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1. Introduction

This paper deals with the control synthesis 
problem of Discrete Event Systems under strict 
time path constraints. In such systems with 
a crucial period, the respect of the temporal 
constraints proves its capability in the evolution 
of the real industrial processes. Therefore, the 
efficiency of these kinds of systems depends not 
only on their logical accuracy but also on their 
compliance with time specifications.  Overall, 
constraints are involved in various aspects such 
as deadline, time intervals, validity duration, 
desired response time … and so on.  They are 
often integrated in various real applications like: 
flexible manufacturing workshops including 
thermal or chemical treatments; as in (Mhalla et 
al., 2013) and in (Kim & Lee, 2016), real-time 
systems which are the object of the research 
conducted by Dasarathy (1985) and urban and 
rail transports evoked in (Holloway et al., 1997), 
(Houssin et al., 2007), and (Wang et al., 2013). 
Networked automation systems were investigated 
in the work of (Addad et al., 2010) and (Tebani et 
al., 2017). In the specialized literature, a variety of 
study cases and works have focused their attention 
on the problem of the control synthesis approaches 
related to time-constrained systems, take the 
example of (Tiberiu et al., 2006) and (Sava & 
Alla, 2007). Different resolution methods have 
been proposed in turn. 

A class of Discrete Event Systems involving tasks 
with real-time constraints is tackled in (Mao & 
Cassandras, 2009) and (Mao & Cassandras, 2010). 

The main purpose beyond of the developed 
approaches is to control processing times as 
well as to minimize a cost function subject to 
each task meeting its own constraint. The author 
Bonhomme (2001, 2013) has developed a control 
approach for real-time systems modeled by 
a class of Petri nets. The results of (Lahaye et 
al., 2004) and (Cottenceau et al., 1999) involve 
some resolution techniques related to disturbance 
rejection and tracking model issues. Similarly, 
to avoid any violation of time specification, a 
technique of regulating wafer delays against 
timing disruptions is in the mean and it is 
established in the contribution of (Kim & Lee, 
2016). In the same process, after managing to 
model the behavior of a tool by a Timed Event 
Graph, they developed a feedback controller for 
single-armed and dual-armed cluster tools that 
can satisfy the time constraints by regulating 
wafer delays. The work of (Houssin et al., 2013) 
has restricted the treatment of time constraints 
only on some particular parts of the Timed Event 
Graphs. In doing so, they assumed that the first 
transitions of these constrained paths are directly 
controllable (i.e. these transitions are connected 
by a single place with input transitions). 
Within the same context, Houssin et al. (2007) 
managed to find other control strategies that were 
particularly integral to the just-in-time criterion 
for constrained (max, +) linear systems. The 
proposed approach was applied to the timetables 
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synthesis of urban bus networks. In (Wang et al., 
2013) and with similar application context, under 
constraints and fixed arrival time, a pseudo-
spectral method and a mixed integer linear 
programming approach are combined to solve 
an optimal trajectory planning problem for train 
operations. Other methods are also developed 
to design a controller to ensure that a Max-
Plus system evolves without violating the time 
restrictions imposed on the state; were addressed 
in (Maia et al., 2013) or even characterized by a 
semimodule (Maia et al., 2011b). Other research 
achievements related to the control problem like 
also in (Maia et al., 2011a), where the approach 
was essentially based on the algebraic properties 
of the system matrices by solving linear Max-
Plus equation and by Checking sufficient 
conditions. In addition, the system’s stability was 
also an object of study.

Dealing with this kind of control problem has 
required the emergence of a variety of research 
activities as presented in Amari (2005) and 
(Jacob & Amari, 2017). To solve the feedback 
control problem of Timed Event Graphs under 
strict time constraints, authors have developed 
several methodologies using Max-Plus or Min-
Plus algebra. Dealing with the same topic, it has 
been showed in the achieved results of (Tebani 
et al., 2018) that control laws may exist under 
the assumption of an empty path between the 
control transition and the upstream transition of 
the constrained place. Consequently, this specific 
condition on the empty path remains risky due to 
the capability of introducing loop without a token 
(i.e. when the paths are closed, the system loses 
its liveness property).

Since the previous approaches showed a 
remarkable limitation (all markings of the 
constrained places are null besides to the existence 
of an empty path between the control transitions 
and these paths), this current contribution needs 
to be improved and extended to avoid any empty 
path between the control transitions and these 
time-critical paths.  A second assumption on the 
parts of the TEG that was exposed to the temporal 
constraints is relaxed in the majority of the 
previous results like in (Atto et al., 2011), (Amari 
et al., 2012). Their researches had considered only 
the particular places exposed to constraints. The 
present study manages to treat the problem of time 

constraints on some paths of the Timed Event 
Graph, which are not necessarily empty. 

Accordingly, this paper is organized as follows; 
the basic definitions and notations concerning 
the formalism of Min-Plus algebra, Timed 
Event Graphs models and their Min-Plus linear 
representations, which are recalled in section 2. 
The state feedback control problem is formulated 
in section 3 and the proposed feedback approaches 
are developed in section 4. In particular, after 
considering the case of TEG with one input 
transition and a single temporal constraint on the 
path, the method is extended to the case where 
different constraints and several control transitions 
can be found. Section 5 is devoted to an illustrative 
application and finally section 6 is dedicated to 
conclude the contribution and to expose some 
future perspectives. 

2. Basic Definitions

The paradigm of Petri nets is known to be a 
powerful tool used for the modeling and the 
analysis of discrete event systems. They are 
particularly used to represent phenomena such as 
synchronization and concurrency.

According to the context of analysis, many classes 
of Petri nets with more or less elaborate semantics 
are used. Comparatively, a basic class of Petri nets 
called Timed Event Graphs is the most studied. Its 
major benefit over many other timed Petri models 
is that their early behavior can be represented 
by linear equations in dioid algebra; Max- Plus 
and Min- plus (Baccelli et al., 1992). This leads 
to a large theory for linear systems where many 
concepts and theories have been involved the 
Timed Event Graphs.   

2.1 Formalism of Min-Plus Algebra

In order to describe the state evolution of 
Discrete Event Systems, Min-Plus algebra 
can be seen as an adequate algebraic setting 
that involves synchronization, delays and 
parallelism phenomena. They are often observed 
in manufacturing assembly lines, transportation 
systems and communications networks. This 
tool is a mathematical formalism that paves the 
way for linear modeling. If these systems were 
described by differential or different equation in 
conventional algebra, they would have a nonlinear 
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representation. This subsection provides the basic 
definitions and notations of Min-Plus algebra 
explored in this work. 

Both minimization and usual addition are 
considered as elementary operations of the 
Min-Plus formalism. The Min-Plus algebra  
(or dioid Min-Plus), denoted min  is a 
commutative dioid for which the law Å  is 
the operation Min, having the neutral element
ε = +∞ , and the second law Å  is the usual 
addition, with the neutral element 0e = .

If n Î  and min, nv wÎ , one denotes by v wÅ , 
the vector with components min( , )i i i iw wν ν⊕ =  
for 1i =  to n. Taking , ,p q Î and the matrices 

min
p nA ´Î  min

n qB ´Î  the notations .A B or just AB
denote both the matrix multiplication in min , 
which is defined by the following equation:

1
( ) (  . ) ( ) min( ).

n

ij ij ik kj ik kjkk
A B A B A B A B

=
Ä = = Å Ä = +

The Kleene star of a square matrix min
n nA ´Î ,  

denoted *A , is defined by the following expression:

( )i

i
A A*

Î
= Å



,

where 0A  denotes the unit matrix, where 
entries are equal to e  on the diagonal, and 
e  elsewhere. Let us recall that min

nn Î  then 
.x A ν∗=  is the maximal solution of both the 

inequality, .x A x v£ Å , and also the equality, 
.x A x v= Å . 

The reader is invited to check out the book of 
Murata (1989), for an exhaustive presentation and 
further details on the theory of Min-Plus algebra.

2.2 Modeling of Timed Event Graphs 

In (Murata, 1989) the Event Graphs are 
defined as a class of Petri nets where each 
place has exactly one upstream transition and 
one downstream transition. If time delays are 
combined with the places, then P-Timed Petri 
nets are found particularly within the class of 
Timed Event Graphs.

A Petri net is assessed to be live for an initial 
marking if all transitions can always be enabled 
by a future marking, as it is stated in (Baccelli et 
al., 1992).  

The marking defines the dynamics of the evolution 
of the states inside a Timed Event Graph. 

An active state is analogous to a token possession 
by the corresponding place.  

An autonomous event graph is an event graph with 
only internal transitions.

According to Murata (1989), an autonomous 
event graph is called live whether in each of its 
circuits bears at least one token with respect to 
the initial marking.

An enabled transition comes to remove one token 
from its upstream place and to add it to each 
downstream place.

An empty path is a sequence of transitions and 
places consecutively connected by arcs, for which 
the cumulated marking is null. 

In the overall, the following notations are used: 
while P  will denote the set of places of the 
considered graph,T  is its set of transitions. The 
number of transitions having at least one upstream 
place is denoted as n, whereas m  stands for the 
number of source transitions, having no upstream 
place. If ,i jt t TÎ , the place connecting jt  to it  
is denoted ijp , if any, the corresponding delay 
is denoted ijτ  and the marking of this place is 
denoted ijm . The maximal delay arising in the 
Timed Event Graph is denoted maxτ . In the present 
case, it is assumed that all the arcs of the TEG, 
must have weight 1. 

Let S be a sequence of transitions and places 
having the following form: 

1 1 1 2 2
( , , , , ,..., )i ik k k k k jt p t p t t  

where 
1 1 2
, ,...ik k kp p PÎ and 

1
, ,...i kt t TÎ , as ατ is the 

sum of the existent delays along the pathα .  

One could assume that S is assimilated to a path 
denoted as α .

Each transition of the considered Timed Event 
Graph is associated with a function of time that 
corresponds to the cumulated number of firings of 
the transition at a t  time.

The counters that correspond to source transitions 
within the TEG form the components of the 
vector ( )u t , like min( ) mu t Î . Counters of other 
transitions form the components of the vector 
denoted as min( ) ntq Î , where m represents the 
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number of control transitions without any other 
upstream transition and n  stands for the number 
of transitions owning at least one upstream place 
(see Baccelli et al., 1992).

The dynamical behavior of a Timed Event Graph 
can be expressed by means of a linear equation 
over min , as in the following equation (1):

max

0
( ) ( . ( ) . ( ))t A t B u t

τ

τ ττ
θ θ τ τ

=
= ⊕ − ⊕ −

                     
(1)

min
n nAt
´Î  is a matrix where entries ,ijAτ  are equal 

to ijm , the number of initial tokens in place ijp ,  
if this place exists and as the associated delay is 
τ , or ε  else. Similarly, the entries of matrices 

min
n mBt
´Î  correspond to the initial tokens’ 

number of the places directly followed by the 
control transitions.

As equation (1) is implicit in general, it is worthy 
to replace it with the following explicit equation:

0 00
( ) ( . . ( ) . . ( ))t A A t A B u tτ ττ

θ θ τ τ∗ ∗

>
= ⊕ − ⊕ − ,            (2)

where 0A∗  is the Kleene star of A0, as it has already 
been defined in the previous subsection.

2.3 Min-Plus State Representation  
of TEGs

Similar to the case of usual linear systems, the 
explicit equation (2) can be brought into the state 
space form, if all the delays in the Timed Event 
Graph are commensurable to a single delay. 
Consequently, one can assume without loss of 
generality that this elementary delay is equal to 1.

In order to get a state space model from the TEG 
model, all the places with delays 1τ > are firstly 
expanded into a number of τ places with delays 
equal to 1.Therefore, ( 1)τ −  intermediate transitions 
are added. The holding times in places are assumed 
integers. ( )x t denotes the resulting extended state 
vector. The dynamic behavior of the expanded 
Timed Event Graph is described by the equation:

0 1
ˆ ˆ ˆ( ) . ( ) . ( 1) . ( )x t A x t A x t B u t= ⊕ − ⊕ ,

It can be rewritten into the following  
explicit equation:

( ) . ( 1) . ( )x t A x t B u t= − ⊕ ,                                    (3)

where A and B matrices expressions are given 
as 0 1

ˆ ˆ.A A A∗=  and 0
ˆ ˆ. .B A B∗= Depending on the input 

( )u t  and on some initial conditions, all these 

notations permit to determine the deterministic 
behavior of the controlled Timed Event Graph. 
As this dependence can be explicit, the following 
formulation shall be used:

1

0
( ) . ( ) . . ( ) ,k

k
x t A x t A B u t k

τ
τ τ

−

=

 = − ⊕ ⊕ −                           
(4)

holding true, for every 1τ ≥ .

In the following, one assumes that the input u(t) 
is actually a control, which can be arbitrarily 
assigned. For instance in a production process, 
the input can correspond to the authorization of 
performing a certain operation, primary materials 
input detection. Typically, the beginning of a task 
performed by a robot could be subject to such a 
control input for instance.

Example 1

Below, the illustrative example reinforces the 
already elaborated definitions.

Figure 1 illustrates the Timed Event Graph.

Figure 1. A Timed Event Graph example 

Assuming that transitions’ firing is performed 
with maximal possible speed, equation (1), in this 
graph leads to:

0 1 2 4( ) . ( ) . ( 1) . ( 2) . ( 4)
. ( ),

t A t A t A t A t
B u t

θ θ θ θ θ= ⊕ − ⊕ − ⊕ −
⊕

with:

0

2 2
A

ε
ε ε ε
ε ε ε

 
 =  
 
 

,
 

1A
ε ε ε
ε ε ε
ε ε ε

 
 =  
 
 

,
 

2A e
ε ε ε

ε ε
ε ε ε

 
 =  
 
 

,
 

4A
e

ε ε ε
ε ε ε
ε ε

 
 =  
 
 

,
 

e
B ε

ε

 
 =  
 
 
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The explicit equation (2) hence leads to:
2

( ) ( 1) ( 2)

2
( 4) . ( )

t t e t

e
t u t

e

ε ε ε ε ε
θ ε ε ε θ ε ε θ

ε ε ε ε ε ε

ε ε
ε ε ε θ ε
ε ε ε

   
   = − ⊕ − ⊕   
   
   

   
   − ⊕   
   
   

After extending the initial graph to maintain a 
graph with delays normalized to 0 or 1, the graph 
of Figure 2 is achieved.

Figure 2. The extended equivalent TEG

Accordingly, the resulting state space equation is 
given as following:

2 2
1

( ) ( 1) ( )  

e
e

e
x t x t u te

e
e

e

ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε

ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

   
   
   
   
   = − ⊕   
   
   
   
      

Linear systems over Min-Plus algebra could have 
been also used for performance evaluation like 
in (Gaubert, 1997), diagnosis, scheduling as the 
case of (van den Boom et al., 2013) to control 
various Discrete Event Systems, whose evolution 
is interpreted by Timed Event Graphs, for instance 
in (Akian et al., 2003), (Hardouin et al., 2010) and 
(Heidergott et al., 2006). 

3. Problem Formulation

3.1 Constrained Paths 

The majority of the existent industrial systems are 
subject to strict time duration constraints, which 
could be considered locally to some of their paths. 
Additional conditions are provided to check the 
compliance with the critical process. This needs to 
be formulated in order to provide efficient control 
laws through the constrained path formulation 

using Min-Plus algebra. 

This study addresses the control of TEG under 
time constraints. In fact, in addition to minimal 
holding times for tokens in places of the TEG, 
there may be upper bounds on the time that tokens 
are allowed to spend in places. Moreover, such 
time constraints may additionally be imposed on 
paths within the TEG.

In such, one considers ijβ as the path subject to a 
strict constraint like jt β  and it β  respectively, and 
the upstream and the downstream transition of this 
path. A time interval min max[ , ]ij ijβ βτ τ is associated to this 
path, where min

ij ijβ βτ τ= .

Figure 3. An example of a constrained Path

Through the path going from tjβ to tiβ illustrated 
by Figure 3, the temporal constraint is indeed 
expressed by the following inequality:

max( ) ( )i ij j ijx t m x tβ β β βτ≥ −                                      (5)

where ijm β is the sum of all the initial marking of 
places that are part of path .ijβ max

ijβτ  defines the 
maximal upper bound, which is available over min

and represents the sum of all the delays associated 
with the  places of the path. It is also the additional 
constraint that is required to be satisfied.

3.2 Formulation of the Control Problem 

Strict time constraints are frequent in industrial 
processes. For instance, considering the example 
of a production process in a furnace, products 
should get specific thermal treatment, and the 
duration has to be fixed or even delimited by a 
time interval. Therefore, an adequate control that 
respects such critical constraints needs to be cho-
sen. Figure 4 shows approximately the structure 
of a controlled constrained system. A feedback 
controller of the form: ( ) . ( 1)u t F x t= −  directly 
linked to the input is applied. 
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The definition of a Timed Event Graph takes 
into consideration a delay on each place that 
corresponds to a minimal holding time. The 
maximal duration emerges as an additional 
time constraint that should be checked indeed. 
Accordingly, the question of verification is tackled 
as a control problem formulation.

Figure 4. A structure of a controlled constrained 
system 

Remark 1. A static control law like u( t ) G.x( t )=  
could lead to implicit loops. Because the solution 
is characterized by infinite rather then single 
loops, this control problem lacks the adequate 
definition. On one hand, using u(t)=G.x(t), a 
badly posed feedback emerge. On the other 
hand a feedback of the form ( ) . ( 1)u t F x t= −  is 
always well posed, which ensures the closed loop

( ) ( . ). ( 1)u t A B F x t= ⊕ − . 

4. State Feedback Control of TEG 

As the response time of most modern industrial 
systems is crucial, it is worthy to seek for a control 
that solves the problem of the temporal constraint. 
In doing so, all the parts of an operational system 
must be taken into account once they are under 
time constraint.

Within the framework of this paper, the main 
objective of the control synthesis is to confirm 
that the sojourn time remains dependent on some 
durations or time limits in certain paths of the TEG. 
Thereupon, these temporal constraints have not 
necessarily been respected without suitable control. 

A new method for the synthesis of feedback control 
laws ensuring the respect of temporal constraints 
on paths using Min-Plus algebra is addressed by 
checking the sufficient conditions. The approach 
towards this method of control law synthesis is 
based on (Ben Afia et al., 2019). Accordingly, the 
present work consists of generalizing the Timed 

Event Graphs subjected to several time constraints 
and multiple controls.

4.1 TEG with One Control Transition 
and a Single Constrained Path

In order to find a suitable feedback respecting the 
critical process, adequate control laws should be 
sought. Therefore, within this context, an entire 
sub-process or a task within an industrial process 
could be exposed to strict time duration. Some 
previous approaches related to the synthesis of 
feedback control laws for discrete event systems, 
have two limitative assumptions as in (Tebani 
et al., 2017) and (Amari, 2015). The first one 
considers an empty cumulated marking through 
the path between the resource transition and the 
upstream transition of the time critical path. The 
second one supposes that the constrained place is 
unmarked. Otherwise, in the present case, these 
works are extended and these assumptions are 
relaxed by keeping meanwhile the basic properties 
of the Timed Event Graphs such as liveness.

At the beginning, the case of one control transition 
and a single constrained path is tackled. Then, it 
is expanded to a general case including multiple 
constrained paths and also multiple controls.    

For that, one defines: 

α as the path delimiting the input transition of the 
TEG and the upstream transition of the constraint 
path β . 

ατ  and mα are the non-zero cumulated delay and the 
sum of the markings along the path α , respectively.

( )u t  and ( )jx tβ  denote the counter functions of ut

and jt β , respectively.  

The counter functions’ relationship between u(t) 
and ( )jx tβ  is expressed by the following inequality: 

( ) ( )jx t m u tβ α ατ≤ −

Considering ατ τ=  and from the definition of ut
and jt β , one has:

( ) ( ) ( ).j uj ux t A B x tατ
β β ατ≤ −

As ( ) ( )ux t u t≤  from which it is quite evident that:

( ) ( ) ( )j ujx t A B u tατ
β β ατ≤ −                                     (6)
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Reapplying again (4) withτ φ=  the following 
explicit expression is obtained: 

1

1 1
( ) ( ) ( ) ( ) ( )

N
k

i i r r ir k
x t A x t A B u t k

φ
φ

β β βφ
−

= =

 = ⊕ − ⊕ ⊕ −  
(7)

    

Available for every integer 1φ ≥ , as r=1 to N, this 
represents the key to obtain the following result.

Theorem 1. Assuming that a Timed Event 
Graph, whose evolution is modeled by the Min-
Plus linear equation (3), it is subject to a single 
temporal constraint of the form (5) imposed on 
the path ijβ .

By taking  max 1ijβ αφ τ τ= + +  from the following 
control laws:

 
1

( ) (( ) ( ) ). ( 1),
N

i r uj ij rr
u t A A B m x tατφ

β β β=
≤ ⊕ − − −

One could define the causal control laws that 
ensure the respect  of the constraint (5), only if 
this condition holds true: 

 ( ) ( )k
i uj ijA B A B mατ
β β β≥ + , for each 0k =  to ( 1)φ −   

Proof. Taking into account equation (7), it’s 
evident  that path’s constraint (5) is respected only 
when the follwing condition holds: 

1
max

1
( ) ( ) ( )k

i ij ij jk
A B u t k m x t

φ

β β β βτ
−

=
⊕ − + ≥

Moreover, if equation (6) is considered, the 
previous condition will become as following: 

1
max

1
(( ) ) ( ) ( ) ( )k

i ij ij ujk
A B m u t k A B u tα

φ
τ

β β β β ατ τ
−

=
⊕ − − + ≥ −

It represents an enough condition depending 
exclusively on the previous pathα , as well as on 
the initial markings of the path ijβ .

Remark 2. 

Considering  ( ) ( )r i r uj ijF A A B mατφ
β β β= − − ,

the suitable feedback F of the controller
( )  ( 1),u t F x t= −  is found by choosing rF ε= for

( )i rAφ
β ε= and max( , ( ) ( ) )r i r uj ijF e A A B mατφ

β β β= − −  for 
 ( )i rAφ

β ε≠ , where rF represents the component of 
the vector F.  	

4.2 Control Synthesis for the Case of 
Multiple Constrained Paths

This subsection deals with the control synthesis 
of a Timed Event Graph, while having one source 

transition, such that there exist Z constrained 
paths, denoted as ,zβ  for z=1 to Z, respectively.  
For each constrained path let mβz, τβz and 

z

max ,βτ  denote the initial marking, the minimal 
and maximal delays of the constrained path, 
respectively. Further, let tβz and t’βz denote 
the input and output transitions of the path z ,  
respectively. xz and x’z denote the corresponding 
transitions’ counter functions, and λβz indicates the 
cumulated delay along a path going from  tu to tβz . 
These constraints are expressed by the inequalities 
given as following:

' max( ) ( )
z z z z

x t m x tβ β β βτ≥ −                                      (8)

for 1z =  to Z. 

( )zu t  is denoted as the control law that satisfies all 
the corresponding constraints on the paths, given 
by the inequalities (8). 

Theorem 2. As  a Timed Event Graph modeled 
by Min-Plus linear  equation (3) and submitted 
to temporal constraints imposed on Z paths is 
considered, the causal controls ensuring the 
respect of all constraints are computed as follow: 

1
( ) ( )

Z

zz
u t u t

=
≤ ⊕

'1
( ) (( ) ( ) ) ( 1)z z

z

N

z x u xu rr
u t A A B m x tβ βφ λ

β=
 = ⊕ − − −  , is 

the control law ensuring the respect of the Z 
constraints on the paths ,zβ  knowing that:

 max( 1),
z z zβ β βφ τ λ= + +

only if the below conditions are satisfied: 

'( ) ( )z

z

k
x u xuA B A B mβλ

β≥ +  for k 1=  to 
z

( 1 )βφ −

Proof. By admitting that the control law 
provided by ( )u t  ensures  the thz  constraint on 
the path,with Theorem 1, the global control law 
will be the following: 

 
1

( ) ( ),
Z

zz
u t u t

=
≤ ⊕

Every z=1 to Z, will lead quite natural to the 
satisfaction of simultaneous constraints if the 
provided conditions are satisfied. 
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4.3 Generalization for the Case of 
Multiple Controls

This subsection deals with a Timed Event Graph 
with m existing source transitions. Firstly, it is 
supposed that ijβ is the single path subjected 
to the additional upper bound of the path’s 
temporal constraint.

In this context, a vector, min( ) mu t Î with m 1≥ is 
calculated which is a control law that must satisfy 
the constraint (5). To each source transition, a 
variable counter is associated, denoted by ( )su t ,  
for each [ ], .s 1 m∈ sλ  notes the cumulated delay 
along each path going from 

sut to jt β , which 
denote the source transitions and each upstream 
transition of the path ijβ , respectively. 

Theorem 3. Regarding the Min-Plus system (3) 
that describes the behavior of a TEG subject to a 
single constraint of the form (5) on one path, the 
below inequality can be obtained:

1
( ) (( ) ( ) ) ( 1)s s

s

N

s ir j u ij rr
Bu t A A m x tφ λ

β β=
 ≤ ⊕ − − − 

With max( 1),ss ijβφ τ λ= + +  the feedback controls 
ensuring the respect of the temporal constraint 
can be defined the following condition is checked:

'
( ) ( ) ,

s
i i j u ij

skA B A B m
β β β

λ≥ +

with [ ]sk 1,( 1)φ∈ − and [ ]i' 1,m∈

Proof. By replacing τ  by sλ  in (4), and from 
the definition of the counter function of jt β , it 
is obtained: 

( ) ( ) ( )s

zj j u s sx t A B u tλ
β β λ≤ −                                (9)

Following the same equation (4), by substituting    
: sτ φ= , one gets:

1

0
( ) ( ) ( ) )( ,

s
k

r s s
k

sx t A x t A B u t k
φ

φ φ
−

=
= − ⊕ ⊕ − 

    
in particular the following explicit equation can 
be deduced: 

1

' '
1 0 ' 1

( ) ( ) ( ) ( ( ))) (
s

s

N m
k

i i r r s i i i
r k i

x t A x t A B u t k
φ

φ

β βφ
−

= = =
= ⊕ − ⊕ ⊕ ⊕ − 

    
                                                                        (10)

Considering equation (10), particularly, the 
second part, the temporal constraint given by 
(5), is satisfied only if the following condition 
holds true: 

1
max

' '0 ' 1
( ( ) ( ( )))

s m
k

i i i ij ij jk i
A B u t k m x t

φ

β β β βτ
−

= =
⊕ ⊕ − + ≥ .

Further, taking (9) into account, this  
condition becomes:

1
max

' '
0 ' 1

))

)

( ) (

( ) (

( )
s

s

s

m
k

i i ij i ij
k i

j u s s

A B m u t k

A u tB

φ

β β β

λ

β λ

τ
−

= =
⊕ ⊕ − +

≥ −

 
 

−


By choosing max( 1),s ij sβφ τ λ= + + the previous given 
condition is verified, and the control law satisfies 
the inequality (5), thus, it can be checked if that the 
temporal constraint on the path is also respected.

Theorem 4. Assuming that the Timed Event 
Graph is characterized by m source transitions 
as 1m >  and disposed to z additional temporal 
constraints on some of its paths of the form (8), 
the causal control law guaranteeing the respect of 
all the Z constraints will be defined as follows:

1
(t)  ( )

Z

l z
z

u u t
=

≤⊕ .

Thus, z=1 to Z where ( )zu t is the control law, 
already calculated by theorem 2, to check the thz
constraint and ( )lu t ε= for l z≠ .

1
( )  ( )

Z

l z
z

u t u t
=

=⊕

Proof. A control law ( )zu t validates the 
thz constraint, 

if the condition given by theorem 2 is satisfied. 
Accordingly, one obtains:

1
( )  ( )

Z

z z
z

u t u t
=

=⊕

for 1Ζ =  to Z.

According to Theorem 4, it is clear that the 
control law:

1
(t)  ( )

Z

l z
z

u u t
=

≤⊕

available for l=z to Z, guarantees the respect of all 
Z existing temporal constraints of the TEG.  



	 47

ICI Bucharest © Copyright 2012-2021. All rights reserved

Synthetizing State Feedback Control Laws for Discrete Event Systems with Constrained Paths...

5. Application to a  
Manufacturing Cell 

5.1 Modeling and Control of the 
Manufacturing Cell

In this subsection, the above theoretical results 
are applied to the case of a manufacturing cell 
inside a flexible workshop. Therefore, Figure 
5 provides the simplified structure of the basic 
parts of the application.

The automated cell consists of 7 areas (C10, C20, 
C1, C2, C3, C4, C5): two input areas (C10 and C20), 
two supplying and operating areas, represented by 
(C1 and C2), respectively. As each area contains 
one single processing machine, each one serves 
to occupy a particular task. 

Both of the conveyors C3 and C4 serve to 
transfer pieces, which have already been treated. 
Therefore, each piece gets a specific operation 
within two different processes 1 and 2, whereas 
C5 illustrates a convergence area, devoted for 
pieces evacuation.

It should be specified that conveyors C1, C2, C3 and 
C4 are always running, since they are characterized 
by their capacities, denoted as  k1, k2, k3, and k4, 
which are represented through  places 3p 13p 17p
and 7p , respectively.

	- Actuators A1-A5 ensure loads regulation.

	- The whole manufacturing cell is controlled 
by a centralized Programmable Logic 
Controller PLC, which uses output data from 
sensors to ensure a specific operating cycle 
by a set of Actuators.

	- By means of specific proximity sensors S1 
and S4. Products entry on the conveyors lines 
C10 and C20 is detected.

	- After carrying products from a buffer 
as well as after being blocked when C10 
and C20 reach their limit capacities, they 
are transferred by C1 and C2 to M1 and 
M2. It is noticed that the two machines 
perform different processes with different  
speed rates.

	- When actuators A1 and A4 are abled, a 
read write system is activated to read the 

label of the product and process its specific 
production plan. 

	- S2 is multiplexed photoelectric proximity 
sensor with two transmitters and one receiver. 
Its mere function is the detection of the 
entrance of products that have already been 
delivered from machines M1 or M2. 

	- Products are then loaded on C3 and C4, two 
conveyors with different load capacities 

Figure 5. A simplified representation of the 
manufacturing cell 

Figure 6 exposes the graphical modeling of the 
application by means of the Timed Event Graph.

Figure 6. The TEG model of the manufacturing cell  



https://www.sic.ici.ro

48 Nesrine Ben Afia, Said Amari

	- t1, t7, t3 and (t4, t9) are transitions corresponding 
to the entrance detection meaning of the 
sensors: S1, S4, S2, S3 and S5 of individually C1, 
C2, C3, C4 and C5.

	- If sensors detect any failure, the PLC must 
immediately apply specific control with a 
set of actuators (A2, A5), in order to avoid 
products collision on the common area C5. 

	- Each product consists of different stock 
areas; 10p and 20p  (not illustrated by Figure 
5 for simplicity sake). Since the TEG in 
Figure 6 shows the existence of two source 
transitions, which are ( 1ut , 2ut ), the system

2m =  is modeled. 

The manufacturing cell is subject to critical time 
duration. Considering that these constraints are 
applied to some of its path, they are denoted by 

1Zβ and 2Zβ , respectively. The first constrained 
path goes from 1t to 3t  and the second one is 
between 7t and 3t .

Regarding the maximum speed firing for each 
transition ti,, a counter function is associated, 
which constitutes the component of the  
vector ( ).x t

Thereupon, the TEG meaning of Min-Plus system 
equations is modeled as follows: 

1 1 2

2 1 3

3 2 8 4 9

4 3 5

5 4

6 5

7 2 8

8 7 3

9 3 1

( ) 2. ( ) 1. ( )
( ) . ( 1) 1. ( )
( ) . ( ) . ( 1) 3. ( ) 2. ( )
( ) . ( 1) 1. ( 1)
( ) . ( 1)
( ) . ( )
( ) 1. ( ) 1. ( )
( ) . ( 1) 1. ( )
( ) . ( 1) 1.

t u t t
t e t t
t e t e t t t
t e t t
t e t
t e t
t u t t
t e t t
t e t

θ θ
θ θ θ
θ θ θ θ θ
θ θ θ
θ θ
θ θ
θ θ
θ θ θ
θ θ θ

= ⊕
= − ⊕
= ⊕ − ⊕ ⊕
= − ⊕ −
= −
=
= ⊕
= − ⊕
= − ⊕ 0

10 9

11 10

( 1)
( ) . ( 1)
( ) . ( )

t
t e t
t e t

θ θ
θ θ















−
 = −


=

Since the modeled system is m>1, the control law 
should be revealed in the form below: 

1

2

( )
( ) ,

( )
u t

u t
u t
 

=  
 

and must satisfy both constraints on paths.

Referring to the subsection 2.1, the state space 
representation is computed and it is illustrated by 
the following matrix system: 

1 2
1

1 2 4 3
1

( ) . ( 1)
1 1

1
1

e
e

e
e

x t x te

e
e

e
e

ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε

  
  
  
  
  
  
  
  

= − ⊕  
 
 
 
 
 
 
 
  

( )u t











 
 
 
 
 
 
 



Beyond proceeding each constrained path, it is 
noticed that there is a component of the vector u(t) 
that ensures the constraint.

For the constraint Zβ1, the following inequality  
is given:

1 13 1( ) 1. ( 1),x t x tβ β≥ −

that represents the conveyor c1 and the machine 
M1, where its path is delimited by transitions 
starting from t1 to t3. The upper limit that should 
be respected is defined as:

max max
31 1,ijβ βτ τ= =

As
1ijm β is the cumulated marking through the 

constrained path, it is noticed that one token does 
exist on the place P4. Thus, 

131 1m β =  is obtained.

The second constraint Zβ2 is represented by the 
following inequality: 

2 23 7( ) ( 2).x t x tβ β≥ −

On the other hand
237m eβ =  represents the 

cumulated empty marking and
37 2

max 1
β

τ = is the 
second upper bound that must not exceed 1 time 
unit, on the other hand.

Since the existence of the two source transitions, 
precisely 

1ut and 
2ut  from the TEG of the 

application, could be recognized in Figure 6, one 
obtains 2m = . 

The cumulated delay along the path bounded by 
tu1 and t1 is denoted 1 0λ = .

1
2zmα = is the marking 

through it. Consequently, it can be chosen:    

1 31

max
1 1 2z β

φ τ λ= + + =

A second cumulated delay along the path bounded 
by tu2 and t7 is determined which is also equal to 

2 0λ = , and 
2

1zmα =  is its marking. Accordingly, 
it can be chosen:

2 73

max
2 1 3z β

φ τ λ= + + =
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At present, the formulation that points out the 
deterministic behavior of the controlled Timed 
Event Graph should be determined. As in  
equation (4), it is presented as follows:

3
2 2 3
3 3 6 5 1 2 5 4
2 1 4 2 1 3 5
1 2 1 4 3

( ) ( 3)1 2 1 4 3
3
2 3

2 1 4 6 1 3 2
1 2 4 1 3
1 2 4 1 3

2

         
1

e
e

x t x te

e
e
e

ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε
ε ε ε
ε ε ε ε ε
ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

ε ε ε
ε ε ε ε ε
ε ε ε ε ε

ε
ε ε
ε ε
ε ε
ε ε
ε ε
ε
ε ε
ε ε
ε ε
ε ε

 
 
 
 
 
 
 
 

= − 
 
 
 
 
 
 
 
 


⊕



3 4
2 3 2
3 4 1

3

( ) ( 1) ( 2)
2 3
1 2

3

u t u t u t

ε ε
ε
ε

ε ε ε
ε ε ε ε
ε ε ε ε
ε ε
ε ε
ε ε ε
ε ε ε ε
ε ε ε ε

    
     
     
     
     
     
     
     

⊕ − ⊕ −     
     
     
     
     
     
     
     

    

Taking into consideration 
1

( 2),zτ φ= =  the explicit 
equation (4) for the first constrained path is 
expressed as following:

1
1

1

( 1)

0

1
2

0

( ) . (t ) . . ( )

. (t 2) . . (t ) .

z
z k

z
k

k

k

x t A x A B u t k

A x A B u k

φ
φ φ

−

=

=

 
= − ⊕ − 

 
 = − ⊕ −  

⊕

⊕

Such that, one obtains: 

2

2
1
2 4 4 6 1 3 5
1 2 1 4 3

1
1

2
1 2

1 2 4 1 3
1
1

e
e

e
A e

e
e
e

ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε
ε ε ε
ε ε ε ε ε

ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

Akin to the previous formulation, if we embrace 
the equation  

2
( 3),zτ φ= =  we can allow achieve:

x t A x A B u t k

A x

z
z

z
k

k( ) (t ) . . ( )

. (t )

( )

� � � �
�

�
�
�

�

�
�
�

� �

�

�

�
�

�

�2

1

2

0

1

3 3 �� ��
��

�
���

�
k

kA B u k
0

2

. . (t )

After checking the sufficient conditions, according to 
Theorem 4, the first control law ensuring the respect 
of the constraint on the path is given as following: 

1 1

11
2 1

1 3 11
( ) (( ) ( ) 1) ( 1))r u rr

u t A A x tβ β=
= ⊕ − − −

The second control law 2 ( )u t is also given as: 
11

3 1
2 3 2 7 21
( ) (( ) ( ) ) ( 1))r u rr

u t A A x tβ β=
= ⊕ − −

While taking into account Remark 2, it is noticed 
that the control law prevents the violation of both 
constraints 1Zβ and 2Zβ , commonly on the paths 

1β  and 2β , and it is given by: 

1 3 4 5

7 8 9 10

1 3 4 5

7 8 9 10

. ( 1) 1. ( 1) 1. ( 1) 3. ( 1)

. ( 1) . ( 1) . ( 1) 2. ( 1)

( )

2 ( 1) 2 ( 1) 5 ( 1) 4 ( 1)

. ( 1) 1 ( 1) 4 ( 1) 3 ( 1)

e x t x t x t x t

e x t e x t e x t x t

u t

x t x t x t x t

e x t x t x t x t

 − ⊕ − ⊕ − ⊕ − ⊕ 
 
 − ⊕ − ⊕ − ⊕ −
 
 =
 
 − ⊕ − ⊕ − ⊕ − ⊕
 
 
 − ⊕ − ⊕ − ⊕ − 

for the first control law given by: 

1 1 3 4 5

7 8 9 10

( ) . ( 1) 1. ( 1) 1. ( 1) 3. ( 1)

. ( 1) . ( 1) . ( 1) 2. ( 1)

u t e x t x t x t x t

e x t e x t e x t x t

= − ⊕ − ⊕ − ⊕ −

⊕ − ⊕ − ⊕ − ⊕ −

which is also written as:

1 1 3 4 5

7 8 9 10

(t) ( . ( 1) 1. ( 1) 1. ( 1) 3. ( 1)

. ( 1) . ( 1) . ( 1) 2. ( 1))

u Min e x t x t x t x t

e x t e x t e x t x t

= − ⊕ − ⊕ − ⊕ − ⊕

− ⊕ − ⊕ − ⊕ −  
To simplify those control laws, the terms of each 
vector component are firstly compared. Obviously, 
by examining the components of the first vector, it 
is noticed that 3 ( 1)x t − and 4 ( 1)x t − share the same 
coefficients, and the firing time of t3 exceeds that 
of t4. The same analogy is applied to t1 t7 t8 and  t9, 
where the firing times of t1 and  t7  exceed that of 
t8 and t9.

The control law guaranteeing the first temporal 
constraint is simplified to the next one:

1 1 3 5 7

10

( ) . ( 1) 1. ( 1) 3. ( 1) . ( 1)
2. ( 1).

u t e x t x t x t e x t
x t
= − ⊕ − ⊕ − ⊕ −

⊕ −
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For the second component of the vector u(t), the 
control law could be written by:

2 1 2 3 4

5 6 7 8 9

10 11

( ) (2 ( 1) ( 1) ( 1) 2 ( 1) 5 ( 1)

4 ( 1) ( 1) ( 1) . ( 1) 1 ( 1) 4 ( 1)

3 ( 1) ( 1) ( 1))

u t Min x t x t x t x t

x t x t e x t x t x t

x t x t

ε

ε

ε

= − ⊕ − − ⊕ − ⊕ −

⊕ − ⊕ − − ⊕ − ⊕ − ⊕ −

⊕ − ⊕ − −

It is assumed that this control law could be 
reduced as following: 

1 4 7 8

9 10

(2. ( 1) 5. ( 1) . ( 1) 1. ( 1)
4. ( 1) 3. ( 1)),

Min x t x t e x t x t
x t x t

− ⊕ − ⊕ − ⊕ −
⊕ − ⊕ −

taking into account the following statements:

3 12. ( 1) and  2. ( 1)x t x t− − share the same coefficient, 
and as t1 firing time exceeds that of t3 only the 
component of t1 counter function is kept. The same 
thing applies for t5 and t9, since we heed that the firing 
time of t9 is preceding that of t5, there is a tendency 
to keep only the t9 component. Consequently, the 
control law for u2(t) has been reduced to:

2 1 4 7 8 9

10

( ) 2. ( 1) 5. ( 1) . ( 1) 1. ( 1) 4. ( 1)
3. ( 1).

u t x t x t e x t x t x t
x t
= − ⊕ − ⊕ − ⊕ − ⊕ −

⊕ −

Overall, simplifying the global control vector 
ensuring the respect of both constraints on paths 
including C1M1 process and C2M2 process, it is 

expressed by the below vector 1

2

( )
( )

( )
u t

u t
u t
 

=  
 

, it 
is obtained:  

1 1 3 5 7

10

( ) . ( 1) 1. ( 1) 3. ( 1) . ( 1)
2. ( 1)

u t e x t x t x t e x t
x t
= − ⊕ − ⊕ − ⊕ −

⊕ −

2 1 4 7 8

9 10

( ) 2. ( 1) 5. ( 1) . ( 1) 1. ( 1)
4. ( 1) 3. ( 1)

u t x t x t e x t x t
x t x t
= − ⊕ − ⊕ − ⊕ −

⊕ − ⊕ −

Figure 7. The TEG model of the manufacturing cell 
with monitor places 

The controlled Timed Event Graph is illustrated in 
Figure 7, where the control places are represented 
by double circles.

5.2 Simulation and Interpretations  

In order to highlight the control approach, the 
simulation of the counter functions was studied 
related to the dynamics of the Timed Event 
Graph (illustrated in Figure 8 (a) and Figure 
8 (b), respectively). The comparison with the 
corresponding dynamic of the controlled Timed 
Event graph (in Figure 9 (a) and Figure 9 (b), 
respectively) shows that the constraints are 
respected. The validity of the condition in the 
maximum holding time within the constrained 
paths for the relative two counter functions X1 and 
X7 is checked. It is noticed that their respective 
events become above the event of X3 owing to the 
controlled model of Figure 7. 

(a)

(b)

Figure 8. (a) the simulation of the dater functions X3 
and X1 before the control. (b) the simulation of the 

dater functions X3 and X1 after the control
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(a)

(b)

Figure 9. (a) the simulation of the dater functions X3 
and X7 before the control. (b) the simulation of the 

dater functions X3 and X7 after the control 

6. Conclusion

This paper addresses the control problem of 
Discrete Event Systems (DES) with critical-time 
using the Min-Plus semiring of the dioid algebra 
formalism. Accordingly, a formal approach is 
proposed for the design of state feedback control 
laws to ensure the respect of temporal constraints 
imposed on some paths in Timed Event Graphs 
(TEGs). Sufficient conditions are derived for 
the existence of control laws satisfying the time 
specifications. The calculated laws are represented 
by a set of monitor places, and their roles are to 
guarantee the upper time limits for the sojourn of 
tokens in some paths of TEGs.

Beyond such application case, its value can be 
highlighted in a variety of contexts, notably for the 
control and validation of time constraints in urban 
or rail transport networks and automation systems. 
In a future research, it would be interesting to deal 
with other application cases. Work is in progress 
to generalize current results for more complex 
cases like conflicting Timed Event Graphs under 
time constraints. The establishing of the necessary 
and sufficient conditions for the existence of 
control laws and evaluation of the optimality of 
their outputs are pertinent and logical perspectives 
for future studies.
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