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1. Introduction

The hereditary information of all human beings is 
generally stored in genes. The change in the DNA 
sequence of a gene results in genetic disorders. 
Some genetic changes or mutations develop 
cancer or other genetic diseases in humans. The 
genetic changes can be identified by analyzing 
the data generated from microarray experiments. 
Microarray technology offered the researchers the 
possibility to study the expression of thousands 
of genes from a single sample. The considerable 
difference between the availability of genes 
(features) and the number of patients (samples) 
leads to the curse-of-dimensionality problem. The 
processing of all the gene features in the original 
data is not necessary, only some of them are 
relevant to the analysis. Thus, reducing the genes 
that show less interaction with class improves the 
accuracy and performance of the model (Alanni 
et al., 2019).

In recent years, the availability of a large volume 
of microarray gene expression data has led to 
detailed analytics in the field of computational 
biology. The data originating from microarray 
experiments has motivated researchers in the field 

of machine learning to develop and evaluate new 
algorithms. Qu et al. (2020) proposed a hybrid 
method called an ensemble multi-population 
adaptive genetic algorithm for selecting and 
classifying genes from cancer datasets. In the first 
phase, they used F-score methods for removing 
the noisy and redundant genes from the high-
dimensional cancer datasets. Next, they applied an 
adaptive genetic algorithm with a support vector 
machine for classifying the reduced genes from 
the first phase. Alirezaei et al. (2019) introduced 
a bi-objective hybrid optimization algorithm to 
reduce noise and data dimensions in the PIMA 
Indian Type-2 diabetes dataset. First, the method 
identifies and removes the outliers. Following 
that they applied four bi-objective meta-heuristic 
algorithms on the reduced data from the first 
phase, for selecting significant genes with high 
classification accuracy. 

Lu et al. (2017) introduced a hybrid feature 
selection algorithm called MIMAGA that 
combined Mutual Information Maximization 
(MIM) and the Adaptive Genetic Algorithm 
(AGA). The method removes the redundancies 
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and reduces the gene expression feature data 
for classification. Salem et al. (2017) proposed 
a method called IG/SGA (Information Gain/
Standard Genetic Algorithm) in which IG was 
applied for feature reduction, and SGA was 
employed to select the optimal number of genes 
in microarray cancer datasets. The research 
work of Ramani and Jacob (2013a) focused on 
differentiating several lung cancers such as Small 
Cell Lung Cancer (SCLC), and Non-Small Cell 
Lung Cancer (NSCLC), and on grouping them 
into common classes. Based on the structural and 
physicochemical properties of the protein, the 
lung cancer classification achieved an accuracy 
rate of 84%.

In this work, a deep learning approach was utilized 
for the classification of microarray brain cancer 
and ADPD neurodegenerative brain disorder 
data. This approach differs from the conventional 
models by the fact that it focuses on layer-wise 
feature learning and makes intelligent decisions 
on its own. 

The objectives of this research work are listed 
as follows: 

a.	 To select optimal features that are highly 
correlated with class using CFS.

b.	 To design and implement an efficient 
DNN model for classification by training 
the model with learning rates of different 
optimization algorithms.

c.	 To evaluate and compare the performance of 
the proposed CFS-DNN model with those of 
the existing conventional algorithms.

The rest of this paper is organized as follows: 
section 2 describes the proposed framework 
while section 3 elaborates on the experimental 
setup and discussion of obtained results. Section 
4 concludes the paper with possible scope for 
further investigations.

2. The Proposed CFS-DNN Model

The proposed CFS-DNN model for the 
classification of brain cancer data and Common 
Gene Alzheimer-Parkinson (ADPD) neuro-
degenerative brain disorder data is illustrated in 
Figure 1. 

Figure 1. Proposed CFS-DNN Methodology

Firstly, the data is pre-processed using 
normalization techniques and is made ready for 
analysis. Secondly, the feature selection methods 
are applied to select important and optimal 
features needed for the modeling of an algorithm. 
In this work, Correlated Feature Selection was 
applied to select features with a high correlation 
to the class and a low correlation between each 
other. Next, the DNN classifier is constructed and 
trained using reduced data from CFS. Finally, the 
classification of brain cancer and ADPD data is 
performed using the Softmax layer in DNN. A 
detailed description of the proposed approach is 
explained in the upcoming section.

Algorithm 1: CFS–DNN model 

Input: Brain cancer and ADPD data with ‘m’ 
samples and ‘n’ genes.

Output: Optimal and relevant feature set with 
high classification accuracy.

Step 1: Remove the duplicate, irrelevant and 
outliers from the input dataset.

Step 2: Apply the Min-Max scaling technique and 
normalize the input data.

Step 3: Apply the CFS technique for the selection 
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of optimal subsets based on high feature-class and 
low feature-feature correlations.

Step 4: Generate training and testing set for 
evaluation of data.

Step 5: Build the deep neural network model with 
the training feature set from step 4.

Step 6: Train and tune the DNN model using the 
hyperparameters given in Table 1.

Step 7: Improve the DNN model learning constructed 
in steps 5 and 6 using different optimizers.

Step 8: Measure the accuracy and loss of the 
proposed CFS-DNN classifier model using cross-
validation on both training and testing data.

Step 9: Return optimal and relevant feature set 
with high classification accuracy.

Table 1. Hyperparameters used for the optimization 
of DNN

Hyperparameters Value
Number of input nodes (brain cancer) 112
Number of input nodes (ADPD data) 40
Number of hidden layers 3
Number of nodes in Hidden layer 1 100
Number of nodes in Hidden layer 2 50
Number of nodes in Hidden layer 3 20
Number of output nodes (brain cancer) 5
Number of output nodes (ADPD data) 3
Activation Function of Hidden layers ReLU
Activation Function of Output layers Softmax
Dropout 0.2
Epochs 200
Batch Size 32

2.1 Normalization

Data normalization is a scaling technique applied 
to transform input feature values to fix on the 
common scale. The chosen dataset has features 
with different ranges of values and hence it is 
necessary to fit the present calculations in the 
same range of scale, which helps to train the 
model best. In this work, Min-Max scaling was 
applied to make the data fixed within the range 
of 0 to 1. Min-Max normalization preserves the 
linear relationship between the gene features 
and provides flexibility while training the model 
(Han et al., 2012). The Min-Max scaling of data 
is defined as follows:

min
max min

f
norm

f f

X val
X

val val
−

=
−                               

(1)

where min fval  and max fval  are the minimum 
and maximum values of a feature ‘f’.

2.2 Feature Selection

Feature selection is a process of identifying the 
most contributing and relevant features needed 
for modeling the present data. The main reason 
for applying a feature selection method is to 
separate the relevant features from the irrelevant 
ones and to build an efficient model based only 
on those relevant features. Having irrelevant 
features in the dataset decreases the performance 
of the model, leads to overfitting, and increases 
training time (Isabelle & Andre, 2003). Thus, 
CFS technique was employed to overcome the 
above challenges and build the model with 
efficient, relevant, and contributing features. 
CFS is a filter model for finding correlated 
features with a high correlation to the class and 
a low correlation between each other. The CFS 
algorithm will be detailed as follows.   

2.2.1 Correlated Feature Selection

The CFS algorithm (Hall,1999) evaluates the 
worth of a subset of features based on two 
measures, feature-class correlation and feature-
feature correlation. The following equation gives 
the merit score of a feature subset S consisting of 
‘p’ features:

,
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where xyr  is the mean value of all feature-class 
correlations and 

i jx xr  is the mean value of all 
feature-feature correlations. The CFS criterion is 
defined as follows:
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2.3 Classification

Deep Neural Network (DNN) is utilized for 
the classification of brain cancer and ADPD 
data features selected by the CFS technique. 
Deep Neural Network has recently become 
the standard tool for solving a variety of 
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bioinformatics problems. The ability to process 
high-dimensional features makes deep learning 
very powerful when dealing with complex 
machine learning problems. 

2.3.1 DNN Architecture

The proposed Deep Neural Network consists 
of an input layer, a hidden layer, and an output 
layer. The input layer contains input neurons that 
feed the reduced data from the CFS model into 
the DNN. Thus, the input layer with ‘n’ inputs is 
expressed as:

1 2, 3,{ , ... }nx x x x x=                                       (4)

The next is the hidden layer that maps the input 
layer neuron ‘x’ to hidden layer neurons and 
adds random weights ‘w’ and bias ‘b’. Thus, it is 
expressed as:

1 1 2 2
1

( ) ...
n

n n
i

h x w x w x w x b
=

= + + + +∑
         

(5)

Each hidden layer in the proposed DNN model is 
associated with the ‘RELU’ activation function to 
learn the nonlinearity present in the data (Glorot 
et al., 2011). It returns true for positive value and 
false for negative value and it can be written as:  

1
[ ( )] ( )

n
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(6)

( ) max(0, )f x x=                                        (7)

The final output layer processes the hidden layer 
inputs using the Softmax activation function. The 
Softmax function converts the vector of ‘k’ real 
input values to normalized values within the range 
0 and 1 (Goodfellow et al., 2016). The results of 
the output layer are expressed as: 
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where iye  value is the result of the standard 
exponential function applied to the input vector 

values, 
1

j
k

y

j
e

=
∑ is the result of normalization of all 

the output values within the range 0 to 1 and ‘k’ is 
the total number of classes that exist in the given 
data. The proposed DNN model is trained and 
tuned using the hyperparameters given in Table 1. 
The process of choosing suitable hyperparameters 

for training a DNN model is important because 
it directly controls the behavior of the training 
algorithm and thereby improves the performance 
of the model. The optimization hyperparameters 
such as learning rate, batch size, and the number 
of epochs help to train and learn the network faster 
and better. Thus, hyperparameter optimization 
results in an optimal model which shows an 
increase in model accuracy and decrease in loss 
function of the given data.

2.4 Evaluation Metrics

The following metrics are used to evaluate the 
classification performance of the proposed model.

Accuracy measures the ratio of correctly predicted 
feature samples to the total number of feature 
samples classified by the model.

TP TNAccuracy
TP TN FP FN

+
=

+ + +               
(9)

Precision measures a ratio of correctly predicted 
positive feature samples to all positive feature 
samples that have been returned by the model.

Pr TPecision
TP FP

=
+                                   

(10)

Recall is the proportion of relevant positive samples 
that are successfully retrieved by the model. It is 
also known as True Positive Rate (TPR).

Re TPcall
TP FN

=
+                                   

(11)

F1-score measures the harmonic mean of precision 
and recall.

Pr .Re1
Pr Re

ecision callF score
ecision call

− =
+             

(12)

False Positive Rate (FPR) is the proportion of 
false positive feature samples to the total number 
of ground true negative feature samples predicted 
by the model. 

FPFPR
FP TN

=
+                                       

(13)

where TP = true positive, TN = true negative, 
FP = false positive, FN = false negative.
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3. Experimental Results

3.1 Environmental Setup

This section discusses details of the 
hardware and software used for modeling 
the CFS-DNN algorithm. All experiments 
have been performed utilizing the KERAS 
library with Tensor flow as background 
in the Anaconda 3 environment using the  
Python 3.6 (Anaconda Software Distribution, 
2020). The experiments were set up on Intel(R) 
Core (TM) AMD A10 CPU @ 3.5 GHz, 8.00 GB 
RAM, 64-bit Windows 10 OS.

3.2 CFS-DNN Results

This subsection illustrates the results of the 
proposed CFS-DNN model on two datasets (i) 
Microarray Brain Cancer (ii) ADPD. A brain 
cancer is a microarray cancer gene expression 
dataset downloaded from the Biolabs Data Set 
Repository which stores both experimental 
values and the gene names (Mramor et al., 2007).  
Next, the ADPD dataset contains the gene sets of 
Alzheimer’s and Parkinson’s disease based on 
structural and physicochemical properties of the 
protein, accessed from the Kyoto Encyclopedia for 
Genes and Genomes (KEGG) database (Kanehisa 
et al., 2000). The details of feature extraction and 
feature nomenclature of ADPD data are described 
by Jacob and Athilakshmi (2016) and Tejeswinee 
et. al (2017). Table 2 outlines the characteristics 
of the experimental datasets.

The proposed CFS–DNN classifier model is tested 
on the above two datasets. Firstly, the CFS method 
selects relevant features that strongly interact 
with the class. Next, the selected features are 
given to the DNN model for classification. The 
DNN model built in this work contains an input 
layer, hidden layers, and an output layer. In the 
input layer, the given selected features of the CFS 
algorithm are 112 in the case of brain cancer and 
40 in the case of ADPD data. In the hidden layer, 

three DNN layers have been used where the first 
DNN layer contains 100 neurons while the second 
and third DNN layers contain 50 and 20 neurons, 
respectively. The output DNN layer contains 5 
neurons for the brain cancer dataset and 3 neurons 
for the ADPD dataset. To learn the interactions 
between the features and nonlinearities present 
in the data, Rectified Linear Unit (ReLU) was 
used in the first three hidden layers. A Softmax 
activation function is implemented in the output 
layer for classification which converts a vector of 
numbers into a vector of probabilities. A dropout 
parameter is added for the first two hidden 
layers to prevent the model from overfitting. The 
proposed DNN model utilized 80% of the input 
data for training and 20% for testing the data. The 
proposed DNN model was trained several times 
for hyperparameter optimization.

One of the challenges lying when designing the 
DNN is choosing the right optimization algorithm 
with a good learning rate. During CFS-DNN 
training, various optimization algorithms were 
tried to improve the learning rate of the model 
and to generalize the performance. This work 
tries ADAM, RMSprop (RootMeanSquare 
propagation), Stochastic Gradient Descent 
Algorithm (SGD), and Adaptive Gradient 
(AdaGrad) optimization algorithms for tuning 
the learning rate and gradient parameters of 
the CFS-DNN model. The parameter learning 
rate plays an important role in achieving the 
model convergence and it must be discovered 
via trial-and-error method (Brownlee, 2019). 
For sparse datasets, the adaptive learning rate 
works better than other optimization techniques 
like SGD, RMSprop, and momentum methods. 
ADAM optimizer combines the best properties of 
the AdaGrad and RMSprop algorithms and can 
handle sparse gradients more effectively. It is 
well-suited for problems that are relatively large 
in terms of data and/or parameters (Walia, 2021). 
The classification accuracy at different epochs 
of CFS-DNN model training using different 

Table 2. Dataset Description

Datasets No. of samples No. of genes No. of classes
Brain Cancer 40 7130 5

ADPD 199 1437 3
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optimizers on brain cancer and ADPD datasets 
are recorded in Table 3 and Table 4.

Table 3. Validation accuracy of CFS-DNN model on 
brain cancer

Iterations
Accuracy of optimization algorithms

Adam SGD RMSprop AdaGrad
1-50 0.44 0.16 0.20 0.30

51-100 1.00 0.32 0.51 1.00
101-150 1.00 0.40 0.72 1.00
151-200 1.00 0.84 0.71 1.00

Validation 
accuracy 1.00 0.85 0.62 1.00

Table 4. Validation accuracy of CFS-DNN model  
on ADPD

Iterations Accuracy of Optimization algorithms
Adam SGD RMSprop AdaGrad

1-50 0.71 0.44 0.30 0.78
51-100 0.80 0.47 0.80 0.78
101-150 0.90 0.54 0.90 0.75
151-200 0.95 0.77 0.97 0.78

Validation 
accuracy 0.875 0.82 0.85 0.75

For the brain cancer dataset, all the optimization 
algorithms reached above 80% of validation 
accuracy whereas RMSprop showed 62% of 
accuracy. Both ADAM and AdaGrad optimizers 
showed good validation accuracy of 100% on the 
brain cancer dataset. For ADPD data, AdaGrad 
showed a validation accuracy of 75%. Next to 
AdaGrad, RMSprop and SGD optimizers reached 
a rate of accuracy above 80%. Finally, the Adam 
optimizer showed 87.5% of validation accuracy 
on the ADPD dataset which is comparatively 
higher than the ones of the other optimizers. 

The next metric that is used for evaluating a 
candidate solution of the proposed model is the 
‘loss function’ or ‘cost function’. To calculate the 
error of the model during the optimization process, 
a loss function is used. The loss function used for 
training CFS-DNN models is ‘sparse categorical 
cross-entropy’. The loss values at different epochs 
of CFS-DNN model training using different 
optimizers on brain cancer and ADPD datasets 
are recorded in Table 5 and Table 6.

Table 5. Validation loss of CFS-DNN model on brain 
cancer dataset

Iterations Loss value of different algorithms
ADAM SGD RMSprop AdaGrad

1-50 1.61 1.61 1.58 1.44
51-100 0.008 1.53 2.10 0.02
101-150 0.008 1.40 2.57 0.01
151-200 0.006 0.97 3.02 0.008

Validation 
loss 0.005 0.83 2.85 0.007

Table 6. Validation loss of CFS-DNN model on 
ADPD dataset

Iterations Loss value of different algorithms
ADAM SGD RMSprop AdaGrad

1-50 0.85 0.97 0.96 0.87
51-100 0.08 0.54 0.20 1.43
101-150 0.07 0.44 0.10 1.63

151-200 0.04 0.10 0.08 2.06
Validation 

loss 0.08 0.20 0.12 2.01

The general form of the sparse categorical cross-
entropy loss for a Softmax classifier with ‘n’ 
classes is:

1 log( )
| | jy

f F
L

F
σ

∈

= ∑
                               

(14)

where jy = 1 for class ‘j’ and i jy ≠ = 0 for all other 
classes, ‘n’ is the total number of classes, and ‘f’ 
is the number of features selected from the feature 
set ‘F’.

For the brain cancer dataset, the loss value 
predicted by the ADAM and AdaGrad 
optimization algorithms is decreasing at iterations. 
At the end of the 200th epoch, both ADAM and 
AdaGrad optimizers help the model to reach 
the validation loss of 0.005-0.007 on the brain 
cancer dataset. The loss value showed by SGD 
and RMSprop on the brain cancer is 0.83 and 
2.85, respectively, which is comparatively higher 
than the ones of the other two optimizers ADAM 
and AdaGrad. For ADPD data, AdaGrad showed 
a validation loss of 2.01. Next to AdaGrad, SGD 
and RMSprop showed validation loss of 0.20 and 
0.12, respectively. ADAM optimizer showed a 
good decrease in the loss at iterations and reached 
a validation loss of 0.08 which is comparatively 
lower than the one of other optimization 
algorithms on the ADPD dataset.
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While compared to other optimization algorithms, 
ADAM optimizer converges very fast and 
effectively improves the learning rate of the 
model for both datasets. The combination   of 
the proposed CFS-DNN model with ADAM 
optimizer shows good validation accuracy with 
low loss for the brain cancer dataset. For the better 
training of the proposed DNN model, the ADAM 
optimizer is tuned with various learning rates such 
as 1.0, 0.1, 0.01, 0.001. Figure 2, 3, 4 and 5 show 
the comparison of accuracy and loss of different 
optimizers on brain cancer data.

Figure 2 shows that the CFS-DNN model achieved 
maximum accuracy of 95.83% on the brain cancer 
dataset when it was tuned to the learning rate of 
0.1 in ADAM optimizer. 

Also, in Figure 3, the model shows a stable 
decrease in loss value when it was trained for the 
learning rate 0.1 and the trend for both training 
data and testing data showed a joint decrease in 
loss value for brain cancer data. 

From Figure 4, it can be observed that the CFS-
DNN model reached the maximum accuracy of 
87.5% on the ADPD dataset when it was tuned to 

the learning rate of 0.01 in ADAM optimizer, with 
the trending curve moving in an upward direction 
for both training and testing data. For other 
optimizers the model did not show a comparable 
increase in training accuracy and testing accuracy.

Figure 5 illustrates the stable decrease in loss 
value when it was tuned to the learning rate of 
0.01 in ADAM optimizer. There is no stable 
decrease in training and testing loss of ADPD 
data when it was tuned to the learning rates of the 
other optimizers. Hence it can be observed that 
the proposed CFS-DNN with ADAM optimizer 
with a learning rate 0.1 for the brain cancer and 
of 0.01 for ADPD dataset results in a good rise 
in classification accuracy with a low loss on the 
training and testing data.

3.3 Performance Evaluation

The proposed model is validated using 10-fold 
cross-validation for the classification of brain 
cancer and ADPD neurodegenerative brain 
disorder data. The performance of the proposed 
CFS-DNN classifier model is further compared 
with the existing five conventional learning 
algorithms: logistic regression (LR), support 

Figure 2. Brain cancer dataset - Comparison  
of accuracy

 Figure 3. Brain Cancer dataset - Comparison of loss

Figure 4. ADPD dataset - Comparison of accuracy Figure 5. ADPD dataset - Comparison of loss
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vector machine (SVM), Naïve Bayes (NB), 
Random Forest (RF), and Decision Tree (DT) 
applied on the two datasets brain cancer and 
ADPD brain disorder data. 

The comparative analysis between the performance 
of the proposed model and those of the existing 
classifiers on brain cancer data is shown in Table 
7. Out of the six models, the proposed CFS-
DNN model achieved the average classification 
accuracy of 95.83%, precision of 0.80, recall of 
1.00, and F1-score of 0.98 for the classification 
of selected features on brain cancer data. Next to 
the proposed model, Random Forest and Support 
Vector Machine provided better performance on 
brain cancer data. The classification accuracy rate 
and other performance parameters of the three 
classifiers, namely Logistic Regression, Decision 
Tree and Naïve Bayes, had a value below 80.

The comparative analysis between the proposed 
model and the other existing models based on 
different performance parameters regarding the 
ADPD dataset is shown in Table 8. For ADPD 
data, the proposed model reached the average 
classification accuracy of 87.5%, precision of 0.86, 
recall of 0.88, and F1-score of 0,88. Next to it, LR 
and SVM classifiers showed better performance 
in classifying the ADPD neurodegenerative brain 
disorder data. Both LR and SVM classifiers 
provided better accuracy of nearly 83% and 0.8 
for precision, recall, and F1-score of nearly 0.8 
for the ADPD data. The classification accuracy 
rate and other performance parameters of the 
other three classifiers, namely, RF, DT and NB, 

were lower when compared to those of the other 
classifiers. The above results demonstrate that 
the CFS-DNN model performed better on both 
datasets, when compared to the existing machine 
learning classifiers.

3.4 Comparative Analysis

This subsection discusses the comparative 
analysis between the proposed model and 
different classifiers based on the receiver operating 
characteristic (ROC) curve. For a better evaluation 
of the proposed work, results were plotted based 
on the ROC curve. The class-wise results of the 
proposed model and ROC analysis of other existing 
classifiers on two datasets are shown in Figures 
6 and 7. The experiments demonstrated that the 
proposed CFS-DNN significantly outperformed 
the existing models in the classification of selected 
features of brain cancer and ADPD data. 

In Figure 6(a), class 0 represents the 
medulloblastoma type, class 1 represents the 
glioma type, class 2 represents the rhabdoid type, 
class 3 represents the normal type and class 4 
represents PNET (primitive neuroectodermal) 
type, respectively.  The proposed model illustrated 
a ROC of 0.96 for medulloblastoma class, of 0.91 
for glioma class, of 1.0 for rhabdoid class, of 1.0 
for normal class, and 0.95 for (PNET) class.

Figure 6(b) shows the ROC curve for the existing 
machine learning models such as Logistic 
Regression, Support Vector Machine, Random 
Forest, Decision Tree, and Naïve Bayes on brain 

Table 7. Comparative analysis between the proposed model and the existing models on the brain cancer data

Classifier Precision Recall F1-Score Accuracy (%)
Logistic Regression 0.78 0.75 0.75 75
Support Vector Machine 0.79 0.88 0.82 89
Random Forest 1.00 0.88 0.93 87.5
Decision Tree 0.75 0.50 0.56 60
Naïve Bayes 0.67 0.62 0.62 62.5
CFS-DNN 0.80 1.00 0.98 95.83

Table 8. Comparative analysis between the proposed model and the existing models on the ADPD data
Classifier Precision Recall F1-Score Accuracy (%)
Logistic Regression 0.83 0.79 0.80 83
Support Vector Machine 0.82 0.81 0.81 82
Random Forest 0.76 0.78 0.75 77.5
Decision Tree 0.67 0.68 0.67 67
Naïve Bayes 0.68 0.69 0.68 68
CFS-DNN 0.86 0.88 0.88 87.5
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cancer data. The ROC results of the proposed 
model improved from ~ 7% to ~ 20% for brain 
cancer data when compared with the ROC results 
of the existing machine learning models. Thus, 
the proposed CFS-DNN model shows better ROC 
results of 0.96 for brain cancer data when compared 
to those of existing machine learning models.

(a)

(b)

Figure 6. ROC curve for Brain cancer dataset 
(a) Class-wise results of the proposed model 

(b) Results of other existing classifiers

In Figure 7(a), class 0 represents the Alzheimer’s 
disease, class 1 represents the Parkinson’s 
disease, and class 2 represents the common 
class, respectively. Figure 7(a) shows the ROC 
curve values for the proposed CFS–DNN model 
on ADPD data with an average ROC value of 
0.88. Also, the CFS-DNN model reached a ROC 
value of 0.91 for Alzheimer’s class, of 0.89 for 

Parkinson’s class and of 0.92 for common classes, 
on ADPD neurodegenerative brain disorder data. 

Figure 7(b) shows the ROC curve values for the 
existing machine learning models. Next to the CFS-
DNN model, LR and SVM models showed better 
ROC values of 0.8 on ADPD data, whereas the 
ROC results of the other three classifiers, namely 
RF, NB, and DT, were lower when compared to the 
values of the above-mentioned models. The ROC 
results of the proposed model improved from~ 
6% to ~ 15% for ADPD data when compared 
with existing machine learning models. Thus, the 
proposed CFS-DNN model shows better ROC 
results of 0.88 when compared to existing machine 
learning models on ADPD data.

(a)

(b)

Figure 7. ROC curve of ADPD dataset 
(a) Classwise results of the proposed model 

(b) Results of other existing classifiers 

Table 9. Comparison between the proposed approach with the existing work on brain cancer and  
ADPD dataset

Authors Approach No. of optimal features Brain cancer ADPD

Almars et al. (2021) HFS 200 95 ---
Ramani & Jacob (2013a) RWFS 3 77.5 ---
Patel et al. (2020) ANN 100 94 ---
Venkataramana et al. (2020) CDSS-DFS 55 --- 79.7
Proposed CFS-DNN 112 95.83 ---
Proposed CFS-DNN 40 --- 87.5
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The findings of the research proposed in this paper 
are in line with the results obtained in similar with 
similar works from past research on the above 
two datasets. A comparison between the result 
of the proposed model and those of earlier works 
implemented on the above two datasets is shown 
in Table 9. Most of the earlier works on the brain 
cancer dataset were tried for ‘2’classes, and only a 
few works were based on ‘5’ classes. The Hybrid 
feature selection (HFS) approach proposed by 
Almars et al. (2021) selected a number of 200 
features and showed an accuracy rate of 95% on 
the brain cancer dataset. On the same dataset, the 
least number of features was selected by Rank 
Weight Feature Selection (RWFS) but it reached an 
accuracy rate of 77.5% (Ramani & Jacob, 2013b).

The new method based on Artificial Neural 
Network and used by Patel et al. (2020) reached 
a good accuracy rate of 94% on the brain cancer 
dataset. In line with this study, the proposed CFS-
DNN model selected 112 features and achieved 
an average classification accuracy of 95.83% 
on the brain cancer dataset with five classes, as 
shown in Table 9, which represents a result better 
than the existing state-of-the-art results. The first 
result on the ADPD dataset with three classes 
was reported by Venkataramana et al. (2020) 
with a classification accuracy of 79.7%, precision 
of 0.78, recall of 0.76, and an F1-score of 0.76 
by using a Clinical Decision Support System 
(CDSS) based on Decremental Feature Selection 
(DFS) approach. Compared with similar previous 
research works on the above two datasets, the 
proposed CFS-DNN model achieved an average 
accuracy of 87.5%, as shown in Table 9, which 
represents a result better than the existing state-
of-the-art results. 

4. Conclusion

In recent years there has been a rising interest in 
the application of machine learning techniques in 
the medical research field. Medical Research based 
on computational techniques not only evaluates 
conceptual models and guides experimental 
approaches but also acts as a tool to lower the 
cost and time required for wet-lab experiments. 
The optimal subset selected by the CFS-DNN 
model includes 112 features for brain cancer and 
40 features for ADPD dataset, with an average 
classification accuracy of 95.83% and of 87.5%, 
respectively. The results of the proposed model 
were compared with the existing state-of-the-art 
results from the literature and the comparative 
analysis showed that the model proposed in this 
paper builds an advanced computational method, 
by providing a feature selection and classification 
approach for categorizing brain cancer data and 
ADPD brain disorders, with good generalization 
performance. In the future, the proposed work can 
be extended to detect and categorize the features 
of other brain disorders that could be targeted for 
brain disorder therapy.
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