circumstances. 
In actual investment decision-making process, 
illiquid securities will cause delays in the 
transaction, which in turn will cause investors to 
lose profit opportunities. Therefore, investors tend 
to select securities with good liquidity to invest on. 
The securities turnover rate is used to measure the 
liquidity. The securities turnover is assumed to be 
an interval number, and the securities turnover rate 
of the i-th type of securities of period t is marked 
as ( , ) ( , )( , )[ , ]

t
i k t it il l l= , in which, ( , )( , )0 t it il l≤ ≤ . 

Thus, the turnover rate of period t stock portfolio is

( , )( , )
1

,
1

,
1

, ,( ) [ , ]
n n n

t it it t i i t t t
i i

i
i

il x l lx l x x
= = =

= =∑ ∑ ∑

    
(7)

The degree of securities diversification is another 
factor which affects investment decisions. 
Decentralized investment can reduce non-
systematic risk of the securities portfolio. The 
entropy ratio is used to measure the degree of 
portfolio diversification. Thus, the diversification 
of period t stock portfolio can be expressed as

( , ) ( , )
1

,( ) , 1, 2, ,....
n

t i
i

t it t iH xx l lnx t T
=

= − =∑
      

(8)

In real life, an investment decision-making activity 
is often affected by many factors. Different 
investors take different decision-making factors 
into consideration. In order to simulate investing 
activities under different decision-making 
situations, this paper considers the rate of return, 
risk, liquidity, diversification of the portfolio and 
other factors, and formulates the following four 
different multi-period portfolio selection models 
of investment. The present analysis is based on 
the interval analysis. 

Model 1: Let’s suppose investors consider 
portfolio returns and risk as decision-making 
factors. The investor requires the expected 
portfolio returns of each period must to be greater 
than a given level. Another requirement is that 
the portfolio risk of each period must be lower 
than a given level. Under the above constraints, 
the investor seeks to find an investment-portfolio 
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strategy which can maximize the portfolio 
terminal wealth. Thus, the following interval 
return-venture (RV) selection model of multi-
period investment portfolio selection ( 1P ) is 
established. This formulation should be also used 
below for the similar sentences in the description 
of Models 2, 3 and 4.

,,, ,
1 1

, , , ,
1 1 1 1

,
1

( , ),1

,

( ), ( )

[

max [ ]

. .[ , ]

1

0, 1,2..., ; 1, 2,...

]

,

,

t
n n

i ti tt i t i t
i i

n n n n

t i t k t i t k t
k i k i
n

TT

tt
i k

i

k

i

t i

i

t

W

s t x r x r R

x x x

W x W x

x

x

x i n t

P

T

δ δ δ

= =

= = = =

=

 =

 ≥






=


≤

 ≥ = =

∑ ∑

∑∑ ∑∑

∑

 
in which Rt represents the investor’s minimum 
required level on period t stock portfolio return; tδ
represents the investor’s maximum risk tolerance 
value on period t stock portfolio. The constraint 

, 0t ix ≥  shows that no short sales are allowed in 
the entire investment process. 
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Model 2: Based on Model 1, it is assumed that 
the investor also requires portfolio liquidity of 
each period to be greater than a given level. 
Thus, the following return-venture-liquidity 
(RVL) multi-period investment portfolio 
selection model ( 2P ) is established, in which tl  
represents the investor’s minimum required level 
on the liquidity of period t stock portfolio. 

Model 3: Based on Model 1, the impact of 
multi-period stock portfolio diversification on 
the investment strategy is considered. Thus, the 
interval return-venture-entropy (RVE) multi-

period investment portfolio selection model ( 3P ) 
is established as follows:
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in which et represents the investor’s minimum 
required level of the diversification of period t 
stock portfolio. 

Model 4: It assumed the investor considers all 
the factors involved in the three above-mentioned 
models. Thus, the interval return-venture-liquidity-
entropy (RVLE) multi-period investment portfolio 
selection model ( 4P ) is established as follows:

,,, ,
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 =  

Note that the above four investment-portfolio 
models are all interval programming method 
problems. The interval number in the objective 
function represents the investor’s gain of uncertain 
terminal wealth in his investment on the portfolio 
as follows:

In ,,, ,
1 1

[ , ]
n n

i ti tt i t i t
i i

x r x r R
= =

≥∑ ∑ , the left interval 

value represents the uncertain return of period t 
portfolio; the tR  on the right side represents the 
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investor’s minimum required level on the period 
t stock portfolio return;

In , , , ( ,
1

), ,
1 1 1

[ , ]
n n n n

t i t k t i t k t

tt
i k

k i k i
i kx x x xδ δ δ

= = = =

≤∑∑ ∑∑ , the 

left interval value represents the uncertain risk of 
period t stock portfolio, and the tδ  on the right 
side represents the investor’s maximum tolerance 
value on the risk of period t stock portfolio;

In ( , )( , )
1

,
1

,[ , ]t i t

n n

t it i t
i i

i lx l lx
= =

≥∑ ∑ , the left interval 

value represents the uncertain liquidity of period 
t stock portfolio, and the lt on the right side 
represents the investor’s minimum required level 
on the liquidity of period t stock portfolio. 

To simplify the notation, in the following 
discussion, the feasible domains of ( 1P ), ( 2P ),  
( 3P ), ( 4P ) as 1 2 3 4, , ,x x x x∈Ω ∈Ω ∈Ω ∈Ω   
are separated.

In order to solve the objective function with 
constraint conditions by using multi-period 
investment portfolio selection models, the four 
models are transformed into the parameter planning 
problems, which are noted by ( '

1P ), ( '
2P ), ( '

3P ), 
and ( '

4P ).

Theorem 1: if x* is the optimal solution of ( '
1P ), 

then x* is also the optimal solution of 1P . 

Proof: Assume x* is not the optimal solution 
of 1P , then the existence of 1x∈Ω makes

( ) ( *)T TW x W x≥ . Thus in '
1P , the relationship 

( ) ( *)x xλ λ≥ is established. This is obviously in 
contradiction with the known conditions.

Similarly, problems ( 2P , 3P , and 4P ) can be 
equivalently converted into the following 
parametric programming '

2P , '
3P  and '

4P .

The above parametric programming '
1P , '

2P , '
3P  

and '
4P with interval coefficients, the interval 

coefficient inequality in the constraint condition 
indicates that this condition does not require strict 
fulfilment, which allows relaxation to a certain 
extent. Due to the partial order structure of interval 
number, usually there is no optimal solution in the 
classical sense.

The four models must be firstly converted into 
relevant clear-number type models. For all the 
interval coefficient inequalities in '

1P , '
2P , '

3P  and 
'

4P , a more frequently used approach is to convert 

inequalities containing interval number into 
clear-number type inequalities for the solution. 
This paper uses the possibility degree formula of 
interval number relationship to solve these interval 
inequality constraints. 

For interval constraint inequalities
( ), ([ )]TTt W x W xW λ= ≥                               (9)

,,, ,
1 1

[ , ]
n n

i ti tt i t i t
i i

x r x r R
= =

≥∑ ∑
                            

(10)

( , )( , )
1

,
1

,[ , ]t i t

n n

t it i t
i i

i lx l lx
= =

≥∑ ∑
                           

(11)

Three above-mentioned interval coefficient 
inequalities can be separately converted into 
following clear-number type inequalities (Jiang 
et al., 2008). Based on an order relation of interval 
number, the uncertain function is transformed 
into two deterministic functions, in which the 
robustness of design is considered. Through 
a modified possibility degree, the uncertain 
inequality and equality constraints are changed 
to deterministic inequality constraints.

( )
( ) ( )T T
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W W
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(14)

where
TWθ , 

 ,p tRθ , ( )tl xθ


  [0,1] represents the 
investor’s acceptability on terminal wealth, period 
t portfolio return, and period t liquidity’s degree 
of meeting the given standard. 

For interval coefficient inequality 

, , , ( ,
1

), ,
1 1 1

[ , ]
n n n n

t i t k t i t k t

tt
i k

k i k i
i kx x x xδ δ δ

= = = =

≤∑∑ ∑∑
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the following clear type inequality can be 
obtained according to (4):

, ,
1 1

,

n n

t t
t
i ki t k

k i
x xδ δ

= =

− ≥∑∑



( ,, , , ,
1 1 1 1
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(15)

in which 
 ( ) [0,1]

txδθ ∈ represents the investor’s 
acceptability on period t portfolio’s degree of 
meeting the given standard.  

Based on the analyses above, if substituting 
Eqs. (12), (13), (14) into 1P , the following clear 
type optimized investment-portfolio model can 
be obtained
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By substituting Eqs. (12), (13), (14) and (15) 
into 2P , the following clear type parametric 
programming can be obtained:
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By substituting Eqs. (9), (10) and (12) into 3P , 
the following clear type parametric programming 
can be obtained:
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By substituting Eqs. (10), (11), (12) and (13) into 
4P  and it. the following clear type parametric 

programming can be obtained:
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3. Particle Swarm Algorithm Based 
on Quantum Behavior

Particle swarm algorithm based on quantum 
behaviour refers to the best position that particles 
have experienced and, respectively, to the best 
position that all particles in the community 
have experienced. A new model of Particle 
swarm optimization (PSO) algorithm is used to 
improve the standard PSO from the perspective 
of quantum mechanics. This model is based on 
the DELTA potential well, believes particles 
have quantum behaviours, and based on this 
model, quantum particle swarm optimization 
algorithm (Alam et al., 2011) based on quantum 
behaviours was proposed. In quantum space, 
particles searching is available in the whole 
feasible solution space, thus Quantum-behaved 
particle swarm optimization (QPSO) algorithm 
is much better than the standard PSO algorithm 
in overall searching performance (Liu S. T., 
2011). QPSO algorithm describes the state of the 
particles with waving function ( , )x tϕ  and obtains 
the probability density function of particles 
occurring at some point in the space by solving 
the Schrodinger equation. Then the equation of 
the particle’s position is obtained through the 
Monte Carlo stochastic simulation as follows:

1( ) ln( )
2
LX t P

u
= ±

                                      
(16)

where u is a random number distributed 
evenly on [0,1];  L is determined by equation

( ) 2 ( )L t mbest X tβ= − . The final evolution 
equation of the QPSO algorithm is:
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(1 )id id gdP p pϕ ϕ= × + − ×                          (18)

( 1)idX t + =

1( ) ln( )id d idp mbestt X t
u

β= ± × − ×
        

(19)

where M is the number of particles in the 
community, D is the number of particles’ 
dimensions, u and φ are uniformly distributed 
random numbers on [0,1]; , and mbest is the 
best position point of all the particles in the 
community. Same as standard PSO, ip  and gp
refer to the best position and, respectively, to 
the global position that all particles have in the 
community. β is called contraction coefficient 
of expansion and is the only parameter of QPSO, 
and generally β =0.5×(Maxiter- t)/Maxiter+0.5. 

Due to its three characteristics, quantum 
particle swarm optimization can overcome 
the shortcomings of general particle swarm 
optimization in terms of convergence 
performance: (1) quantum systems have more 
states than linear systems. (2) The quantum system 
is an indeterminate system, and the particles have 
no clear trajectory. (3) In the PSO algorithm, the 
particles must be within a limited search range to 
ensure that the particle swarm clustering makes the 
algorithm converge at the best point or the local 
best point. In the PSO algorithm, a particle search 
range is limited, while in the QPSO algorithm 
particles can appear at a certain probability in any 
position of the whole feasible search space, even 
in a position far from the point.

The standard QPSO is not represented by the 
constraint mechanism, and therefore, it proves 
to be difficult to directly solve constrained 
programming problems. QPSO with constraint 
mechanism can be described by focusing on the 
following aspects:

 - In order to control the evolution positions 
of the particle, a constraint factor υ was 
introduced in the position equation

1 1
, , ,
G G G
i d i d i dX X Vυ+ += +                                    

(20)

 - In order to satisfy the constraint equation

,
1

1
n

t i
i

x
=

=∑ ，in boundary constraints  

( [ , ], 1, 2,...,i i ix l u i n∈ = ), N particles were 
randomly generated. The particles were 
tested to satisfied equality constraints. If they 
are satisfied, then  the particles are going to 
be used as initial particles. If they are not 
satisfied, then the particles are going to be 

transformed into ,,
,

,1

G i
G i n

G kk

X
X

X
=

=
∑

.

 - Supposed inequality constraints can be 
presented as 0( 1,2..., )n n rω ≤ = , default 
values of generated particles can be calculated 

as
1

( ) ( ( ),0)
R

n
j

D X max Xω
=
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 - If idP  was not feasible and 1
,
G
i dX + was 

feasible, 1
,
G
i dX + replaced idP . If both idP  and 

1
,
G
i dX +  were feasible with 1

,( ) ( )G
i d idf X f P+ ≥

, 1
,
G
i dX +  replaced idP . If neither idP  nor 1

,
G
i dX +  

was feasible with 1
,( ) ( )G

id i dXD DP +≥ , 1
,
G
i dX +  

replaced idP .

 - Similarly, Gbest can also be processed.

4. Experimental Results

Since the stock market is the aggregation of buyers 
and sellers of stocks, which represent ownership 
claims on businesses, it’s usually difficult to 
accurately estimate the return, risk and turnover 
rate of securities. To reduce the complexity, 
the investor selects four stocks from X Stock 
Exchange, and an analysis on the basis of the 
historical data of the weekly transaction’s closing 
prices dating from January 2011 to January 2017 
is conducted. For processing and analyzing these 
historical data, the investment period is set as a 
constant and the interval estimation method is 
used to compare with the proposed model, which 
was proposed by Bhattacharyya and Majumder 
(2011). In addition, to maximize terminal wealth 
expectations, it is better to consider the different 
period returns separately. Some investors may 
use their asset allocation on various periods. In 
this comparison, the period is set as 3 to reduce 
the complexity. Then, the return, turnover and 
covariance are obtained as shown in the followings 
in Tables 1, 2 and 3.
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Figure 1. The different contraction coefficients 
comparison

Figure 2. The different particles population comparison

Figure 3. The expected terminal wealth increment 
comparison between the proposed multi-period 

model and the computation model of Bhattacharyya 
and Majumder

Convergence is an important characteristic of a 
stochastic optimization algorithm. In the Menger 
space, the fixed point theorem of the QPSO 
algorithm has proven that the algorithm converges 
to the global optimum in probability (Bhattacharyya 
& Majumder, 2011). To analyse the convergence 
and evaluate the efficiency of the proposed 
algorithm, the period P"4 model has been set as 
a sample with 150 iteration times. The absolute 

Table 1. Interval Value Return of Each Period 

t period Stock 1 Stock 2 Stock 3 Stock 4

1 [1.0070,1.0098] [1.0060,1.0070] [1.0105,1.0160] [1.0252,1.0298]

2 [1.0060,1.0080] [1.0110,1.0130] [1.0184,1.0250] [1.0070,1.0097]

3 [1.0165,1.0185] [1.0260,1.0286] [1.0225,1.0385] [1.0120,1.0220]

Table 2. Interval Value Turnover of Each Period

t period Stock 1 Stock 2 Stock 3 Stock 4

1 [0.025,0.035] [0.030,0.044] [0.014,0.025] [0.020,0.034]

2 [0.018,0.036] [0.012,0.066] [0.030,0.075] [0.025,0.045]

3 [0.035,0.046] [0.023,0.036] [0.016,0.045] [0.025,0.038]

Table 3. Interval Value Covariance of Each Period

t period Stock Stock 1 Stock 2 Stock 3 Stock 4

1 Stock1 [0.0278,0.0374] [0.0213,0.0315] [0.0228,0.0284] [0.0141,0.0183]

Stock2 [0.0213,0.0315] [0.0279,0.0346] [0.0245,0.0356] [0.0135,0.0218]

Stock3 [0.0228,0.0284] [0.0245,0.0356] [0.0266,0.0456] [0.0178,0.0223]

Stock4 [0.0141,0.0183] [0.01350.0218] [0.0178,0.0223] [0.0215,0.0244]

2 Stock1 [0.0392,0.0592] [0.0240,0.0352] [0.0386,0.0483] [0.0205,0.0363]

Stock2 [0.0240,0.0352] [0.0226,0.0382] [0.0202,0.0386] [0.0252,0.0464]

Stock3 [0.0386,0.0483] [0.0202,0.0386] [0.0344,0.0518] [0.0382,0.0585]

Stock4 [0.0205,0.0363] [0.02520.0464] [0.0382,0.0585] [0.0219,0.0257]

3 Stock1 [0.0208,0.0252] [0.0277,0.0325] [0.02430.0301] [0.02360.0381]

Stock2 [0.0277,0.0325] [0.0322,0.0447] [0.0316,0.0473] [0.0359,0.0542]

Stock3 [0.02430.0301] [0.0316,0.0473] [0.0339,0.0469] [0.0428,0.0556]

Stock4 [0.02360.0381] [0.0359,0.0542] [0.0428,0.0556] [0.0365,0.0511]
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difference value W is used to clearly present the 
results with 0max TW W− . Figure 1 illustrates 
the results of different contraction coefficients 
comparison generated by β=0.96, 0.98 and 1.00. 
This means that for QPSO the convergence rate 
is faster than one of the PSO algorithm. With β 
increasing, the rate of convergence increases 
for these three values. It is proved that the 
convergence of the function value is relatively 
difficult when the size is increased. For analysing 
the different particles population comparison, two 
groups of experiments were performed, one with 
population size M = 100, the other with M = 200. 
It should also be noted that for a given problem, 
when M = 200, the convergence speeds are larger 
than those when M = 100 in Figure 2. 

However, it cannot be concluded that a larger 
population size results in a greater rate of 

convergence because the rate of convergence also 
depends on other parameters. Smaller population 
sizes may cause lower dimensional problems to 
converge faster, but when the dimensions are 
higher, the algorithm may encounter premature 
convergence. It can be inferred that when 
population size is increased to a certain number the 
convergence rate may exceed the convergence rate.

The algorithm parameters are as follows: inertia 
β=0.98; accelerating factor c1=c2=1.49618; maximum 
number of iterations Gmax=1000, population size 
pop_size=200. Then, the Matlab optimization 
software for computing and the optimal investment 
strategy corresponding to each model after 1000 
times of iterations will be used as seen in Table 4.

Table 4 shows that by solving ''
1P ,the corresponding 

investment strategies when the investor considers 

Table 4. Optimal Investment Strategies in Various Decision Making Situations

Model t period Stock 1 Stock 2 Stock 3 Stock 4

P"1

1 0.3233 0.0345 0.4427 0.1995
2 0.0000 1.0000 0.0000 0.0000
3 0.1236 0.0000 0.0000 0.8764

P"2

1 0.2332 0.4333 0.0111 0.3224
2 0.0000 0.0000 0.2841 0.7159
3 0.4370 0.0000 0.0000 0.5630

P"3

1 0.4319 0.0000 0.3515 0.2166
2 0.0156 0.5649 0.4092 0.0103
3 0.2756 0.0000 0.0618 0.6625

P"4

1 0.2169 0.4566 0.0000 0.3266
2 0.0076 0.0472 0.2699 0.6752
3 0.4457 0.0015 0.0252 0.5276

Table 5. Multi-period Portfolio’s Income /Risk /Liquidity Interval Corresponding to Each Investment Model

Model t period portfolio income portfolio risk portfolio liquidity terminal wealth terminal wealth expectations

1 [1.0121, 1.0164] [0.0219, 0.0301] [0.0193, 0.0307]
[1.0211, 
1.0336] 1.028842P"1 2 [1.0110, 10.130] [0.0226, 0.0382] [0.0262, 0.0390]

3 [1.0126, 1.0216] [0.0335, 0.0479] [0.0262, 0.0390]

1 [1.0125, 1.0151] [0.0197, 0.0268] [0.0245, 0.0385]
[1.0273, 
1.0405] 1.033908P"2 2 [1.0102, 1.0140] [0.0295, 0.0411] [0.0264, 0.0535]

3 [1.0140, 1.0205] [0.0272, 0.0398] [0.0294, 0.0415]

1 [1.0122, 1.0163] [0.0218, 0.0287] [0.0201, 0.0313]
[1.0208,
1.0446] 1.036309P"3 2 [1.0139, 1.0178] [0.0239, 0.0410] [0.0196, 0.0690]

3 [1.0139, 1.0221] [0.0307, 0.0440] [0.0272, 0.0406]

1 [1.0125, 10151] [0.0197, 0.0268] [0.0256, 0.0388]
[1.0280, 
1.0411] 1.034515P"4 2 [1.0103, 1.0140] [0.0290, 0.0414] [0.0257, 0.0540]

3 [1.0143, 1.0209] [0.0272, 0.0395] [0.0292, 0.417]
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only the income and risk factors is obtained. In 
the decision making situation, the investor shall 
allocate the initiate wealth into these four stocks by 
these investment ratios: 32.33%, 3.45%, 44.27%, 
19.95%; at the beginning of period 2, he shall 
invest all his asset on stock 2; at the beginning 
of period 3, the investor shall invest his period-2-
end wealth on stock 1 and stock 4 by the ratios of 
12.36% and 87.64%. By solving ( ''

2P , ''
3P and ''

4P ), 
the similar investment strategies can be obtained 
if the investor considers average value, risk and 
liquidity factors.

According to the investment strategies in various 
situations in Table 4, the multi-period portfolio’s 
income, risk and the generally fluctuating range of 
liquidity corresponding to each investment model 
can be estimated. 

The investment portfolio optimization problems 
in the emerging markets are related to the situation 
of insufficient information. It is supposed that 
investors can roughly estimate the security 
returns, risks and liquidity fluctuation ranges. 
The interval numbers are used to describe the 
uncertainty in the stock market. Four different 
multi-period portfolio selection models have 
been divided into 3 periods. The multi-period 
optimal investment strategies in various decision-
making situations are shown in Table 4. The 
portfolio income interval, portfolio risk interval, 
liquidity interval and terminal wealth interval can 
be found within each investment period in each 
decision-making model, as shown in Table 5. In 
order to demonstrate the efficiency of the multi-
period investment portfolio selection model, the 
investor’s expected terminal wealth indicators 
are applied to the comparison of the proposed 
multi-period model and the computation model 
of (Bhattacharyya & Majumder, 2011). The 
expected terminal wealth increment comparison 
between two models has been presented in Figure 
3. The expected terminal wealth increment i.e. 
the net income is expressed by the absolute 
difference between the expected terminal wealth 
and corporate initial wealth ( 0W ). In addition, it 
indicates the investor’s expected terminal wealth 
by the midpoint of portfolio terminal wealth.

Table 5 shows that the terminal wealth 
fluctuation range corresponding to problem ( 1P

) is [1.0211,1.0366], expected terminal wealth 
RVW =1.028842, and net income is 0.028842. 

In Figure 3, the expected terminal wealth 
increment is 0.022364 in the computation 
model (Bhattacharyya & Majumder, 2011). The 
terminal wealth fluctuation range corresponding 
to problem ( P ) is [1.0273, 1.0405], expected 
terminal wealth WRVL=1.033908, and net income 
is 0.033908. In Figure 3, the expected terminal 
wealth increment is 0.029027 in the computation 
model (Bhattacharyya & Majumder, 2011). The 
terminal wealth fluctuation range corresponding 
to problem ( 3P ) is [1.0280,1.0446], expected 
terminal wealth RVEW =1.036309, and net income 
is 0.036309. In Figure 3, the expected terminal 
wealth increment is 0.031722 in the computation 
model (Bhattacharyya & Majumder, 2011). The 
terminal wealth fluctuation range corresponding 
to problem ( 4P ) is [1.0280,1.0411], expected 
terminal wealth WRVE=1.034515, and net income 
is 0.034515. In Figure 3, the expected terminal 
wealth increment is 0.030041 in the computation 
model of Bhattacharyya and Majumder. For all the 
problems mentioned above ( 1P , 2P , 3P , and 4P ), 
the net income is obviously lower than the one 
proposed in the multi-period model, as it can be 
seen in Figure 3. Thus, the proposed multi-period 
model is more efficient for obtaining the expected 
terminal wealth increment in comparison with the 
computation model (Bhattacharyya & Majumder, 
2011). Due to the introduction of possibility 
degree indicator, the investor’s preferences on 
terminal wealth, multi-period portfolio income, 
risk, liquidity, and diversification level are more 
specific. By adjusting the possibility value of 
constraint validity of coefficient inequalities on 
each interval, the investor is enabled to accomplish 
his investment purpose.

Furthermore, by solving this four models, the 
inequality relationship between this four expected 
terminal wealth values is: RVW < RVLW ＜ RVLEW <

RVEW . From the inequality relationship above, it’s 
easy to find that the liquidity and diversification 
level of portfolio have a great impact on 
investment decision making factors; models which 
focus more on the liquidity and diversification of 
investment will be more effective than models 
which only focus on income and risk.
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5. Conclusion

Interval numbers are a special kind of fuzzy 
numbers, and intervals are powerful tools for 
dealing with uncertainty problems. Especially, 
when parameters of the probability density 
function cannot be obtained because of the 
lack of enough experimental data, the interval 
programming method is more practical than the 
analysis method of probability theory. The interval 
programming method is not only vague, i.e., 
the lack of sharp class boundaries, it also has a 
feature of uncertainty i.e., the lack of information 
can be addressed intuitively. This paper conducts 
the research about the multi-period investment 
portfolio selection problem in a booming stock 
market suffering of serious lack of information, 
fully considers decision making factors such as 
portfolio return, risk, liquidity and diversification 
level, and applies to interval number programming 
method to describe the uncertainty of the above-
mentioned decision making factors. The investor 
experience can approximately estimate the 
interval range of portfolio income, risk, liquidity 
and his market instinct. The interval programming 
method is used to argument according to these 
investment-portfolio optimization issues. Before 
modeling, some relevant interval number theories 
are involved. This paper conducts the adopting 

interval analysis method, and establishes four 
optimized multi-period investment portfolio 
selection models by using the concept of possibility 
of denoting the inequality relationship of interval 
numbers. The constrained linear programming 
method converts the interval coefficient inequality 
constraints involved in modeling into clear type 
inequalities. Furthermore, because the particle 
swarm optimization algorithm is not efficient 
for the constrained linear programming and for 
a global convergence, the strategy of a double 
exponential distribution and an adaptive method to 
sample particle’s positions is designed for multi-
period investment portfolio selection models with 
interval analysis. Finally, the proposed model is 
tested and compared with each decision-making 
factor’s impact on the selection of portfolio 
strategy. The experimental results show that, at 
a certain acceptable level of possibility, taking 
into consideration the investment diversification 
and the impact of liquidity will lead to a greater 
terminal wealth than the one obtained considering 
only the income and risk factors. Compared with 
the existing portfolio strategy, if the investor is 
dissatisfied with the investment strategy obtained, 
multi-period investment portfolio selection can be 
used to get optimal personal investment strategy 
by adjusting acceptability level value.

REFERENCES

1. Achour, Z. & Rezg, N. (2007). Time Floating 
General Mutual Exclusion Constraints, 
Studies in Informatics and Control, 16(1), 
57-66. 

2. Alam, S., Dobbie, G., Koh, Y. S., Riddle, 
P. & Rehman, S. U. (2014). Research 
on particle swarm optimization based 
clustering: a systematic review of literature 
and techniques, Swarm and Evolutionary 
Computation, 17, 1-13.

3. Aouni, B., Colapinto, C. & La Torre, D. 
(2014). Financial portfolio management 
through the goal programming model: 
Current state-of-the-art, European Journal of 
Operational Research, 234(2), 536-545. 

4. Bhattacharyya, R., Kar, S. & Majumder, D. 
D. (2011). Fuzzy mean-variance-skewness 
portfolio selection models by interval 
analysis, Computers & Mathematics with 
Applications, 61(1), 126-137. 

5. Dang, D. M., Forsyth, P. A. & Li, Y. 
(2016). Convergence of the embedded 
mean-variance optimal points with discrete 
sampling, Numerische Mathematik, 132(2), 
271-302.

6. Detemple, J. (2014). Portfolio Selection: A 
Review, Journal of Optimization Theory and 
Applications, 161(1), 1-21.

7. Forsyth, P. A., Kennedy, J. S., Tse, S. T. 
& Windcliff, H. (2012). Optimal trade 
execution: a mean quadratic variation 
approach, Journal of Economic Dynamics 
and Control, 36(12), 1971-1991.

8. Jiang, C., Han, X., Liu, G. R. & Liu, G. 
P. (2008). A nonlinear interval number 
programming method for uncertain 
optimization problems, European Journal of 
Operational Research, 188(1), 1-13.



http://www.sic.ici.ro

492 Yongqi Wu, Tao Hai, Hui Zhang

9. Kolm, P. N., Tütüncü, R. & Fabozzi, F. J. 
(2014). 60 Years of portfolio optimization: 
Practical challenges and current 
trends, European Journal of Operational 
Research, 234(2), 356-371.

10. Liu, S T. (2011). The mean-absolute 
deviation portfolio selection problem 
with interval-valued returns, Journal of 
Computational and Applied Mathematics, 
235(14), 4149-4157.

11. Liu, Y. J., Zhang, W. G. & Zhang, P. (2013). A 
multi-period portfolio selection optimization 
model by using interval analysis, Economic 
Modelling, 33, 113-119.

12. Rădulescu, M. & Rădulescu, C. Z. 
(2015). A Portfolio Theory Approach 
to Software Vendor Selection, Studies 
in Informatics and Control, 24(4), 380.  
doi:10.24846/v24i4y201502

13. Yang, Z., Yin, G. & Zhang, Q. (2015). 
Mean-variance type controls involving a 
hidden Markov chain: models and numerical 
approximation, IMA Journal of Mathematical 
Control and Information, 32(4), 867-888. 

14. Zhang, W. G., Liu, Y. J. & Xu, W. J. (2012). 
A possibilistic mean-semivariance-entropy 
model for multi-period portfolio selection 
with transaction costs, European Journal of 
Operational Research, 222(2), 341-349.


	_Hlk527361761
	_GoBack
	_GoBack
	OLE_LINK4
	OLE_LINK5
	bau005
	bau010
	bau015
	_GoBack
	baut0005
	baut0010
	baut0015
	_Hlk523163837
	_Hlk523164161
	_Hlk523164237
	_Hlk523164303
	_Hlk523164371
	_Hlk528855163
	_Hlk528855104
	_Hlk528854772
	_Hlk528854634
	_Hlk528854705
	_Hlk528854916
	_Hlk528855702
	_Hlk528854842
	_Hlk528855226
	_Hlk528855533
	_GoBack
	_Hlk527631678
	_GoBack
	_GoBack
	_GoBack
	_Hlk528514076
	_Hlk527368084
	_Ref528521393
	_Ref528521106
	MTBlankEqn
	_Ref528611286
	_Ref528611711
	_Ref528612036
	_GoBack
	_GoBack
	MTBlankEqn
	_Hlk530553768
	_Hlk530553790
	_Hlk530553918
	_Hlk530554021
	_Hlk530554118
	_Hlk530554236
	_Hlk530554343
	_Hlk530554522
	_Hlk530554390
	MTToggleStart
	MTToggleEnd
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK25
	OLE_LINK26
	OLE_LINK27
	OLE_LINK7
	OLE_LINK30
	OLE_LINK31
	_GoBack
	MTBlankEqn
	OLE_LINK2
	OLE_LINK1
	_Hlk530523563
	OLE_LINK3
	_Hlk530523758
	_Hlk530660742
	_Hlk530662129
	_Hlk530667018
	_GoBack
	_Hlk530667358
	_Hlk531418885
	_Hlk531418636
	_GoBack

