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1. Introduction

Cluster analysis (Kwon & Lee, 2023; Hussein et 
al., 2021) is an unsupervised method that separates 
the data into various clusters according to the 
internal structural characteristics of the data set. 
Consequently, there is a high degree of similarity 
between data from the same cluster while there 
is a low degree of similarity between data from 
different clusters. However, data can be clustered 
at various levels to produce different clustering 
results, the possible outcomes without supervision 
information are unsuitable for downstream tasks 
(Nie et al., 2020).

Some researchers proposed a semi-supervised 
clustering technique (Safari & Afsari, 2020; Jia 
et al., 2020) which uses supervised data to drive 
clustering allocation. This method has a higher 
interpretability and has significantly improved 
clustering performance. However, with the 
popularization of the Internet and the development 
of computer technology, the data scale increases, 
and the data becomes more sophisticated and 
high-dimensional (Kim, 2019). On this type of 
data, most semi-supervised clustering algorithms 
perform poorly.

Deep learning was proposed by Hinton & 
Salakhutdinov (2006), which is a valuable 
feature learning method that employs the concept 
of hierarchical abstraction to abstract higher-
level concepts into low-level feature space. 
So, scholars have introduced deep learning to 
learn cluster-friendly representation for semi-
supervised clustering to address the above issues. 
For example, Ren et al. (2019) added the penalty 

term of pairwise constraint in deep embedded 
clustering (DEC) (Xie et al., 2016), which makes 
the connection point closer and the disconnection 
point farther away in the learned embedding 
space. Ohi et al. (2020) used the pre-trained DNN 
from ImageNet to obtain the potential feature 
representation, and good results are obtained 
by using only prior information. Although the 
above research studies show that the clustering 
performance has been significantly improved, 
they either do not use the supervised information 
effectively or ignore the unsupervised information.

Apart from the flaws mentioned above, most 
supervision data used in present deep semi-
supervised clustering algorithms is passively 
collected or arbitrarily selected, and certain 
approaches require supervision data to suit 
specific needs. The supervision data chosen 
randomly or passively gathered may be redundant, 
and some of it may even hurt the performance 
of model. More labour is required to supervise 
information that meets specific needs. Davidson 
et al. (2006) demonstrated that, when the specified 
supervision information is unsuitable, the model 
may eventually produce poor clustering results in 
semi-supervised clustering methods. As a result, 
academics are concerned about how to acquire 
valid supervision data. Some studies have used 
active learning to pick important supervised 
information in semi-supervised clustering 
algorithms and to overcome these difficulties.

Active learning can modify a data set, lowering 
labour costs, reducing generalization errors, and 
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speeding up model convergence. Combining 
active learning and the study of deep learning has 
gained attention in recent years. Most deep active 
learning algorithms proposed are for classification 
problems, with only a few for clustering tasks.

A novel deep constrained clustering approach 
is proposed and a pairwise constrained query 
strategy is created for the proposed method. The 
proposed algorithm exploits unlabeled data by self-
learning methods and consistent regularization 
techniques, using pseudo-Siamese networks to 
learn the relationships between paired data. To 
obtain more meaningful constraint information, a 
query strategy is designed based on the estimated 
confidence of data and the uncertainty estimates 
of the model.

The main contributions of this paper are the 
following. A new deep constrained clustering 
framework is proposed, which uses consistent 
regularization technology and self-learning to 
exploit pairwise constraints and unlabeled data. 
Then, a query strategy for querying paired data in 
the pseudo-Siamese network is proposed, which 
combines the traditional query strategy based 
on confidence query and the model uncertainty 
strategy used in deep active learning. Finally, 
extensive tests are conducted on multiple image 
data sets, and convincing results that verify the 
reliability of the proposed method are achieved.

The rest of this paper is organized as follows. 
Section 2 presents the related works. Section 3 
provides a detailed description of the proposed 
method. Section 4 reports the experimental results 
of the proposed method. The conclusion can be 
found in Section 5.

2. Related Works

2.1 Deep Constrained Clustering 

Due to the rapid advancement of deep learning 
(Salih et al., 2022; Nath et al., 2022), some 
scholars are now looking into semi-supervised 
clustering algorithms combined with deep 
learning. They use supervised information to 
guide representation learning and thus obtain more 
meaningful representations for clustering.

For example, Ren et al. (2019) added a penalty 
term for pairwise constraints to the deep 
embedded clustering algorithm (SDEC), which 
makes the feature space meet the constraints 

conditions. Arshad et al. (2019) suggested a 
deep semi-supervised fuzzy c-means clustering 
algorithm, which is used in multi-category 
unbalanced classification problems. Ohi et al. 
(2020) proposed a method for mapping high-
dimensional data to embedded systems suitable 
for clustering (AutoEmbedder), which achieved 
good clustering performance when using only 
labeled data. Śmieja et al. (2020) suggested 
a constrained clustering algorithm using 
classification ideas (ss-S3C2). The procedure 
is divided into two phases: in the first phase, 
the Siamese network is trained with pairwise 
constraints and then the unlabeled paired data is 
labeled using the trained Siamese network. In the 
second phase, a new Siamese network is trained 
with known pairwise constraints and pseudo 
paired data which was labeled in the first stage.

2.2 Active Semi-Supervised Clustering

Active learning (Ren et al., 2021) can select 
critical query instances annotated by experts 
through different query strategies. This process 
produces a refined data set that reduces labour 
costs and generalization errors and accelerates 
model convergence. In semi-supervised clustering 
methods, active learning has been employed to 
obtain more semantically supervised informative. 
Active constrained clustering techniques can be 
divided into sample-based and sample-pair-based 
categories, according to Xiong et al. (2016).

The sample-based methods choose the meaningful 
samples first and then queries the paired data 
generated according to the selected samples. 
For example, Basu et al. (2004) first studied the 
pairwise constraint algorithm based on active 
learning and proposed the active K-means 
clustering algorithm FFQS (Farthest-First Query 
Strategy). They first explored the problem 
space, query, initialize and augment the sample 
with known cluster assignments, and after that 
extracted a substantial number of constraints from 
the known samples. Xiong et al. (2016) proposed a 
sample-based active spectral clustering framework 
that iteratively selects sample-based constraints in 
an online manner. Each iteration of the algorithm 
finds the prediction data that minimizes the 
clustering uncertainty and then uses that data to 
form pairs for the query. 

The sample-pair-based methods select pairs 
of data to query. For instance, to overcome the 
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instability of the clustering results caused by the 
random query, Wang et al. (2020) used an active 
selection function to query constraint information 
during clustering in a spectral clustering algorithm. 
Lutz et al. (2021) proposed an active clustering 
of training data in which the data is classified by 
the computer and the pairwise data are then sent 
to human experts for query. Hazratgholizadeh et 
al. (2022) proposed an active constrained deep 
embedding clustering method that utilizes two 
parallel layers to select information and diversity 
constraints. Li et al. (2021) proposed an adaptive 
criteria weights batch selection method that 
identifies the most informative pairs for semi-
supervised clustering through iterative means.  

2.3 Siamese Network

A Siamese network is a neural network architecture 
for learning the similarity between two input data 
(Anđelić et al., 2021). Bromley et al. (1993) first 
proposed this approach for signature verification.  
The main idea is to learn a mapping function 
from the data making the similarity between two 
samples of the same class more significant and 
the similarity between representatives of different 
categories smaller. The Siamese network consists 
of two neural networks with the same structure 
and weight, each capable of learning the hidden 
representation of the input vector. A Siamese 
network can be classified as a pseudo-Siamese 
network if the weights of the two sub-networks 
are not shared, or if the sub-network architectures 
differ. Siamese networks are frequently employed 

to learn the inherent similarity or difference 
between two objects and have been extensively 
utilized in various domains such as, natural 
language processing (Mueller & Thyagarajan, 
2016), computer vision (Nandy et al., 2020), and 
speech processing (Chen & Salman, 2011).

3. Method

3.1 Formulation

For a data set [ ] d n
1 n, , R ×= … ∈X x x  consisting of n 

d-dimensional data, the must-link data set was set 
as ( ){ }i j ijM , , y 1= =x x ; and the cannot-link data 
set was set as C = {(xi, xj, yij = α)} , where ijy  is 
a label for pairwise data. 

3.2 Overall Framework

To make better use of pairwise constraints and 
unlabeled data, a novel deep constraint clustering 
method is introduced. The model uses a pseudo-
Siamese network to learn the association 
between paired data and consistent regularization 
approaches and self-learning to exploit unlabeled 
data. Second, a novel query method that uses 
the confidence of data and the uncertainty of 
the model-fit and semantically rich supervised 
information is presented. The framework is 
divided into two sections: model training and data 
labeling. Figure 1 illustrates the model structure 
of the proposed method.

Figure 1. The overview framework of the proposed method
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3.3 Model Training Part

In the model training part, a pseudo-Siamese 
network is composed of a deep neural network 
with dropout regularization; then a clustering layer 
and a Dense layer with a Softmax   activation 
function are connected to the two sub-networks 
of the pseudo-Siamese network. The clustering 
layer computes the probability assignment of 
embedded points to cluster centers by Student’s t 
distribution. Later, the Dense layer with Softmax 
function predicts the probability of data belonging 
to a class. The training of this network involves 
two phases.

In the training phase, the pseudo-Siamese 
network is trained using paired data (the pairwise 
constraints and the must-link pairs composed 
of unlabeled data). First, the paired data is fed 
in and a pseudo-Siamese network made up of 
deep neural networks that have been pre-trained 
by ImageNet is used to obtain their embedding 
representations. Second, the Euclidean 
distance between low-dimensional embedding 
representations of the paired data is computed. 
The estimated distance value is then regulated by 
passing it via a ReLU layer. Finally, the network 
parameters are modified inversely by minimizing 
the mean squared error loss function between the 
predicted and actual values.

In the fine-tuning phase, the pseudo-Siamese 
network is fine-tuned by finding the best fit 
between the predicted and target distributions. The 
network parameters are adjusted by minimizing 
the mean squared error function computed on 
paired data and the KL divergence loss function 
calculated on unlabeled data. The prediction 
distributions in two KL divergence loss functions 
are the distribution probability of low-dimensional 
embedded data to the cluster center derived using 
the Student’s t distribution and the prediction 
probability generated using the Softmax 
function. In contrast, the target distribution is 
the reinforcement distribution calculated on the 
prediction distribution.

3.4 Objective Function
One of the loss terms in the proposed technique 
is a Mean Squared Loss term computed on paired 
data, while the other two are KL divergence loss 
terms calculated on unlabeled data, namely:

L = MSE (M,C) + λKL1 (X,X) + λKL2 (X,X)  (1)

The mean squared error loss is calculated using 
two types of data: pairwise constraint information 
and generated must-link pairs of unlabeled data.

For pairwise constraints ( ),i jx x , if 0ijy = , then ix  
and jx  are from the same cluster, and if ijy α=  , 
then ix  and jx  are from different clusters, i.e.,

i j

i j

0, if  and  must link
,if  and  cannot linkijy

α
= 


x x
x x                      

(2)

It is worth noting that the outputs of the same 
sample from the two sub-nets in a pseudo-Siamese 
network may different due to the usage of dropout 
regularization and the uncoupling of the weights of 
the sub-nets. Obviously,  ,i ix x  belong to the same 
cluster, and their true label is 0iiy = . The network 
will acquire a low-dimensional embedding ( ),i i′z z  
for the generated paired data ( ) ,i ix x .

So MSE(M,C) is written as:

( ) ( )

( )
( , )

2
2

1, |

, |

i j
ijM C

i j

MSE M C y
M C

f

∈ ∪
=

+

−

∑ xx

x x          

(3)

where 2
2| . |  is the Euclidean norm. ( ),i jf x x  is the 

prediction of paired data, which can be obtained 
by the distance function d() and the hyper-
parameter α, i.e.,

       
θ i θ j

θ i θ j

, ,

( ( ), ( )),if 0<d(g ( ),g ( ))<α
                         , if d(g ( ),g ( )) α

 

 


 





  

i j i j

i j

f ReLU d g g

d g g

x x x x

x x x x
x x    

(4)

( ) ( )( ) 2

2
,i j i jd g gθ θ ′ = −x z zx

      
(5)

zi = gθ (xi)                       (6)
zj = gθ' (xj)                       (7)

where α is the smallest distance between any two 
clusters. When the distance between two samples 
is bigger than α, they are regarded as belonging 
to different clusters. The nonlinear transformation 
function g transforms high-dimensional data X  
into a low-dimensional data Z . θ and θ' represent 
the model parameter vectors. 

KL divergence loss is used to calculate the 
difference between the predicted distribution Q
and the target distribution P  of unlabeled data. 

( ) ( ) ( ) ( )
( )

, |
P

KL KL P Q P log
Q

= =∑ x

x
X X x

x      
(8)
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The prediction distribution in 1KL  loss is the 
cluster assignment probability which is calculated 
by the Student-t distribution, i.e.,

2 1

2 1

(1 )

(1 )





 


 
i j

ij

i jj

q
μ

z μ

z
                              

(9)

where iz  is the embedding point and μj is the jth 
cluster center. Then, the final clustering result is 
obtained by taking the maximum value of cluster 
allocation iq , i.e.,

maxi ijj
c q=

                                                
(10)

The prediction distribution in 2KL  loss is the 
posterior probability which is generated by the sub-
net equipped with the Softmax output layer, i.e.,

j

jij

j

eq
e ′

′

=
∑

z

z

                                              
(11)

On the basis of the predicted distribution, the 
reinforcement distribution is calculated as the 
target distribution, i.e.,

2

2

/
/

ij j
ij

ij jj

q f
p

q f
′

=
∑                                         

(12)

where jj ii
f q=∑ .

3.5 Parameter Optimization

To optimize equation (1), the Adaptive Moment 
Estimation (ADMA) and back propagation 
are applied. The formula contains two types 
of parameters: cluster centers and network 
parameters. In the fine-tuning phase, the network 
parameters and cluster centers are collaboratively 
optimized. And, considering the global structure 
of data, K-means are utilized for the total data 
to derive the cluster centers, which are then used 
to update the cluster center parameters in the 
clustering layer, after a set number of iterations.

3.6 Parameter Initialization

In the first training phase, the parameters obtained 
after pre-training the network by ImageNet are 
used as the initialization parameters of the 
network. In the second fine-tuning phase, the 
initial centers μj are obtained by applying K-means 
on the embedding space learned by the sub-net.

3.7 Data Labeling Part

The data labeling part chooses query data from 
unlabeled data, creates paired data, and sends them 
to an expert for annotation to update the labeled 
data set. The paired data whose model predictions 
are must-link are chosen for the query, because 
must-link constraints provide more information 
than cannot-link constraints. There are two types 
of query paired data: low confidence and high 
uncertainty. The first object in the low confidence 
paired data is the low confidence data, while the 
second object is the high confidence data. The first 
object in the high uncertainty paired data is high 
uncertainty data, while the second object is high 
confidence data. According to the Monte Carlo 
(MC)-Dropout uncertainty estimation method 
(Gal & Ghahramani, 2016), the uncertainty 
measure of the model with respect to the data is 
obtained by calculating the standard deviation 
of T times forward propagation. The maximum 
uncertainty estimation probability for each data 
is taken into account as a measure of uncertainty 
for the respective data. 

3.7.1 Low Confidence Pairs

1. Calculate the confidence level of all data by 
using equation (10);

2. Select the data with confidence level lower than 
κ0 and the data with confidence level higher than 
κ1, i.e., 0max ijj

q κ<  and 1max ijj
q κ> , where κ0 is 

the low confidence threshold and κ1 is the high 
confidence threshold;

3. Create data pairs using the above-selected data, 
with the low confidence data as the first object and 
the high confidence data as the second;

4. Select the data pairs that are predicted by the 
model as must-link and then give them to the 
experts for labeling.

3.7.2 High Uncertain Pairs

1. Calculate the confidence level of all data by 
using equation (10), and calculate the uncertainty 
of all data as follows:

( ) ( )
1

1 T

i i
T

softmax
T =

≈ ∑x z
                            

(13)

( ) ( ) ( ) 2[ ]i i iVar softmax≈ −x z x                  (14)
( )maxi ij

u Var= x
                                        

(15)
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2. Select the data with uncertainty level higher 
than κ0 and the data with confidence level higher 
than κ1, i.e., 2iu κ>  and max ijj

q κ> ;

3. Create data pairs using the above-selected data, 
with the high uncertainty data as the first object 
and the high confidence data as the second;

4. Select the data pairs that are predicted by the 
model as must-link and then give them to the 
experts for labeling.

4. Experiments

In order to evaluate the superiority of the 
proposed method, comparison experiments 
against some existing unsupervised and 
semi- supervised methods are conducted in 
the present paper. Meanwhile, to evaluate 
the efficacy of the suggested query approach, 
the clustering performance of the model is 
examined under different amounts of prior 
knowledge. Finally, the sensitivity analysis of 
parameters is also discussed.

4.1 Datasets and Evaluation Metric

The experiments are performed on four image 
datasets, namely MNIST (Lecun et al., 1998), 
Fashion (Xiao et al., 2017), Cifar10 (Hull, 1994), 
and USPS (Krizhevsky & Hinton, 2009).

Table 1 displays the summary information of 
the datasets. 

Table 1. Details of the datasets

Dataset Classes Training-
size Testing-size

MNIST 10 60,000 10,000
Fashion 10 60,000 10,000
Cifar10 10 50,000 10,000
USPS 10 9298 9298

Each cluster solution is assessed by using three 
standard cluster evaluation measures: accuracy 
(ACC), adjusted rand index (ARI), and normalized 
mutual information (NMI). The value of ACC and 
NMI is within the range [0,1], while the value of 
ARI is within the range [-1,1].

The higher the value of these metrics, the better 
the clustering results.

The specific definition is as follows.

Accuracy： 

{ }
n

cml
ACC

n

i ii

m

∑ =
=

= 1
)(

max
1

                
(16)

where il  is the real label, ic  is assigned to the 
cluster, and m covers the one-to-one correspondence 
between all the clusters and the label. 

Adjusted rand index:

ARI
n

ij
a

i

b

j
n

a b

ji

ij i j

i j

�
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�
�
� � �
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�

�
�

� � �
��
2 2 2 2

2 2

1

2

/

�� � � � ��
�

�
� � ��� 2 2 2

a b

ji
ni j

/

  

(17)

where nij, ai and bj are derived from  
contingency tables.

Normalized mutual information:

NMI c c
I c c
H c H c

; '
; '

max , '
� � � � �

� � � �� �               
(18)

where );( ccI ′  refers to the mutual information 
between the true value c  and the predicted value 
c′ , and H() is the entropy.

4.2 Comparison Methods

Several baseline clustering methods are compared 
to the approach proposed in this paper. For 
comparison, unsupervised algorithms such as 
K-means (MacQueen, 1967) and DEC (Xie et 
al., 2016) are employed, and semi-supervised 
clustering approaches such as SDEC (Ren et 
al. 2019), ss-S3C2 (Śmieja et al., 2020), and 
AutoEmbedder (Ohi et al., 2020) are used. 

4.3 Implementation Details

All experimental datasets were divided into 
training and testing datasets, with the exception 
of the USPS data set (which was not split). All 
features are normalized so that they fall between 
[0,1]. The Pseudo Siamese network’s sub-
network is composed of MobileNet, Flatten layer, 
Dropout layer and Dense layer. The parameters 
of MobileNet are set as: weights = `ImageNet’, 
include_top = false, and the rest as defaults. The 
Dense layer has 64 neurons, and the dropout rate 
in the Dense layer is set to 0.1. The clustering 
layer, which computes cluster assignments using 
the Student-t distribution, and the Dense layer, 
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which uses Softmax as the activation function, are 
added after the two sub-networks. The Euclidean 
distance is used to learn the similarity between 
paired data representations, and the value is 
limited to [0, α] by the ReLU activation function 
with an upper limit α that can be regarded as the 
minimum interval between two clusters, which is 
set to 100.

Since MobileNet requires input data to have 
three channels and a pixel size of at least 32*32 
pixels, MNIST, Fashion, and USPS are scaled 
to 32*32 pixels and extended to 3-channel data. 
The optimizer ADMA is used for optimization, 
and the learning rate is set to 0.001. Each batch 
of input data contains 128 pairs of paired data, 
128 pairs of symmetric forms of paired data, and 
128 pairs of paired data consisting of unlabeled 
data. Except for active learning-based method, 
all semi-supervised methods had 5,000 pairwise 
constraints. In the active query strategy, except 
Cifar10 which is more complex, the initial 
number of pairwise constraints is set to 500. 
For more complex dataset as Cifar10, the initial 
number of pairwise constraints is set to 2,000. 
All the initial data is selected randomly. Since 
the maximum number of queries is set to 10, the 
amount of supervision information constraints 
of the Active Learning (AL) algorithm on the 
MNIST and USPS datasets is lower than 2500, 
while the number of supervision constraints on 
Fashion data set and Cifar10 is 5000. The low 
confidence threshold is set as κ0 = 0.5 and the 
high confidence threshold is set as κ1 = 0.9. 
The uncertain threshold is set as κ2 = 0.8. MC-
Dropout is used to obtain an uncertainty measure, 
by computing the standard deviation of 10 
stochastic forward passes.

5 experiments were conducted on each set of 
data, and the prior information selected for each 
experiment was different. Finally, the average of 
the 5 results was compared with the results from   
other algorithms.

4.4 Results and Discussions

Table 2 displays the outcomes of the technique 
suggested in this paper and comparison between 
the performance evaluations of the present 
algorithm on the MNIST, Fashion, and USPS data 
sets.  The best values are written in bold. In Table 
2, Random denotes that pairwise constraints are 
chosen randomly, with the exception of the USPS 
data set, the must-link-to-cannot-link ratio is 1:9, 
while AutoEmbedder (Balanced) denotes that the 
ratio should be 1:1. The proposed algorithm is 
DCC, in which Random has the same meaning 
as in the brackets above. AL denotes the pairwise 
constraint information received by the proposed 
query strategy, where the fraction of must-link 
and cannot-link is higher than 1:9 and lower than 
1:1, respectively.

In Table 2, the deep clustering method DEC 
outperforms the traditional clustering algorithm 
K-means in all compared datasets, which 
proves that increasing deep learning has a 
positive impact on clustering methods. The 
clustering performance of SDEC with penalty 
term added to DEC is improved on all data sets, 
which means that supervision information does 
play a guiding role. And DCC is an improved 
algorithm on AutoEmbedder, which increases 
the use of unlabeled data. The results indicate 
that the present method can effectively utilize 
unlabeled data. But, when the constraint 
information is randomly selected, except for 

Table 2. The clustering ACC, NMI, ARI on MNIST, Fashion and USPS

Method MNIST Fashion USPS
ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 0.551 0.517 0.385 0.490 0.515 0.350 0.669 0.627 0.546
DEC 0.849 0.816 0.773 0.518 0.546 - 0.758 0.769 0.688

SDEC(Random) 0.861 0.830 0.792 0.440 0.390 0.410 0.764 0.777 0.700
ss-S3C2(Random) 0.976 0.928 0.939 0.743 0.373 0.616 0.902 0.899 0.911

AutoEmbedder (Balanced) 0.985 0.958 0.967 0.833 0.774 0.720 0.990 0.973 0.981
DCC-Random 0.991 0.973 0.979 0.846 0.778 0.729 0.989 0.968 0.978

DCC-AL 0.992 0.974 0.981 0.893 0.819 0.795 0.987 0.963 0.974
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Cifar10 data set which is more complex, the 
clustering performance of DCC-Random and 
AutoEmbedder is comparable in other datasets. 
This result shows that the value of the amount 
of information extracted by the proposed 
algorithm on unlabeled data is less than the value 
information that must-link brings to the model.

For Cifar10 data set, the performance evaluation 
results can be seen in Table 3. The clustering 
performance evaluation results on the prior 
information obtained by the query strategy are 
much better than those obtained on the random 
prior information. However, compared to 
AutoEmbedder trained with the same number of 
must-links and cannot-links, the performance of 
the model proposed in this paper is improved. The 
main reason is that the information included in 
must-links is greater than information included in 
cannot-links.  DCC-AL has less expert-annotated 
must-links than AutoEmbdder.

Figure 2 depicts the change trend of NMI and 
ARI of the proposed algorithm on MNIST, 
Fashion and Cifar10 data sets, when query 
times grow. As it can be seen from Figure 2, the 
initial accuracy of the model is great for simple 
datasets MNIST, and the model performance 
reaches its best sooner. For Fashion data set, 
the initial model has a fairly high accuracy. The 
clustering performance of model improves fast 
as query times increase at the beginning, then 
the clustering performance of model gradually 
improves. For the complicated data set Cifar10, 
the initial accuracy of model is low and the 
amount of query data has minimal impact on 
the model in the first few queries. Only when a 
certain amount of labeled data has been collected 
does the model accuracy begin to improve.

Table 3. The clustering ACC, NMI, ARI on Cifar10

Method Cifar10
ACC NMI ARI

K-means 0.205 0.085 0.043
AutoEmbedder 0.505 0.404 0.321
DCC-Random 0.444 0.375 0.283

DCC-AL 0.532 0.414 0.326

In general, the proposed query strategy depends 
on the initial accuracy of the model, for some 
datasets. Only a small number of queries are 
needed for the model to perform well, but for 
complex data more queries are needed.

 

Figure 2. Clustering evaluation results with different 
pairwise constraints

4.5 Ablation Study

The previous performance comparison of DCC-
Random and DCC-AL can prove the effectiveness 
of the proposed query strategy. This ablation 
experiment section will look at the effect of 
consistent training and fine-tuning of the model. 

In Table 4, Pairwise data stands for training the 
model with pairwise constraints; Consistency 
stands for training the model using consistent 
training methods with unlabeled data; and 
Consistency + fine-tuning stands for using 
consistent training and fine-tuning techniques.

As it can be seen from Table 4, by comparing the 
model trained only with pairwise constraints, it 
becomes clear that the performance of the model 
with consistency training is greatly improved. By 
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adding fine-tuning, the performance of the model 
is also improved, to some extent.

Table 4. The clustering NMI, ARI on Fashion  
and Cifar10

Method Fashion Cifar10
NMI ARI NMI ARI

Pairwise data 0.756 0.700 0.380 0.309
Consistency 0.809 0.759 0.494 0.389
Consistency + fine-tuning 0.821 0.780 0.505 0.391

4.6 Parameter Analysis

This subsection will discuss three threshold 
parameters namely κ0, κ1, κ2, in the Data Labeling 
part of the experiment. Figure 3 shows the 
clustering results of the model DCC-AL on the 
Fashion data set with the different values of the 
low confidence threshold κ0, the high confidence 
threshold κ1, and the high uncertainty threshold κ2. 

Figure 3. Parameter analysis of Data Labeling part

Only from the results illustrated in Figure 3, 
the impact that different values of the three 
parameters have on the performance of the model 
cannot be clearly seen. However, more must-link 
data need to be selected in the experiment, so 
a higher confidence threshold, relatively higher 
uncertainty thresholds and low confidence 
thresholds are needed.

5. Conclusion

This paper presents a new method called deep 
constrained clustering with active learning 
(DCC-AL), which can solve the issues of limited 
use of unlabeled and labeled data, as well as low 
information content and redundancy of a priori 
knowledge in semi-supervised approaches. The 
proposed method has been extensively evaluated 
through numerous experiments, demonstrating 
its effectiveness.

However, it was found that the initial performance 
of the model suffers when the data set is too 
complex, resulting in the fact that the proposed 
query approach will highlight a lot of   data that 
is not really useful to the model. Furthermore, it 
was possible to find out in which classes of data 
the model is more inaccurate by comparing the 
results of expert labeling with the results predicted 
by the model. Therefore, in future work, the initial 
model will be made more accurate for difficult 
datasets and, furthermore, increasing the weights 
of class with high error rates will be considered 
in the query strategy.
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