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1. Introduction

Robotics research now focuses on controlling 
the trajectory of manipulator systems due to 
the rapid advancement of robot technology and 
its widespread application. In addition to their 
typical industrial uses, robot manipulators are 
utilized for highly precise tracking tasks such 
as space and underwater exploration, as well as 
for remote surgical operations. As the demand 
for high performance and precision increases, 
including rapid response and accurate trajectory 
tracking, new control techniques for robot 
manipulators are being developed. However, 
these manipulators are complex systems with 
nonlinear relationships between position, velocity, 
acceleration, and torques applied to their joints. 
Moreover, constructing an ideal controller is often 
unfeasible due to the nonlinear dynamics of the 
system, model uncertainties, coupling, frictional 
effects, and elasticity of manipulator linkages. 
The primary objective of trajectory tracking is 
to improve system stability while minimizing 
trajectory tracking errors, which represent the 
differences between the reference input and the 
actual output (Lewis, Dawson & Abdallah, 2003). 

In this particular research, two types of control 
techniques, namely Neural Network-Based 
Terminal Sliding Mode Controller (NNTSMC) 
and Neural Network-Based Backstepping 
Terminal Sliding Mode Controller (NNTSMC), 
are evaluated in order to determine their 
effectiveness as optimal controllers. Furthermore, 

their performances are enhanced by utilizing a 
genetic algorithm.

The fundamental concept behind the developed 
controllers is Sliding Mode Control (SMC), 
which can be divided into two parts. The first 
part involves creating appropriate sliding surfaces 
that determine the trajectory of the state variables 
to be followed. The second part brings the state 
variables to these predetermined sliding surfaces 
by switching robust control laws created in the 
first part (Vijay & Jena, 2018). Conventional 
Sliding Mode Control (CSMC) achieves 
asymptotic convergence of the state due to the 
linearity of the switching plane (Amer, Sallam & 
Elawady, 2011). However, this convergence can 
only be achieved in an infinite amount of time, 
although it can be expedited by adjusting the SMC 
parameters. By contrast, Terminal Sliding Mode 
Control (TSMC) utilizes a nonlinear function on 
the sliding surface, which provides high precision, 
robustness, and rapid convergence within a finite 
time despite uncertainties (Tilki & Erüst, 2021; 
Nguyen et al., 2018). Nevertheless, the chattering 
phenomenon represents a significant drawback of 
TSMC, as high-frequency oscillations caused by 
discontinuities in control signals result in poor 
control accuracy, excessive wear of mechanical 
parts, and potential damage to robot joints.

To improve the position control of a compliant 
rescue manipulator actuated by a tendon sheath, 
neural network-based algorithms have been 
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widely employed in model-free approaches. Wu 
et al. (2019) proposed a sliding mode control 
technique based on neural networks to enhance 
the position control of the manipulator’s gripper, 
despite modelling uncertainties and external 
disturbances. In this paper, a RBF network was 
proposed to achieve precise position control, 
and the NN-based SMC controller and radial 
basis function weights were adjusted in real 
time to counteract chattering and disturbances. 
Furthermore, prior knowledge of the actual 
robot system was not required, which made it an 
effective method for enhancing the performance 
of tendon sheath-actuated manipulators. 
Ren, Wang & Chen (2020) proposed similar 
approaches in their work. They mitigated the 
undesirable effects of chattering caused by high-
frequency switching terms in the first derivative 
of the control signal in SMC by employing 
a continuous control law (Yi & Zhai, 2019). 
Model-free sliding mode control algorithms, 
which do not require a mathematical model of the 
system being controlled, are particularly useful in 
situations where obtaining an accurate model is 
difficult or impractical (Precup et al., 2017; Zhu, 
2021). These algorithms are primarily designed 
to handle the uncertainties and disturbances 
inherent to nonlinear systems, making them 
robust and adaptable. To address the singularity 
problem associated with TSMC, they proposed a 
power-reaching law and utilized the inverse of the 
tangent function to eliminate singularities without 
requiring auxiliary measures. Consequently, the 
tracking error converged to the origin from any 
initial state within a finite time (Zhai & Xu, 
2020). Another model-free approach integrated 
a terminal sliding surface and an observer to 
ensure continuous sliding mode tracking (Zhang 
et al., 2018). For the control of a single-link rigid 
robot manipulator with an unknown constant 
payload, Li, Wang & Yu (2021) combined a 
sliding mode control approach with a nonlinear 
disturbance observer. The experimental results 
demonstrated the effectiveness of the observation 
of the unknown payload handling. Truong, Vo, 
and Kang (2021) employed a backstepping global 
fast terminal sliding mode control strategy for 
trajectory tracking control in industrial robotic 
manipulators, improving dynamic performance 
of the manipulator by utilizing an integral of the 
global fast terminal sliding mode surface and 
achieving finite-time convergence in both SMC 
and TSMC for rapid convergence.

Numerical simulations were conducted on a 
two-link robot manipulator by Norsahperi & 
Danapalasingam (2019) to examine the efficiency of 
various control approaches. They utilized trajectory 
tracking and energy consumption as performance 
measures. The tested controllers included integral 
sliding mode control (ISMC), linear-quadratic 
regulator with integral action (LQRT), and optimal 
integral sliding mode control (OISMC). Genetic 
algorithms were employed to obtain the optimal 
control settings and solve optimization problems for 
the proposed linear quadratic regulator approaches.

Terminal Sliding Mode Control (TSMC) 
with nonlinear sliding surfaces results in 
chattering effects that can be minimized through 
Backstepping Terminal Sliding Mode Control 
(BTSMC). This paper proposes a new method 
called Neural Network-Based Backstepping 
Terminal Sliding Mode Control with Genetic 
Algorithm (NNBBTSMCWGA). In this approach, 
control inputs are generated based on the outputs 
of a neural network. However, since the neural 
network’s approximation formula introduces 
some error, additional uncertainty is added to the 
system during the generation of control inputs 
(Sun et al., 2011). An adaptive control approach 
using a terminal sliding mode controller, which 
is robust against uncertainties and noise in neural 
network-based systems, was employed. The 
authors achieved robust trajectory tracking against 
model uncertainties and artificially added noise 
using these control structures.

The main contributions of this paper are as follows:

1.	 The sliding mode-based control algorithms 
are enhanced by using a genetic algorithm 
to determine the coefficients of the terminal 
sliding mode controller and artificial neural 
network. This combination of neural network-
based models with a genetic algorithm 
is a widely used method for optimizing 
control structures, as it was demonstrated 
by previous studies (Boukadida, Benamor 
& Messaoud, 2019; Zhang, Zhuang & Du, 
2009). The genetic algorithm is employed to 
determine controller coefficients that enable 
the manipulator system to achieve an optimal 
trajectory tracking behavior. Additionally, 
the genetic algorithm eliminates the problem 
of determining controlled coefficients in 
complex systems. Therefore, an increase in 
the number of unknown coefficients resulting 
from changes in the control structure of the 
system does not lead to significant issues;
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2.	 The algorithms proposed in this paper ensure 
that the tracking error will converge to zero 
within a finite time. The Lyapunov Theory is 
utilized to establish the asymptotic stability of 
the closed-loop system, thereby improving the 
manipulator’s trajectory tracking accuracy;

3.	 Numerical simulations were conducted on 
a 2-degree-of-freedom robot manipulator 
using the Matlab/Simulink environment to 
demonstrate the effectiveness of the proposed 
controller. The experimental results indicate 
that the proposed controller is not only fast 
but also possesses disturbance rejection 
and robustness properties. The enhanced 
NNBBTSMCWGA provides control inputs 
that are free from chattering.

This paper is organized as follows: Section 2 
presents the mathematical basis for controlling the 
robot manipulator’s trajectory; Section 3 introduces 
the control approaches that have been modified by 
using a genetic algorithm. In Section 4, simulation 
results for these controllers are presented, along 
with a comparison of these results. Finally, Section 5 
provides the concluding remarks. 

2. Manipulator Dynamics

A robot manipulator is an electronically controlled 
mechanical mechanism composed of multiple 
components. The operation of robot manipulators 
is controlled by determining the positions and 
directions of the various joints that generate 
the motion of the end effector. In this paper, the 
control of a robot manipulator’s trajectory while it 
is subject to uncertainties and outside disturbances 
is taken into consideration.

In this work, a sliding mode controller structure 
based on neural networks whose coefficients are 
determined by a genetic algorithm is proposed 
for the calculation of torque values applied to 
each joint of the robot manipulator for position 
control. Since this technique is based on the 
calculation of the joint torques, it is called 
computational torque control. Generally, 
there are two modelling approaches for robot 
manipulators, which are the Lagrange-based 
and Newton-Euler methods. In this study, the 
manipulator dynamics is derived by using 
Lagrangian mechanics. In the framework of 
this method, the required control torques to be 
applied to each joint are determined by joint 
variables, which are the joint angles. According 

to the Lagrangian mechanics, the equation of 
motion for a n-link robot manipulator is given 
in equation (1).

( ) ( , ) ( ) ( )m dM q q V q q q G q F q τ τ+ + + + =        (1)

Position, velocity, and acceleration are 
represented in this equation by , , nq q q R∈   
respectively. Moreover, ( ) nxnM q R∈  expresses a 
symmetric inertial matrix that is positive definite. 

( , ) nxnV q q R∈  represents the coriolis and 
centripetal force matrix. 1( ) nxG q R∈  represents 
the gravity component in the torque equation. As 
it was previously indicated, the unknown model 
parameters leave the entire system susceptible to 
external disturbances and uncertainty (friction). In 
the equation of motion, these terms are represented 
by ( )F q  and dτ . Equation (2) is a reordering of 
the equation of motion (equation (1)).

1( )[ ( ( , )
( ) ( ) )]

m

d

q M q V q q q
G q F q
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+ + +

  

 	                    
(2)

The values of the matrices and vectors, as well 
as the units utilized in the above-mentioned 
equations for the robot manipulator are expressed 
as follows:
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An external disturbance is modelled as a random 
noise with a magnitude bound. To test and validate 
the suggested control strategies, a two-link robot 
manipulator is utilized. The axis representation 
of the robot manipulator, for which the proposed 
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control algorithms will be validated, is given in 
Figure 1. The variable angles are denoted as 1θ  
and 2θ , while 1a  and 2a  represent the link lengths 
and 1m  and 2m  represent the link weights. In this 
paper, the weights of the links are considered to 
vary with time in order to increase the uncertainty 
of the analysed system. The numerical values of 
the link weights and lengths are given in Section 4. 
The main objective of this paper is to demonstrate 
the performance of the proposed controller using 
a genetic algorithm. This allows the manipulator 
to robustly track the reference trajectory in the 
presence of high uncertainty and random noise.

Figure 1. Two-link robot manipulator 

3. Control Methods

This section introduces two control strategies 
for the robot manipulator system with nonlinear 
dynamics. These techniques rely on backstepping 
terminal sliding mode control and terminal sliding 
mode control approaches. Radial basis function 
neural networks (RBFNN) are utilized in both 
control techniques to approximate the elements 

( )M q , ( , )mV q q , and ( )G q . Consequently, the 
RBFNNs will approximate the dynamic equation. 
A finite-time control mechanism with a suitable 
updating law is constructed to force the system 
states to the sliding surface and to converge to 
zero in a finite amount of time. Furthermore, 
the genetic algorithm is utilized to compute the 
coefficients of the controllers and artificial neural 
networks (ANNs). The determination procedure 
is critical since the value of control coefficients 
directly affects the system’s performance and 
overall stability.

3.1. Terminal Sliding Mode  
Control Structure

Artificial neural networks (ANNs) are employed 
to approximate the unknown nonlinearities in a 

system, as it was mentioned in the adaptive control 
literature (Tran & Kang, 2017). The neural network 
function is illustrated by the following equation:

1( ) ( ) ( )Tf x W X Xφ ε= +  	                  (13)

In this equation, 2nXW R∈  represents the weight 
matrices and X  represents the input vector. Each 
component of W  represents the coefficient of the 
𝜙 function. ( )Xε  denotes the neural network’s 
approximation error. 𝜙 is constructed as a vector 
with n>1 representing the number of neurons, and 
it is represented as follows: 

[ ]1 2( ) ( ) ( ) ... ( ) T
nX X X Xφ φ φ φ=       (14)

where ( )i Xφ  given in equation (15) is the RBF:
2

2

( ) 1, 2,...,
i

i

x c

i X e i nσφ

 − 
 
 = =                   

(15)

Here, ic  and iσ  refer to the center and width of 
the neuron, respectively. Since a nonlinear sliding 
surface is used in the terminal sliding mode control 
structure, the robot manipulator is able to reach 
the desired reference trajectory faster than with 
a conventional sliding-mode control. As a result, 
the error functions of the manipulator converge 
to zero in a finite time with high precision and 
strong stability. 

The sliding surface used in this controller structure 
is expressed in equation (16). 

sgn( )s e e eϕ= + Λ 	                              (16)

The corresponding control rule is employed for 
maintaining the trajectory of the system state 
on the sliding surface as soon as the system 
state reaches it. The continuous control law 
(equation (17)) obtained by setting the sliding 
surface equation to 0s =  for a nominal system 
in the absence of uncertainties and external 
disturbances, as it was explained in the paper of 
Tran & Kang (2017), can be considered as the 
equivalent control law.

1s e e eϕϕ −= + Λ                                         (17)

Φ and Λ are positive constants between 0 and 1 
in equations (16) and (17). Equation (18) will be 
further approximated by the RBF.

1

1

( ) ( )

( ) 0
d

d

M q s M q q e e

M q e e Mq

ϕ

ϕ

ϕ

ϕ

−

−

= − + Λ

= + Λ − =

   

       
(18)
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The RBF will eventually approximate the ( )f X  
function that is derived from equation (20). 
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−
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The following controller law is formulated 
by assuming that the sliding variable will 
converge to zero eventually when introduced 
into equation (21):

( ) m df X V sτ τ= − +                                  (21)

By taking into account both equation (21) and 
the error function from the RBF, the designed 
controller law takes the following form:

1( ) vf X K s vτ = + +                                  (22)

In this case, to make the system robust, vK  is 
used as a controller coefficient. To eliminate both 
the disturbing torque dτ  and the RBF-induced 
approximation error ( )Xε , the control rule for 
this type of controller incorporates the variable v:

sgn( )v b s= 	                                          (23)

In equation (23), sgn represents the signum 
function, and b is the controller coefficient. In 
equation (23) v will provide resistance against 
noise and error since 1( )f X  will converge to 

( )f X . vK  will guarantee the system’s stability. 
Equation (20) can be used to find the inputs of the 

1( )f X  function as [ ]d d dX q e q e q=    . 

Theorem 1: Consider the manipulator modelled 
by equation (1). The control input of the system 
is given by equation (22). The weight matrices 
of the neural network satisfy the given condition 

T
wW F sφ= −

 . The trajectory tracking errors e 
and e  will asymptotically converge to zero if the 
controller coefficient vK  is positive. 

Proof: The positive definite Lyapunov function 
that was chosen for this controller is expressed in 
equation (24). vK  is shown to be positive by the 
Lyapunov function.

11 1 ( )
2 2

T T
wV s Ms tr W F W−= +  

                   
(24)

In this equation, tr refers to “tracing”, 
*W W W= − , *W  is ideal weights matrix. wF  is 

a positive definite matrix. By differentiating both 
sides of the Lyapunov function and substituting 

( )M q s  term into the equation for V  one obtains:

1

1 ( 2 )
2

( ) ( )

T T
v m

T T T
w d

V s K s s M V s

trW F W s s vφ ε τ−

= − + −

+ + − − +

 



 

(25)

Since 2 ( , )mM V q q−   is a skew symmetric matrix, 
the second term in equation (25) becomes zero 

(i.e. 
1 ( 2 ) 0
2

T
ms M V s− = ). If  T

wW F sφ= −

  is 

selected, the equation becomes:

( ) 0T T
v dV s K s s v ε τ= − − − + ≤

	      (26)

It can be concluded that if 0s = , then 0V = . 
Thus, the manipulator trajectory is guaranteed to 
achieve sliding manifold 0s =  if the controller 
coefficient vK  is positive. This demonstrates 
the system’s asymptotic stability, so the tracking 
errors of position and velocity ( e  and e ) of the 
system asymptotically converge to zero as t  goes 
to infinity.

3.2 Backstepping Terminal Sliding 
Mode Control Structure

For this controller structure, it was decided to 
change the sliding surface due to the occurrence 
of chattering phenomena on the sliding surface 
for the terminal sliding-mode controller caused 
by too many sharp transitions. The controller 
described in this subsection is aimed to achieve 
rapid reaching time while maintaining a similar 
balance between velocity and minimum trajectory 
tracking errors. Additionally, this controller is 
meant to reduce the chattering effects that occur 
in the control signal. For the controller design 
as adaptive backstepping terminal sliding mode 
control (ABTSMC), equation (21) is used, and 
the Lyapunov stability theorem is applied as in 
equation (24) from the previous subsection (Yen, 
Nan & Cuong, 2019). A nonlinear sliding surface 
has been chosen to ensure that the sliding surface 
reaches zero in a finite time, as it is expressed in 
equation (27).

1 (1 )s e e eϕ λ= + + +
Λ



	                  
(27)

In this equation, Λ , λ  and ϕ  are positive 
constants. All of these controller coefficients are 
determined using a genetic algorithm.
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3.3 Genetic Algorithm for  
Control Structure 

The genetic algorithm is a computational method 
inspired by natural evolution. It helps one to 
find optimal solutions to complex problems by 
exploring a vast search space. In this case, the goal 
is to minimize the difference between the desired 
trajectory and the actual trajectory of the system 
being controlled. To achieve this, the genetic 
algorithm takes trajectory-tracking errors as inputs 
and generates the controller coefficients and neural 
network parameters as outputs. It approximates the 
center ( ic ) and width ( iσ ) of the neurons in the 
ANN, which then determine the weight coefficients 
(W) of the neural network. Additionally, the 
genetic algorithm determines the coefficients of the 
implemented controller ( , , ,vK b λΛ and φ ) used 
in conjunction with the TSMC. These coefficients 
significantly influence the performance of the 
entire analysed system.

The genetic algorithm operates through a series of 
iterations. It starts by generating a population that 
includes all the aforementioned coefficients. The 
algorithm then goes through a process of selection, 
crossover, mutation, and evaluation of suitability 
for each member of that population. This process 
is guided by a plan outlined in the algorithm. By 
repeating these iterations, the genetic algorithm 
gradually converges towards an optimal solution 
that minimizes the trajectory-tracking error. Once 
the algorithm completes all possible iterations, the 
most suitable population of coefficients is selected 
to be used as the controller coefficients (Zhang, 
Zhuang & Du, 2009).

Figure 2 depicts a general block diagram of the 
genetic algorithm-based controller.

Algorithm. GA-Based Controller Design
Input 
Output

Population size, Max. iteration number
Optimal coefficients for the controller

1 InitializePopulation()
2 Set iterationCount = 0.

3

while iterationCount < MaximumIterations
  FitnessEvaluation():
  for i = 1 to PopulationSize:
  Set individual = population[i].
  Calculate the error 
  Set fitnessValue = calculateFitness(error)
  Set individual.fitness = fitnessValue.
  Set population[i] = individual.
  Selection():
  Create an empty array selectedPopulation
  for i = 1 to PopulationSize:
  Set individual = population[i].
  if individual.fitness > thresholdFitness:
  Add individual to selectedPopulation.
  Set population = selectedPopulation.
  Crossover():
  Create an empty array newPopulation.
  for i = 1 to PopulationSize/2:
  Set parent1, 2 = randomly select
  Set child1, child2 = 
performCrossover(parent1, parent2)
  Add child1, child2 to newPopulation.
  Set population = newPopulation.
  Mutation():
  for i = 1 to PopulationSize:
  Set individual = population[i].
  for each coefficient in individual’s 
coefficients:
  if random() < mutationProbability:
  Modify the coefficient randomly within a 
certain range.
  Set population[i] = individual
Set iterationCount = iterationCount + 1

4 Select the individual with the highest fitness 
value

5 return the coefficients of the selected individual.

Figure 2. Genetic algorithm-based controller block diagram
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4. Numerical Simulations

This study proposes two new controller techniques 
for improving the trajectory tracking control 
for a robot manipulator, which is represented 
using Lagrangian mechanics. The effectiveness 
and advantages of the suggested controllers are 
demonstrated using a two-link robot manipulator 
through numerical simulations in the MATLAB/
Simulink environment. Additionally, the steady-
state and transient performances of the two 
proposed controllers, that is the Neural Network-
Based Sliding Mode Controller (NNBSMC) and 
Neural Network Based Sliding Mode Controller 
with Genetic Algorithm (NNBSMCWGA), 
are compared for the same desired trajectory, 
disturbances, and uncertainties. The simulation 
time is set to 20 seconds. To demonstrate how the 
controllers are adapted to real-life situations and 
how the system reacts when there are uncertainties 
and noise, disturbance terms have been added 
to the system. One of these uncertainties is 
represented by the link weights, which are chosen 
as variables with time. The change in link weights 
corresponds to payload changes, which cause 
large variations in the dynamics of the robot. 

Figure 3 shows the change in the link weights 
of the robot manipulator during the simulation, 
which is used in order to analyse all the employed 
controllers. Since the weights of the links affect 
the dynamic equation of the robot manipulator, 
the robustness of the system’s response to variable 
parameters will be tested through simulation 
experiments. The fixed parameters for the robot 
manipulator used in this simulation are included 
in Table 1. 

Figure 3. Robot manipulator link weights in relation 
to time

Table 1. Robot manipulator fixed parameters

Notation Meaning Value

1a length of link 1 1m

2a length of link 2 1m

g gravitational acceleration 29.8 /m s

The robot manipulator is initially at rest, with:

[ ]1 2(0) (0) (0) 0Tq q q= =  
[ ]1 2(0) (0) (0) 0Tq q q= =    

as the initial conditions. The disturbance term is 
a random noise with a bounded magnitude. The 
simulation parameters are listed in Table 2.

The trajectory tracking performances of the 
proposed controllers (NNBTSMCWGA and 
NNBBTSMCWGA) are compared with those 
of the conventional controllers - neural network-
based SMC (NNBSMC) and its improved version 
with genetic algorithm (NNBSMCWGA) for link 
1 and link 2, as it is illustrated in Figure 4.

Table 2. Simulation parameters

Notation Meaning Value

1dq Link 1 trajectory cos(0.5 )
2 4

tπ π
−

2dq Link 2 trajectory sin(0.5 )
3

tπ

1dτ Link 1 noise 1 1dτ ≤

2dτ Link 2 noise 2 1dτ ≤

1( )F θ Link 1 Friction 1 12sgn( )θ θ+ 

2( )F θ Link 2 Friction 2 22sgn( )θ θ+ 
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Figure 4. Joint angle trajectory tracking for each link
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To analyse the controllers’ transient phase, the 
detailed trajectory tracking performance for 
each link is shown in Figure 5. The obtained 
results indicate that the traditional NNBSMC 
and NNBSMCWGA have slower responses in 
comparison with the proposed controllers. The 
proposed controllers reach the desired trajectory 
in less than 1 second for each link. Additionally, 
NNBBTSMCWGA exhibits less oscillatory 
responses than the other controller approaches 
for both links.
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Figure 5. Trajectory tracking for each link in the 
transient phase

In Figure 6, angular velocity tracking 
performance for both links is illustrated. As it can 
be seen, the proposed controllers perform better 
with regard to angular velocity tracking than the 
other employed methods. As it can be seen from 
Figure 6, NNBBTSMCWGA has a less oscillatory 
response and shows fast convergence, but, on the 
other hand, for the second link, NNBTSMCWGA 
has many fluctuations in relation to the reference 
angular velocity trajectory. The reason for that 
lies in the use of chattering control input for this 
controller approach.
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Figure 6. Angular velocity tracking performance

Figure 7 shows the joint angle tracking errors 
for both links. The error graphs indicate that the 
traditional NN-based SMC has fluctuations for both 
links. By contrast, the proposed genetic algorithm-
based controllers show a better performance in 
terms of reaching time and robust response against 
link weight changes and disturbances. 
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Figure 7. Joint angle tracking errors for both links

The control inputs applied to the joints of the robot 
manipulator during the simulations are shown 
in Figure 8. This figure shows that traditional 
NN-based SMC and its improved version with a 
genetic algorithm, as well as NNBBTSMCWGA 
exhibit chattering-free behavior for both links. 
Although it can be concluded that the trajectory 
tracking performance of NNBTSMCWGA is the 
best and the tracking error of each link converges 
to zero in a minimum time, the control input 
graphics for this controller (Figure 9) show that 
it has very large fluctuations. The reason for 
having these chattering effects lies in the use of 
the signum function in the torque formula.   
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Figure 8. Control input torques

Although it enables a quick switching to a stable 
state, having excessive chattering in control 
inputs is a disadvantage for this controller. Robot 
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manipulators are susceptible to chattering effects, 
which significantly affect their electromechanical 
systems. This phenomenon can harm robot 
manipulators in real-time applications by reducing 
the accuracy of the control system, consuming 
more energy, and even generating severe vibrations 
in the system. To mitigate these effects and reduce 
the number of sharp transitions, the terminal sliding 
mode controller was improved with backstepping 
as the second proposed controller structure.
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Figure 9. Control input torques for NNBTSMCWGA

A comparison between the above-mentioned 
controllers was conducted using root mean 
square (RMS) error during the trajectory tracking 
performance. The RMS errors (

RMSiE ) were 
calculated according to the following equation, 

that is ( 2

1

1
RMS

n

i k
k

E e
n =

= ∑ , 1, 2i = ) where n 

is the number of simulation steps.

The results of this comparison are shown 
in Table 3. As it can be seen from Table 3, 
minimum RMS error values occur when using 
NNBTSMCWGA. This situation was already 
predictable when control torques were compared. 
As a result of the signum function used for 
NNBTSMCWGA, the control inputs interact with 
the system, leading to lower RMS errors for the 
robot manipulator joints.

Table 3. RMS errors for each link in radians

Controller Link 1 Error Link 2 Error

NNBSMC 0.1030 0.0258

NNBSMCWGA 0.0746 0.0147

NNBTSMCWGA 0.0133 45.717910−

NNBBTSMCWGA 0.0610 0.0093

5. Conclusion

In this paper, two new controller techniques are 
proposed for robotic manipulators to ensure robust 
trajectory tracking in the face of disturbances and 
uncertainty. The controller block diagram consists 
of three sub-sections: a neural network used for 
predicting unknown model parameters, a sliding 
mode controller employed for reliable trajectory 
tracking, and a genetic algorithm utilized for 
computing the controller parameters and neural 
network coefficients. The sliding mode controller 
laws are obtained by using the Lyapunov stability 
theorem. The use of a genetic algorithm for 
computing optimum controller parameters leads 
to a more robust system since the system response 
is not affected by noise.

Numerical simulations were carried out in the 
MATLAB/Simulink environment to evaluate the 
effectiveness of the proposed controller techniques. 
To increase model uncertainty, link weights were 
chosen to vary over time. Furthermore, the results 
obtained for the two proposed controllers were 
compared with those obtained for the traditional 
sliding mode-based controllers. The proposed 
techniques provided reliable trajectory-tracking 
results with bounded error under disturbances. 
The NNBTSMCWGA controller exhibited a better 
performance, both in the transient and steady-state 
phase, than the NNBBTSMCWGA. However, the 
main disadvantage of the former controller is the 
chattering effect on control inputs due to the signum 
function. On the other hand, the latter controller 
features no chattering effect, since control 
torques were determined according to the defined 
nonlinear sliding surface, and there is no signum 
term in the control torque equation. Moreover, 
the transient and steady-state performance of the 
NNBBTSMCWGA controller is satisfactory. The 
results showed that NNBBTSMCWGA controller 
responds rapidly, and with minimal errors, 
converges to the desired trajectory. Furthermore, 
the chattering phenomenon is significantly reduced 
with NNBBTSMCWGA.
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