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1. Introduction 

Thermal stability in new-borns, especially those 
who were born very low in weight (VLBW), 
results from the body’s heat production and loss. 
Previous studies (such as Knobel, 2014; Sherman 
et al., 2006) have shown that the state of weight 
gain and caloric intake is not related to the 
incubation period, but to the thermal stability of the 
preterm infant and its environment. Therefore, a 
high-performance controller will be indispensable 
for neonatal incubators to provide the premature 
baby with a stable thermal environment similar to 
that of the womb. 

The mechanism of temperature control is one of 
the most relevant parameters of the incubator. 
Currently, two control mechanisms are widely 
used. The first one is skin control mode based on 
preterm infant skin temperature as a reference, 
while the second is air control mode based on the 
air temperature as a reference to control the heating 
of the incubators. However, each technique has 
its benefits and drawbacks. For instance, Reddy 
et al. (2009) in their work, show that the skin 
control mode results in a significant variation in 
air temperature, whereas Delanaud et al. (2017) 
shows that choosing the neutral temperature set 
point to reduce heat loss was the problem with 
the air control mode. This complexity is brought 
about by changes in the incubator’s humidity 
level, the morphology of the premature baby, and 
the clothing worn in the incubators. Therefore, 
the control system for the heating power and 
humidity must be an interactive system in which 

the new-born participates in the thermal control 
of its environment. 

Numerous studies within the realm of related 
research are dedicated to enhancing the design 
of incubators with the aim of improving their 
affordability and accessibility in developing 
nations. These endeavours encompass a wide 
spectrum of incubator optimization facets, 
including the reduction of manufacturing costs 
(Donato, 2010), the mitigation of infection risks 
and power consumption (Tran et al., 2014), and 
the incorporation of advanced control systems. 
For instance, Marwanto et al. (2019) delve into 
the utilization of fuzzy logic as a controller 
in incubators equipped with temperature and 
humidity sensors. Their approach seeks to establish 
a stable and conducive environment for premature 
infants with low body weight, ultimately bolstering 
their development and survival prospects.

Meanwhile, Tiwari et al. (2022) investigate the 
implementation of a real-time control system 
capable of monitoring and reporting various 
parameters. This innovation facilitates remote 
tracking and notifications for caregivers, enhancing 
the overall care provided to infants. In the work 
of Alduwaish et al. (2021) the central objective is 
the deployment of a closed-loop control system 
in sealed incubators for premature neonates. This 
system effectively maintains the desired relative 
humidity (RH) levels, thereby mitigating issues 
like transcutaneous water loss, dehydration, and 
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excessive cooling, all of which pose significant 
risks to premature infants. Additionally, Ismail et al. 
(2021) conduct an investigation into and comparison 
of the performance of two distinct control systems: 
a model-free controller (MFC) and a classical 
proportional-integral-derivative (PID) controller. 
This study aims to determine the efficacy of these 
control systems in precisely maintaining the desired 
temperature inside an incubator. Lastly, Kapen et 
al. (2019) present their design and implementation 
of an affordable neonatal incubator equipped with 
a baby weight monitor, specifically addressing the 
challenges associated with maintaining incubators 
in developing countries.

In the literature, most authors have limited their 
researches to controlling different parameters 
such as skin temperature, air temperature, or 
humidity but without interaction between them. 
For example, Reddy et al. (2009) proposed a fuzzy 
logic control system that takes into consideration 
both the infant’s body temperature as well as the 
incubator’s air temperature to control the heating, 
but without humidity control. Zermani et al. (2014) 
has developed a new active humidification system 
with a decoupled controller to achieve optimal 
environmental conditions such as temperature 
and humidity inside the incubator and to minimize 
evaporation losses of premature newborns. 
However, the skin control mode is not considered. 
Similarly, in the works of Kholiq & Lamidi 
(2022), Alimuddin et al. (2021), and Sumardi et 
al. (2019) a control system for infant incubators 
based on the different structure of a proportional-
integral- derivative (PID) controller was proposed 
for the air control mode, while the skin control 
mode is not considered. In fact, it’s thought that 
the neonatal incubator system is among those 
with a relatively slow dynamics and with delay. 
Therefore, predictive control can be the best sort 
of control for such systems. Predictive control is 
an advanced control technique for automation. 
It can be used to control complex systems, in 
particular those with long delay times (Morato et 
al., 2020). The basic idea behind this method is 
to use a dynamic model of the system running 
inside the controller to predict its future behavior. 
Several structures can be used with generalized 
predictive control.  Indeed, in the newborn critical 
care unit, incubators are frequently subjected to 
high levels of disruption. The disturbances are 
largely attributed to the successive interventions 
by the medical team on preterm babies. Therefore, 
the use of predictive control with a cascade 

structure will be an appropriate solution for the 
regulation of the baby incubator system.

Various mathematical models for new-borns 
and the incubator process have been established 
in the literature. Simon et al. (1994) designed a 
theoretical mathematical model in order to examine 
the impact of different parameters affecting new-
born thermoregulation. Furthermore, recent 
research on the modelling of incubators has been 
carried out by Yeler & Koseoglu (2021), where 
they presented a detailed mathematical model of 
a modular thermoelectric heat pump system used 
in a thermoelectric infant incubator. Fraguela et 
al. (2015) has suggested a mathematical model 
of the infant in a closed incubator within the first 
few hours of life. The model of the premature 
infant was divided into three layers, namely deep 
tissue, surface tissue, and blood. In their work, 
the authors have assumed that air temperature and 
radiant temperature are the control parameters. 
However, humidity has not been considered. 
There are also other interesting works on the 
modelling of new-born incubators that have been 
developed in the literature such as that proposed 
by Delanaud et al. (2019).

This work’s objective is to present a new control 
structure for an incubator system. This structure 
is composed of three GPCs based on three 
prediction models which are incubator air space, 
the humidification system, and premature new-
born models. Two GPC-based controllers are 
in cascaded form to simultaneously control the 
baby’s skin temperature and air temperature, and 
the third one is a conventional GPC for humidity 
control. Additionally, a decoupling method has 
been developed to minimize the impact of humidity 
variation on the premature infant`s temperature. To 
simulate and predict the outputs of the incubator 
system, a thermo-dynamic model that requires three 
compartments is presented. The first one is the infant 
modelled with two layers - the core and the skin 
layers. The second compartment is the incubator 
based on the real measures for the Dräger incubator. 
The final compartment is the humidification 
system, that is based on the real measures for the 
active humidification system. Each compartment 
is modelled by a transfer function using chaotic 
particle swarm optimization CPSO. The results 
from the simulation and actual data for the proposed 
control algorithm are compared with those of the 
single-mode GPC controller (S-GPC) and cascade 
GPC controller (C-GPC) without decoupling.
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The rest of this article is organized as follows. In 
Section 2, the prermature infant incubator system 
is presented and its numerical model for prediction 
outputs using (CPSO) is developed. Section 3 
proposes a new control method based on cascade 
generalized predictive control with a decoupling 
method to improve both the set point tracking 
and disturbance rejection performances. The 
simulation and experimental results are presented 
in Section 4, where the efficacy of the suggested 
control strategy is illustrated. Section 5 includes 
the conclusion of this paper and suggestions for 
additional research. 

2. System Description for the 
Premature Infant  
Incubator System

Because they are born before some organs have 
finished developing, preterm new-borns are 
unable to keep a stable skin temperature outside of 
a small range of thermal environments. Therefore, 
these infants must be kept for a specific amount 
of time in a neutral thermal environment, where 
they would use the least amount of oxygen and 
spend the least amount of metabolic energy, as 
determined by their birth weight and gestational 
age. Furthermore, when premature babies develop 
hyperthermia or hypothermia for any reason, 
their body temperatures need to be closely 
monitored. In addition to this precise monitoring, 
it is crucial to provide the infant incubator with 
necessities like the appropriate temperature 
and relative humidity that would resemble the 
environment of the mother’s womb. Unlike the 
different humidification systems of commercial 
infant incubators, which are often evaporative 
humidifiers, this study will be carried out on a new 
nebulization system. The three main components 
of the active humidification system are the 
humidification chamber, the fan that is turned 
on to evacuate humidified air from the incubator 
through an air passage, and the vapor generator 
based on an ultrasonic nebulizer.

Figure 1 shows the active humidification system 
designed to increase and control the humidity 
level inside the incubator. The operating principle 
of this system is as follows. A nebulizer provides 
the suspension of fine droplets of sterile distilled 
water with a diameter between 2 and 5 pm by 
ultrasound emission having a frequency around 
of 2.4 MHz at the level of a piezoelectric ceramic 

placed on the surface of a water pan. It is important 
to note that this humidification method has the 
benefit of producing water vapor at ambient 
temperatures. Energy consumption is another 
advantage that makes the use of the ultrasonic 
humidification process superior to that based on 
heated components. 

Figure 1. The active humidification system of a 
closed incubator

2.1 A Thermal Model of an Incubator 

There are various models of the premature infant 
in the literature; however, the models of Simon 
et al. (1994) and Rojas et al. (1996) are widely 
used. In this study, we use for simulation the 
mathematical model developed by Simon with 
some changes made in the model. The model 
equations were based on the rule of energy 
conservation as follows:

 dTc met sen lat cd bc
dt M Cc pc

− − − −
=
    

                          
(1)

 
 dTs cd bc mc scv se sr

dt M Cs ps

− − − − −
=
     

                     
(2)

 dTw acv sr cvo ro
dt M Cw pw

− − −
=
   

                                 
(3)

 dTm mc mat ic
dt M Cm pm

+ −
=
  

                                        
(4)

Although the model of Simon et al. (1994) can 
accurately depict this system, it is inappropriate 
for GPC because of its highly complexity. 
Therefore, a transfer function model for the 
preterm new-born, incubator and humidification 
system are developed using experimental input 
and output data.

^ 1
0 1( )1 1 1( ) 11 1

miT b b z b zdia i i miTF z zU z a z a zi ni

− −+ + +−
= = − −− − −



                 
(5)

' ' ''
0 1

' '
1

^ 1
( )2 1 1( ) 12

i i mii

i ni

miT b b z b zdsTF z zU z a z a z

− −+ + +−
= = − −− − −



                
(6)

" " "''
0 1

" "
1

^ 1
( )3 1 1( ) 13

i i mii

i ni

mib b z b zH d
TF z zU z a z a z

− −+ + +−
= = − −− − −



                (7)



https://www.sic.ici.ro

122 Mohamed Aymen Zermani, Elyes Feki, Abdelkader Mami

where 
^

ST , 
^

aT  and 
^

H  are the output values 
predicted for the skin temperature, air temperature 
and relative humidity, respectively. U1, U2 and U3 
are the control inputs of the transfer functions TF1, 
TF2 and TF3, respectively and mib , '

mib , ''
mib , nia , 

'
nia  and ''

nia  are the unknown system parameters. 
Identifying the parameters of the above three 
transfer functions may not be effective if the 
necessary conditions are not verified in real-world 
applications. First, the sampling time must be 
carefully chosen to obtain the correct resolution 
without it being extreme. In the situation under 
investigation, a sampling interval of 20 seconds 
was used to record all experimental data. Second, 
the system must function under standard settings, 
which call for a 28°C outdoor temperature and 
a temperature within the incubator between 30 
and 38°C.  In addition, the input signal should 
excite as many modes of the system as possible. 
This gives the identification process enough 
details to characterize the system dynamic and 
static gain.  Identification of parameters is made 
by the minimization of the model output error, as 
described above. Then, the three proposed cost 
functions to be minimized are as follows:

1

^ 21 ( ) ( ))
Nsamples

k
SSE T k T ka a

=

= −∑
                               

(8)

1

^ 22 ( ( ) ( ))
Nsamples

k
SSE T k T ks s

=

= −∑
                          

(9)

1

^ 23 ( ( ) ( ))
Nsamples

k
SSE H k H k

=

= −∑
                         

(10)

where Nsamples is the number of samples. Identifying 
the system’s optimal parameters can be done 
using a variety of approaches. Such heuristic 
methods as least squares and output error with 
an extended prediction model generally provide 
adequate results. However, the meta-heuristic 
algorithm for the parametric estimation represents 
a more straightforward option in complex system 
identification. In this work, chaotic particle swarm 
optimization (CPSO) will be used to optimize the 
transfer function parameters.

2.2 Chaotic Particle Swarm 
Optimization (CPSO)

In the literature, there are several different 
parametric identification methods. Some 
authors choose to employ intelligent techniques, 
as in (e.g. Zaylaa et al., 2018), which uses 

a backpropagation network for parametric 
identification. The drawback of all such ANNs 
is that a large amount of data must be collected 
in order to train the network accurately. Another 
heuristic technique, such as least squares  method 
usually gives satisfactory results. Metaheuristic 
algorithms, however, offer a simpler solution in 
complex situations. This biologically inspired 
optimization approach is widely used in many 
fields. Metaheuristic algorithms have been the 
subject of many developments and applications 
(e.g. Zermani et al., 2023). Numerous population-
based metaheuristic methods are available that 
can be modified for parametric estimation. This 
study proposes the implementation of an enhanced 
particle swarm optimization algorithm using the  
chaos theory called CPSO to identify the incubator 
system transfer functions described in equations 
(5), (6), and (7). The concept involves using a 
chaotic sequence generator for obtaining the 
values of random variables. The logistic equation 
and other equations, such as the tent map, the 
Gauss map, the Lozi map, and others, can be 
adopted instead of random ones. The tent map was 
used in this study as the chaotic map to create the 
first population.

The latter is expressed mathematically as follows:

1

0.7
0.7
10 (1 )
3

k
k

k

k

x x
x

x otherwise
+

 <= 
 −
                      

(11)

In this case, the range of the chaotic variables 
is [0 1]. Since the output of the chaotic variable 
differs from the range of the optimization variable, 
the chaos search space would be normalized in the 
range [1, -1] using this equation:

min max min( )j j j j
i kY Y Y Y x= + −                            (12)

where max
jY  and min

jY  denote the bounds of jth 
optimization variable. The pseudo-code for CPSO 
is listed in Algorithm 1, where rand1 and rand2 are 
uniformly distributed random values in the range 
[0, 1], w is the inertia weight, and c1 and c2 are the 
acceleration factors. The t

ix  is the current position 
of the particle, its optimal position is called t

ipbest ,  
the global optimal position is called t

ipgbest , and  
the partical velocity is t

iv . The validation of the 
developed model is defined by three functions: 
the total correlation coefficient R2

Total , the multiple 
correlation coefficients R2

mult and the mean square 
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error (MSE). It can be considered that the model 
is validated if the MSE is around zero and R2

Total 
and R2

mult are close to 1.

Algorithm 1 CPSO algorithm

Initialize the parameters (Vmin,Vmax, Xmax, Xmin, 1c , 2c  
NP: NumParticles, D: Dimension, MI:max iterations)
Initialize particles xi by the Tent chaotic map 
Repeat

   for 1i toNP=  

      if ( ) ( )i if x f pbest≤

i ipbest x←  

if ( ) ( )if x f pgbest≤

i igpbest x←
Endif

for 1j toD=  

generate the random values 1rand  and 2rand  by the 
Tent chaotic map 

( 1)
1 1

2 2

. ( )

( )

t t t t t
ij ij ij ij

t
ij j

v w v c rand x pbest

c rand x pgbest

+ = + − +

−  
( 1)

min max

( 1) ( 1)

( 1)
min max

( , )

( , )

t
ij

t t t
ij ij ij

t
ij

v V V

x x v

x X X

+

+ +

+

∈

= +

∈  
End for
End for
Until MI reached
Return ( )f pbest and pgbest  
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3. The Control Strategy

Air and skin control are the two control modes 
used by incubators. Infant clinical characteristics 
like birth weight, gestational age, and health state 
are frequently taken into account when choosing 
an air/skin control mode. Air control, which is 
more reliable than skin control, cannot lower heat 
losses, particularly from newborns with very low 
birth weights. In addition, skin control results in 

highly fluctuating incubator air temperatures with 
significant overshoot.  

The goal of this section is to build a new way of 
controlling neonatal incubators in order to prevent 
heat loss and preserve the thermal equilibrium 
between the child and its surroundings. As it is 
illustrated in Figure 2, the general block structure 
of the new mode of control is based on a cascade 
generalized predictive controller to control 
the skin and ambient temperatures added to a 
conventional GPC to control the humidity. This 
structure provides the advantages of both skin and 
air control mode: it allows achieving the desired 
skin temperature of the premature infant while 
respecting the range of internal incubator air 
temperature and with a minimum of coupling with 
the variation of humidity. In practice, the infant 
incubator system is usually subject to different 
constraints, such as the input constraint of the 
actuator and the operational limits of the system. 
The actuator saturations of the incubator are the 
limits of the heater and the humidifier power. 
For operational and safety considerations, it is 
often required to keep the temperature inside the 
incubator under certain limits. Consequently, the 
choice of constraints in the design of the control is 
an important step. The control inputs of system are: 
U1, which represents the required air temperature, 
U2, which represents the heat power, and U3, which 
represents the humidifier power. The outputs of 
the incubator system are: T1, which represents 
the skin temperature, T2, which represents air 
temperature and T3, which represents the relative 
humidity.TF1, TF2 and TF3 represent the transfer 
functions of the preterm infant, air incubator and 
active humidification system, respectively. The 
parameters of the transfer functions are obtained 
using a system identification based on particle 
swarm optimization (CPSO) algorithm.

Figure 2. The proposed control structure design for 
skin servo-control
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3.1 The Cascade Predictive  
Control Law

Predictive control entails taking into account a 
process’s future behavior in the present. This is 
done by predicting the system’s exit in the future 
on a finished horizon using a numerical model of 
the system. The purpose of the predictive strategy 
is to make the output of the process coincide with 
the set point in the future on a finite horizon. This 
study proposes a cascade GPC (C-GPC) for air 
and skin temperature control and a conventional 
GPC for humidity control. The different loop 
models are single input, single output (SISO). The 
air and skin cost functions to be optimized are 
described by the following equations:

21
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1

^

1 1 1

2
1 1
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t N
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The humidity cost function to be optimized is 
described by the following relation:
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where 
^

1( )T k t+  is the skin temperature predicted 
at the time ( )k t+ . ( )rsT k t+  is the skin set 
point applied at the time ( )k t+ . 1( 1)u k t∆ + −  
represents the future control increments of 
external loop at the time ( 1)k t+ − .

^
2 ( )T k t+  is the air temperature predicted at the 

time ( )k t+ . 1 ( )opu k t+  is the air set point applied 
at the time ( )k t+ . 2 ( 1)u k t∆ + −  represents the 
future control increments of internal loop at the 
time ( 1)k t+ − .

^
3 ( )T k t+  is the humidity predicted at the time 

( )k t+ . ( )rHT k t+  is the humidity set point applied 
at the time ( )k t+ . 3 ( 1)u k t∆ + −  represents the 
future control increments of humidity loop at the 
time ( 1)k t+ − .

1iN  and 2iN  are the starts and the ends of the 
prediction horizon, respectively. uiN  is the control 
horizon where i = {1,2,3}. The parameters iδ  and 

iλ  affect the future behavior of the controlled 
process. Generally, they are chosen in the form of 
constants or exponential weights. The result of the 
minimization of the external criterion provides the 
optimized sequence of the internal set point. This 
sequence is then directly reused at the level of the 
internal minimization to elaborate the command 
applied to the process. The basic principle of 
predictive control is to use a numerical model 
to predict the future behavior of the system. 
Generally, the model used for prediction is given 
by the following equation:

1
1 1

1

( )( ) ( ) ( ) ( 1) ( )
( )

id i
i i i i ci
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−
−− −
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The optimum prediction structure at time ( )k t+  
will be:

1
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After highlighting future and past values, the 
prediction model will be as follows:
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1 1
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where the unknown polynomials 1( )
it

G z− , 
1( )

it
R z− , and 1( )

it
L z−  are the solutions of the 

Diophantine equations expressed as follows:
1 1 1 1
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( ) ( ) ( ) ( )
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The prediction output can be represented as a 
matrix formulation as follows:

^ ^ ~ ^
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with the notations:
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The predictions from di + 1 to di + N2i must be 
determined in order to compute the control action.

3.2 Minimization of the GPC Criterion 
with Constrained Formulation 
and Decoupling

The cost functions given in equations (16), (17) 
and (18) can be converted into the following 
three formulas:
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To obtain a reliable controller for skin temperature 
regulation with minimal impact of humidity 
variation on temperature control, a new expression 
for the weighting factor given by the following 
formula is established: 

1 1 1
1

1 1 1

max ( ) max
( )

exp( ( ) ( ) ( ) maxr

k
k

H k H k k
δ δ δ

δ
β δ δ

>
=  − ≤     

(30)

where 1β  is constant to amplify the error factor.   
The constraints on the amplitude of the control 

signal ( )iu k  and on the increment signal of the 
( )iu k∆  are important for the incubator system. 

These constraints can be expressed using the 
following inequalities:

min max

min max

i i i

i i i

u u u

u u u

≤ ≤

∆ ≤ ∆ ≤ ∆                                      
(31)

where 
miniu  and 

maxiu  are the minimum and 
maximum value of control signal that can be 
reached, respectively. 

miniu∆  and 
maxiu∆  represent 

the minimum and maximum derivative threshold 
of the control inputs, respectively.

In a multivariable system, process variables are 
often interconnected, which means that changing 
one variable can affect others. Decoupling aims to 
mitigate or eliminate these interactions, allowing 
each variable to be controlled independently, thus 
simplifying overall system control.

In the context of predictive control, it can be 
noticed that using a variable weighting factor on 
the control increment has a significant impact on 
control dynamics.

If the weight is high, it means that adjusting this 
variable is encouraged because it contributes to 
achieving control objectives.

If the weight is low, it means that adjusting this 
variable is discouraged because it may have an 
undesirable impact on other variables or control 
objectives. Therefore, controlling the weighting 
factor according to the importance of a variable 
relative to other variables or control objectives 
optimizes system performance while minimizing 
unwanted interactions.

In the proposed system, the impact of humidity 
variation on evaporation losses is quite significant, 
and consequently, it affects the baby’s skin 
temperature. To minimize this coupling, the 
weighting factor 1δ  of GPC1 was adjusted with 
an exponential function given in equation (30) that 
depends on the humidity rate variation inside the 
incubator. By judiciously adjusting the weights 
of various process variables, the desired thermal 
balance can be achieved.  To sum up, predictive 
control with decoupling using a variable weighting 
factor on the control increment is a sophisticated 
control approach aimed at optimizing the 
regulation of interdependent variables by adjusting 
controls to account for effects on the entire system. 
The variable weights help prioritize adjustments 
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based on control objectives and the desired or 
undesired interactions between variables.

The computational complexity of the proposed 
GPC (Generalized Predictive Control) cascade 
decoupling algorithm applied to a baby incubator 
system for controlling air temperature, skin 
temperature, and humidity can vary depending 
on several factors:

Incubator System Complexity: The algorithm`s 
complexity will depend on the specific 
configuration of the incubator system, including 
the number of sensors, actuators, and control 
variables involved in the system;

Prediction Horizons: The chosen prediction 
horizons for each cascade control loop will impact 
the algorithm`s complexity. Longer horizons may 
increase the computational workload;

Modeling Methods: How the system model is 
constructed can have an impact on the algorithm`s 
complexity. More detailed and accurate models 
may require additional calculations;

Optimization and Regulation: The optimization 
methods used to tune GPC controller parameters 
may have varying computational requirements. 
Similarly, simultaneous control of multiple 
variables can increase the algorithm`s complexity;

Sampling Frequency: The rate at which data 
is sampled and control actions are updated will 
influence the computational load. Higher sampling 
frequencies may require faster computations;

Hardware Resources: Available hardware 
resources, such as CPU processing power, memory, 
and communication speed, will play a crucial role 
in managing the algorithm`s complexity;

Handling Delays: If the system exhibits 
significant delays, managing them effectively 
may increase algorithm complexity.

4. Simulation and Experimental 
Results

The experimental tests carried out in this 
study are based on the evaluation of a 8000C 
commercial infant incubator model with a new 
active humidification system as it is shown in 
Figure 3. The humidifier system mainly consists 

of the humidification chamber with a height of 
20 cm and a length of 50 cm, a fan that is turned 
on to evacuate humidified air from the incubator 
through an air guide and an ultrasonic nebulizer. 
Temperature and humidity data are collected 
inside the incubator according to the IEC-60601 
standards using two sensors which are LM35 and 
SY-230.

Figure 3. Real process of a neonatal  
incubator system

4.1 Model Identification

The three developed transfer functions for 
describing the global incubator system with 
premature infants were simulated and validated 
with experimental data. The process of 
identification provided three subsystems, TF1, TF2 
and TF3, represented as follows:
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As it is shown in Figures 4, 5 and 6, the three 
transfer functions TF1, TF2 and TF3 that were 
identified using CPSO were close to real system 
behavior. The values of CPSO parameters are the 
following: the population size is equal to 500, the 
velocity is constant, c1 and c2 are equal to 2 and 
the number of iterations is equal to 100. Three 
validation indices which are the total correlation 
coefficient, the multiple correlation coefficients 
and the mean square error are used. The obtained 
values for these indices are included in Table 1, it 
can be noticed that R2

Total and R2
mult are close to 1, 

and the MSE was rounded to zero. Consequently, 
TF1, TF2, and TF3 were acceptable as models for 
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the skin temperature of the premature infant, the 
incubator air space temperature, and the humidity 
rate inside the incubator, respectively. 

Table 1. The values of the validation indices

Validation TF1 TF2 TF3

R2
Total 0.995203 0.999236 0.973919

R2
mult 0.993880 0.988969 0.905281

MSE 0.002039 0.0186290 0.2101673

Figure 4. Real and estimated skin temperature of the 
premature infant (T1)

Figure 5. Real and estimated air temperature of the 
incubator system (T2)

Figure 6. Real and estimated relative humidity (H) 
inside the incubator

4.2 Evaluating the Performance of the 
Cascade Control Strategy

The main parameters that have been involved in 
the design of a GPC controller are HPi = ( 2iN - 1iN ),  
λi and the δi. These parameters have an important 
role in defining the closed-loop system dynamics. 

To ensure that the system under study behaves 
as expected, various parameters were tested, and 
only the best ones were selected and used for 
different control structures. As it is detailed in 
Table 2, which lists the parameter values for the 
three control structures employed, these carefully 
chosen values played a crucial role in achieving 
the desired system performance.

Table 2. Parameters values for the three control 
structures employed

S-GPC C-GPC CD-GPC

HP1 100 100 100
HP2 - 60 60
HP3 60 60 60
δ1

1 1. 382 f(e(k))

δ2
- 1 1

δ3
20 20 20

λ1
0.009 0.435 0.435

λ2
- 0.1 0.1

λ3
3.4 3.4 3.4

min< U1<max [0, 100] [31,37.5] [31,37.5]

min< U2<max - [0,100] [0,100]

min< U3<max [0,100] [0,100] [0,100]

All controllers have the same sampling time, 
which is equal to 20 seconds. In the context of 
the simulation results, the vital parameters for 
the premature baby are presented as the infant`s 
skin temperature, the air temperature, and the 
humidity inside the incubator. The GPC controller 
was applied to the incubator system with a single-
mode and cascade structure, with and without the 
decoupling method. For the validation processes, 
the environmental temperature Te was assumed to 
be 31°C. 

Likewise, the initial temperature of the incubator air 
space Ta, the wall temperature Tw, and the mattress 
temperature Tm were assumed to be 31°C. On the 
other hand, the initial temperature of the infant’s 
skin was determined to be 35.5°C. Further on, some 
results for applying the aforementioned control 
laws to the infant incubator system are presented.

The skin servo-control mode was simulated with 
the S-GPC, C-GPC, and CD-GPC controllers. 
Figure 7(a) displays the evolution of the infant`s 
skin temperature. Using the C-GPC and CD-GPC 
controllers, the skin temperature reached the 
desired value of 37°C without fluctuations and 
with a small overshoot of 0.09°C. However, with 
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the single-mode controller, the skin temperature 
reached the desired value of 37°C after certain 
oscillations with a significant overshoot of 
0.16°C. Figure 7(b) shows the evolution of the 
air temperature in cascade and single controller 
modes using S-GPC, C-GPC, and CD-GPC. In 
cascade mode (C-GPC and CD-GPC), the air 
temperature rose rapidly in 64 minutes to 37.51°C, 
which is the constraint output, and remained 
constant until it reached the NT set point. Then, 
the air temperature properly followed the NT set 
point, which is the output of the C-GPC controller, 
to be stable at thermal neutrality. In Figure 7(b), 
too, the single-mode controller (S-GPC) features 
a fast dynamics of the air temperature but with a 
large overshoot. As a result, the air temperature 
rises quickly to 40.76°C in 87 minutes before 
dropping to 34°C with a large fluctuation. 
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Figure 7. The variation of (a) the preterm 
infant`s skin temperature and (b) the incubator air 
temperature using S-GPC, C-GPC, and CD-GPC

To illustrate the coupling effect between humidity 
and the preterm infant`s skin temperature, a 
scenario is proposed in which the relative humidity 
of the air decreases by 20% at a sampling time 
equal to 2000, as it is shown in Figure 10. It 
was noticed that to maintain skin temperature at 
37°C, an incubator air temperature of 37.25°C was 
required, which represents an increase of 1.75°C 
(35.5°C at a humidity rate of 80% to 37.25°C at 
a humidity rate of 60%). The outcomes of this 
simulation support those of Delanaud et al. (2019). 
Figure 8 illustrates the variation of the control 
signal of the heater using S-GPC, C-GPC, and CD-

GPC. Figure 9 illustrates the variation of the GPC1 
weighting factor, which is well synchronized with 
the change of the humidity set point, thus reducing 
the coupling effect. Figure 10 depicts the humidity 
response using the conventional GPC control. 
Figure 11 illustrates the variation of the control 
signal of the active humidifier.

Figure 8. The variation of the control signal of the 
heater using S-GPC, C-GPC, and CD-GPC

Figure 9. The variation of the GPC1 weighting 
factor, synchronized with the change of the humidity 
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Figure 10. Humidity response using the conventional 
GPC control

Figure 11. The variation of the control signal of the 
active humidifier
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In Table 3, the performance of the S-GPC, 
C-GPC, and CD-GPC methods is illustrated 
using indices that include IAE1 and IAE2 for Ts 
(the skin temperature) and Ta (the temperature of 
the incubator air space), respectively, and IAE3 
for Skin disturbance rejection. The overshoot 
for Ts and the temperature of the incubator air 
space is denoted by Tps and Tpa, respectively. The 
settling time of Ts is denoted by Tss and the time 
to reach the neutral temperature is denoted by Tnt. 
The proposed controller performs far better than 
S-GPC and C-GPC. In comparison with S-GPC 
and C-GPC, the values obtained by the suggested 
method for IAE1, IAE2, IAE3, Tss, Tnt, Tps, and 
Tpa are the smallest for set point tracking and 
disturbance rejection. These findings show that the 
suggested approach features a smooth response, 
no overshoot, and no sustained error.

Table 3. The comparative performance of S-GPC, 
C-GPC and CD-GPC for different indices

Performance 
indices

S-GPC C-GPC CD-GPC

IAE1 452,22 410,53 410,53
IAE2 1257,81 721,25 706,03
IAE3 35,72 36,96 12,54
Tss 330 233 233
Tnt 364 267 267
Tps 0,16°C 0.09°C 0.09°C
Tpa 40.76 37.51 37.51
Oscillations Present NIL NIL

While the proposed method may seem promising, 
it is imperative to acknowledge its reliance on 
the assumption of linear time invariance within 
the system dynamics. In real-world applications, 

this assumption might not always align with 
the complexities of thermal control scenarios. 
The presence of nonlinearities and time-varying 
characteristics can significantly impact control 
performance, potentially rendering this approach 
less effective in such instances unless substantial 
modifications are made to accommodate  
these challenges.

5. Conclusion

This work presents a novel skin servo-control 
method for an infant incubator system with 
an ultrasonic humidifier. The proposed skin 
servo-control approach (CD-GPC) is based on 
a decoupling mechanism and a cascade GPC 
controller. To anticipate the future process 
behavior, a model of the system was also 
developed. Simulation results have demonstrated 
the superiority of the proposed CD-GPC in 
comparison with the conventional GPC and 
C-GPC. Moreover, this paper discussed the 
importance of the new proposed control structure 
in maintaining the thermal stability of the preterm 
infant. The control performance evaluation 
was thoroughly carried out with regard to the 
performance indices IAE1, IAE2, IAE3, Tss, Tnt, 
Tps, and Tpa. Clearly, CD-GPC performed better 
than S-GPC with regard to all performance indices 
and its performance is almost equal to that of 
C-GPC. In conclusion, the CD-GPC method can 
be considered a promising solution for the optimal 
skin servo-control of a premature newborn. 
Nevertheless, future research will concentrate on 
refining the control approach developed in this 
study. For example, adaptive control could be also 
introduced in the CD-GPC.
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