
17

ICI Bucharest © Copyright 2012-2023. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X

1. Introduction

Today, the growth of metadata models in
the scientific and commercial domains has
exploded. Metadata models can be described
as domain specifications with the main goal of
specifying a metadata language (Coyle, 2010).
A metadata model can be an XML schema and/
or an ontology (Jung et al., 2012; Sivasankari
& Shomona, 2016). The World Wide Web
Consortium (W3C) Semantic Web Activity is
a continuing endeavor to facilitate metadata
model integration and sharing among many
applications and parties. Unfortunately, WEB is
confronted with databases containing massive
amounts of data in various representations.
The issue of managing heterogeneity among
various information resources is becoming more
prevalent. Metadata model matching (Mani &
Annadurai, 2021; Ochieng & Kyanda, 2018)
handles semantic heterogeneity. It discovers
correspondences between entities in semantically
relevant metadata models. Many application
domains rely on the matching operation, including
the semantic web, data warehouse, ontology
integration, e-commerce, sensor networks, peer-
to-peer systems, semantic web services, and
social networks. However, challenges of metadata

models matching problem exist in two primary
categories: (i) accuracy, which measures the
effectiveness of the matching process; and (ii)
performance, which measures the time required
for the matching process to execute (Sellami et
al., 2008).

Although semantic web researchers have made
considerable efforts to enhance the accuracy
of metadata model matching systems, the
performance of large-scale matching remains a
concern. Several obstacles arise when matching
large metadata models. First, matching metadata
models is a computationally demanding process
with quadratic computational complexity. Second,
distinct element measures (matchers) should
be used to obtain high matching quality. When
matchers are applied serially, the matching task
takes a long time. Third, there is a trade-off
between accuracy and execution speed. As a
result, to be suited for matching large metadata
models, a tool must contain strategies for dealing
with the complex matching process and decreasing
search space and time computations (Babalou et
al., 2016; Ochieng & Kyanda, 2018).

Studies in Informatics and Control, 32(3) 17-30 September 2023

https://doi.org/10.24846/v32i3y202302

A Parallel Pairwise-Clustering Matching Algorithm for
Large-Scale Metadata Models Using Levenshtein Distance
Seham MOAWED1*, Ali ELDOSOUKY1, Amany SARHAN2, Sally ELGHAMRAWY3

1 Department of Computer Engineering, Mansoura University, Mansoura, Egypt
schemamatching2020@gmail.com, schema@std.mans.edu.eg (*Corresponding author)
2 Department of Computer Engineering, Tanta University, Tanta, Egypt
am_sarhan_ya@yahoo.com
3 Computers Engineering Department, MISR Higher Institute for Engineering and Technology,
Mansoura, Egypt
sally_elghamrawy@ieee.org

Abstract: Data integration is required for applications processing multiple data sources; consequently, semantic heterogeneity
has become increasingly severe. The problem has been faced inevitably, imposing the need for metadata models matching
to discover correspondences across different metadata models. However, in the large-scale scene, current metadata model
matching systems suffer from memory consumption and a lack of scalability. Partitioning and parallelized techniques have
been proposed to reduce space and temporal complexities. Nevertheless, few studies have been conducted to ameliorate
matching efficiency on Graphical Processing Units (GPUs) when clustering techniques are utilized. To this end, the present
paper proposes an efficient hardware implementable matching algorithm on GPU dedicated to the large-scale metadata
models, named PPM (Parallel Pairwise Matching), which depends heavily on approximate string matching using the
k-difference (ASM). In PPM, parallel processing is based on row flow computing in a way that eliminates data dependency
obstacles exposed to the matching space. In addition, it decreases the amount of data transferred over the GPU. At most,
one individual matching task will simultaneously be assigned to the device for parallel manipulation. This overcomes
bringing out all independent matching tasks into bulks to the device where individual matching tasks can be separated and
carried out in parallel. Extensive tests utilizing various workloads of metadata models on a CUDA-enabled GPU of NVIDIA
GeForce GTX 860M have demonstrated the validity of the present assertions. The results imply that the proposed algorithm
outperforms the sequential algorithm by up to 5.21-30.70 times.

Keywords: Metadata models, Large-scale matching, Partitioning-based matching, Scalability, Parallel computing.

https://www.sic.ici.ro

18 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

Approximate string matching (ASM), such
as Levenshtein Distance (Navarro, 2001) is
one of the resilient string metrics that has been
successfully utilized in numerous applications. It
supports the three most popular edit operations:
insertion, deletion, and substitution. A dynamic
solution for the k-difference ASM problem has
been released to enhance the standard sequential
algorithm. It is distinguished by its widespread
usage in metadata model matching (Chong & Lee,
2022; Xue et al., 2021) and broad applicability
to different hardware aspects, GPUs being among
them (Chen et al., 2017; Tran et al., 2016).

Parallel processing with Graphical Processing
Units (GPUs) has recently attracted a lot of
attention as an intriguing alternative to standard
microprocessors in high-performance computer
systems (HPCs) (Owens et al., 2008). The
emergence of high-performance matching
approaches in terms of execution time dedicated
to large-scale metadata models gives rise to
harvesting GPU computational power capabilities
in the realm of metadata model matching.

To this end, the research is based on an efficient
hardware-implementable matching algorithm,
which combines two promising areas, partition-
based and parallel matching strategies. The
algorithm enhances large-scale metadata models
matching scalability in terms of speed on
GPUs, in the presence of clustering methods.
It mainly parallelizes dynamic approximate
string matching. It relies on an agglomerative
hierarchical algorithm (Algergawy et al., 2011),
with a bottom-up clustering approach to divide the
parsed model tree into divisions based on context-
based structural node similarities. The efficiency
of the matcher lies in the size of data remaining
inside the GPU. Instead of accumulating all
pairs of the similarity set that emerged from the
similar clusters detecting stage into bulks on GPU,
where individual pairs are then split up to occupy
available cores, only a single pair of the similarity
set is transferred to the device at a time for parallel
computing. Furthermore, PPM can parallelize the
calculation of elements in the same row of the edit
distance matrix, removing data dependency.

The merit of the algorithm proposed in this
paper is demonstrated through experiments on
varying-sized datasets; some of them have been
widely used in various matching prototypes in
the Ontology Alignment Evaluation Initiative

(OAEI) campaign (Ontology Alignment
Evaluation Initiative, n. d.). The experimental
findings revealed that the suggested algorithm
outperformed the sequential algorithm by up to
5.21- 30.70 times. The main contributions of the
paper are the following:

 - It focuses on the problem of executing clustering
on GPUs and finding the best solution;

 - It presents a fast and scalable matching
algorithm to deal with clusters and perform
fast mapping computing for large-scale
metadata models on GPU, namely, PPM;

 - It links Java programming language to CUDA
kernels with the JCUDA interface;

 - It conducts some experiments on datasets
with varying sizes to demonstrate how the
proposed matching algorithm improves
matching efficiency.

The following is the outline for the paper. Section
2 overviews the previous methods for partitioning
and parallelizing the large-scale metadata models.
The overall design of the proposed framework is
depicted in Section 3. Section 4 discusses the
CUDA implementation of the proposed parallel
matcher. The experimental results from the most
commonly used datasets follow in Section 5.
Finally, Section 6 summarizes the main findings
and discusses future directions.

2. Related Work

There have been many tools developed for large-
scale metadata model matching (Otero-Cerdeira et
al., 2015). However, as the popularity of metadata
models has grown, so have the challenges that
metadata model matching tools must overcome
in order to establish high-quality correspondences
between metadata models, while working with
limited computing resources (Shvaiko & Euzenat,
2008). As a result, supplemental techniques
beyond those required for matching medium- and
small-sized metadata models are necessary for a
tool to take on the challenge of matching such
large metadata models. This section will cover
techniques for matching large metadata models.
Figure 1 demonstrates the hierarchy of scalability
techniques for large-scale metadata models.

 19

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Parallel Pairwise-Clustering Matching Algorithm for Large-Scale Metadata Models...

Figure 1. Hierarchy of Scalability Techniques
(Ochieng & Kyanda, 2018)

2.1 Scalability Techniques

Scalability strategies utilized by metadata
models matching tools are explored to alleviate
the high time and space complexity involved
with matching large metadata models, in
order to thoroughly assess the state-of-the-art
methodologies. Tools can be categorized into two
types (Rahm, 2011), reduction of search space
techniques and parallel matching.

2.1.1 Reduction of Search Space

To decrease the search space, metadata model
matching technologies currently use three
techniques: partitioning, data structure usage (El
Abdi et al., 2015; Ngo & Bellahsene, 2016), and
metadata model structure use (Huber et al., 2011;
Wang, 2010).

2.1.2 Partitioning

To facilitate the matching process, metadata
model matching technologies employ two forms
of partitioning: module extraction and complete
metadata models partitioning (Ochieng &
Kyanda, 2018). In module extraction, extracting
a module from a fragment and reasoning over the
module rather than the whole metadata model can
substantially speed up the reasoning process and
optimize memory usage. For complete metadata
model partitioning methodologies, a large
metadata model is broken into smaller divisions
based on preset criteria. Complete metadata model
partitioning improves scalability and shrinks
the search space by supporting parallelization,
maintaining the effectiveness of a matching tool,
and reducing time complexity.

According to (Abadi & Zamanifar, 2011), there
are two types of metadata model partitioning
methods: Graph-based Approach and Logic-based
Approach. Graph-based Approach uses graph-based
techniques to traverse the metadata model hierarchy
to extract partitions. Because it avoids the reasoning
approach, the strategy is scalable, but it may result
in insufficient partitions, because it ignores the
semantics modelled in the underlying metadata
model language. The articles (Kusnierczyk, 2008;
Schlicht & Stuckenschmidt, 2007) provide graph-
based metadata model partitioning algorithms.
Logic-based Approach partitions a metadata model
utilizing description logic. It builds more extensive
partitions than the Graph-based Approach, by using
the relationships specified in the metadata model.
It is less scalable than the Graph-based Approach,
since it is reliant on reasoning. This approach is
used in several works, as in (Cuenca Grau et al.,
2007; Cuneca Grau et al., 2008). Partitioning is
used by several metadata model-matching tools
to reduce time complexity (Groß et al., 2012;
Saruladha & Ranjini, 2016).

2.1.3 Parallel Composition

Parallel matching techniques are primarily
advocated to reduce ontology matching execution
time by distributing concept comparisons across
the resources of a distributed system (Groß et al.,
2010). Ontology matching tool parallelization
can be examined in two ways: instruction vs. data
relationship and matcher implementation.

2.1.4 Instruction vs. Data Relationship

This category divides parallelization implementations
based on whether the same instruction runs on
various datasets or multiple instructions are
executed on the same or different datasets. In this
context, three basic parallelization strategies are
used (Tenschert et al., 2009): single instruction
multiple data (SIMD), multiple instruction single
data (MISD), and multiple instruction multiple data
(MIMD). In the SIMD paradigm, all processing units
(PUs) execute the same instruction on different data
elements. This approach has been implemented in
ontology matching by several tools at various stages
of the ontology matching process, as in (Shvaiko et
al., 2016). In MISD parallelism implementation,
each PU executes a distinct instruction on the
same dataset. XMAP++ (Djeddi et al., 2014) and
MaasMatch (Schadd & Roos, 2014) are some tools
that implement MISD. MIMD is a parallelism
implementation in which each PU executes a distinct

https://www.sic.ici.ro

20 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

instruction on a different independent dataset.
SPHeRe (Amin et al., 2014) implements MIMD
information of data parallelism during the entity-
matching stage of the ontology matching process.

2.1.5 Matcher Implementation

Parallel matching algorithms are divided into
inter- and intra-matcher parallelization (Kirsten
et al., 2011). Inter-matcher matching parallelizes
the execution of independently executable
parallel matchers. The number of independent
matchers limits this type. Intra-matcher divides
the metadata models required for a particular
use case into multiple parts. Each part of the
portioned metadata model is matched with the
concepts of another one in a distributed manner
and/or in parallel. In addition, intra-matcher
parallelism can be applied to sequential and
independently executable matchers, allowing it
to be combined with inter-matcher parallelism.
This approach has been implemented in (Groß et
al., 2012). Several tools have been presented to
implement parallel matching (Amin et al., 2016;
Kirsten et al., 2011).

GOMMA (Groß et al., 2012; Kirsten et al., 2011)
is a tool that allows for extremely parallel string
matching on Graphical Processing Units (GPUs).
It optimizes n-gram matching for determining the
similarity of concept names and synonyms, and
it supports GPU-based parallel matching. To this
end, another type of string-matching techniques
is parallelized on GPU, namely the Levenshtein
distance, commonly used throughout the metadata
models matching field (Chong & Lee, 2022; Xue et
al., 2021) to allow efficient execution for matching.

3. The Proposed Matching
Framework

This section presents an overview of the proposed
high-performance GPU matching framework

dedicated to large-scale metadata models. The
matching framework, as shown in Figure 2, involves
a set of modules, including parsing, clustering,
similar cluster determining and data preparation,
matching, and alignment evaluation modules.
First, the benefit of each constituting module is
summarized, followed by a thorough explanation
of how the matching module is implemented. The
matching framework is distinguished by its ability
to match schemas and ontologies.

It includes the XSOM parser for schemas (Java
Enterprise Edition, n d.) and the Jena API parser
(Apache Jena, n. d.) for ontologies. The input
metadata models should be depicted internally
using a common data model in order to build a
generic matching framework. The data model
should be capable of normalizing metadata
models represented by diverse metadata model
languages, reducing syntax inconsistencies across
metadata models. Graphs are used as an internal
representation for matching metadata models.
There are several reasons for selecting graph
as an internal representation for the metadata
models to be matched. First, graphs are well-
known data structures and have their algorithms
and implementations. Second, the metadata
model matching problem is turned into another
standard problem, namely, the graph matching, by
using the graph as a common data model (Do &
Rahm, 2007; Zhang et al., 2006). Using a set of
predetermined transformation rules similar to those
in (Lee et al., 2002), a graph can be turned into
a tree representation by dealing with nesting and
repetition problems. The graph contains a finite
number of nodes and edges. An object identifier
uniquely identifies each node, which expresses
component attributes such as element name, data
type, and constraint. On the other hand, each edge
reflects the relationship between every two nodes.

As explained in (Algergawy et al., 2011), a
hierarchical decomposition clustering approach

Figure 2. Proposed matching framework

 21

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Parallel Pairwise-Clustering Matching Algorithm for Large-Scale Metadata Models...

with an agglomerative nature is used. It builds a
tree depicting the cluster hierarchy in a bottom-up
way. It computes the structural similarity between
every pair of nodes, υi and υj, using the concept
of node context. The node context is described
as the surroundings of the node, including the
node itself and all the parents and children of
the node. For detecting the most similar clusters,
the framework is adopted with two methods:
Vector Space Model (VSM) and Latent Semantic
Indexing (LSI) (Algergawy et al., 2014). This step
reduces matching overhead by excluding dissimilar
partition pairs from further matching processing.

To fully use the huge number of CUDA cores, the
data reproduced from the clustering stage has to
be well organized. Consider two metadata models,
𝓜Ɗ1, 𝓜Ɗ2, which are partitioned into two sets
of clusters Cset1 = [1, ..., m], Cset2 = [1, ..., n],
respectively. A similarity set has to be constructed,
Rsim as a 2-tuple such that Rsim = (C, BC), where C is
a cluster that belongs to Cset2 and BC is a non-empty
finite set of similar clusters correspondences which
pertain to Cset1. Then, for each entry pair inside Rsim,
three strings/sequences are generated during data
preparation, an input source (S), a target pattern (P),
and a distinct pattern, (PR). They are created by
applying normalization methods to C and its
related BC. The input source, S, and the target
pattern, P, are formed by concatenating tokens
and prefacing them with a separator. The separator
facilitates GPU token differentiation and matching,
while a distinct pattern, PR, removes the repetition
of the character set in the target pattern P.

The proposed matching algorithm, PPM, is based
around two scalability techniques (Rahm, 2011)
used in the specialized literature to reduce the time
and space complexity involved in matching large-
scale metadata models: partitioning and parallel
strategies. It is responsible for dispatching pairs of
the similarity set consecutively and evolving the
concept of SIMD to flow through cores in order to
take advantage of the robust GPU architectures to
improve the performance of a Levenstein distance

matcher. The F-measure is used to assess the
alignment quality, defined as follows:

Re , Pr ,
R A R A

c ec
R A
∩ ∩

= =

and

Re Pr
Re Pr

c ecF m
c ec
×

− =
+

where R is the alignment produced from the
domain and A is the alignment generated by the
matching process. Metrics of Rec and Prec show
the completeness and accuracy of the alignments,
which are often balanced by their reconciliation
mean, i.e., F-m.

4. PPM Matching Algorithm

The transition from traditional sequential
algorithms for ASM with k-differences to
their dynamic programming model allows for
widespread usage in numerous applications
(Navarro, 2001). Nonetheless, it suffers from data
dependency, making it challenging to design a
parallel algorithm for approximate string matching
with k-differences (Guo et al., 2013). This risk
has to be discarded when matching the large-scale
scene of metadata models. Hence, this section
introduces PPM, a parallel matching approach for
large-scale metadata models with several benefits.
It is a pairwise matching approach for metadata
models, which delivers sequential pairings of the
similarity set to the GPU. Thus, it reduces the
amount of data transmitted through the GPU.
Then, using the proposed parallel methodology of
dynamic approximate string matching, each cluster
string P is matched to its associated bulk of similar
clusters string S. Furthermore, PPM removes
data dependency impediments in the matching
space. The algorithm can be implemented by
constructing a set of similarity matrices with
varying parallel matching performance, as shown
in Figure 3. The edit distance component of the
parallel pairwise clustering matching approach,
PPM, significantly relies on the work described
in (Guo et al., 2013). However, this effort must

Figure 3. PPM matching algorithm

https://www.sic.ici.ro

22 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

be modified to accommodate the structured data
of the given metadata models so relevant entities
can be easily distinguished on the GPU.

The edit distance calculation consists of two
primary steps: a parallel building of matrix X and a
parallel filling of the edit distance matrix ED. After
establishing ED matrix, getting relevant entities
across concatenated strings within the GPU is
necessary. This stage develops parallel construction
for a different set of similarity matrices, including
the tokens similarity matrix T_Sim, words-tokens
similarity matrices, WT_Sim1, WT_Sim2, and words
similarity matrices, W_Sim Matrices.

4.1 Approximate String Matching

Let Σ be the alphabet and Σ∗ is the set of strings
over Σ. λ ∉ Σ is the null string. A string x ∈ Σ∗
is denoted as x = x1x2x3...xn, where xi is the ith
symbol of x,xi...xj, is referred as the substring
of x including the symbols from xi to xj,1 ≤ i ≤
j ≤ n, its length is defined as | xi...xj |= j − i +
1 and it is the null string λ(|λ| = 0) if i > j. An
edit operation is a pair (a, b) ≠ (λ, λ) of strings
less than or equal to 1 and usually written as
a → b. a → b is called a change operation if a
≠ λ and b ≠ λ, a delete operation if b = λ; and an
insert operation if a = λ. An edit transformation
of two strings x and y is a sequence of elementary
edit operations which converts x into y and it is
denoted as Tx,y = T1T2...Tl. Let v be an arbitrary
cost function which assigns to each edit operation
a → b a non-negative real number v (a→b), and
the weight of an edit transformation ,x yT can be

computed by , ()
l

x y i
i

v y T(Τ) =∑ . Then, let the

edit distance ϱ (x, y) from string x to string y be the
minimum cost of all sequences of edit operations
which transform x to y. The approximate string
matching (ASM) problem is to find the edit
distance between two strings.

4.2 Dynamic Programming Problem

Given two tokens tokP ∈ P, tokS ∈ S, tokP = [0, …,
p −1], tokS = [0, …, q − 1], and a non-negative
integer k, 0 ≤ k ≤ q, the minimum edit distance
between the two tokens is to find out all locations
l and t − 1 in tokS where 0 ≤ l ≤ t − 1 ≤ q − 1, such
that the edit distance ED (tokP = [0, . . . , p − 1],
tokS = [l, . . . , t − 1]) ≤ k. The edit distance formula

(,)ED u v can be represented by the recurrence in
equation 1. (,)ED u v is the distance between the
first u characters of tokP and the first v characters

of tokS. Dynamic programming of traditional
approximate string matching with k-differences is
not optimal due to its severe limitations. Initially,
the sequential calculation of the table requires O
(pq) time and q+3p+4 sequential complexity (Guo
et al., 2013). As demonstrated by equation 1, each
element of the edit distance matrix is dependent
on its predecessors in the same row or column

(1, 1)ED u v− − , (1,)ED u v− , and (, 1)ED u v − .
In the present work, the prior neighboring element
on the same row poses the most significant barrier
to developing an ASM algorithm with k-differences
based on row parallelization suitable for large-scale
metadata models.

4.3 Edit Distance Calculation

It is known that the computation of ED [u, v] in
the sequential technique depends on the value that
resides in the same row or column; therefore, this
is not adaptable to parallel processing.

, 0
, 0

(,) (1, 1), (1) (1)
1 min((, 1), (1, 1), (1,)), . .

p s

v if u
u if v

ED u v ED u v if tok u tok v
ED u v ED u v ED u v o w

=
 == − − − = −
 + − − − −

(1)

GPU solutions have been developed to accelerate
the ASM task, which may be categorized into
two primary forms of parallel processing:
diagonal flow computing (Chen et al., 2017)
and row flow computing (Guo et al., 2013). The
computation of the diagonal flow is based on the
parallel processing of the edit distance matrix
for each element in the same diagonal flow. The
length of the input pattern limits the maximum
number of threads processed concurrently. This
parallel scheme suffers from insufficient parallel
expandability, especially when adopting GPUs.

On the other hand, row flow computing
parallelizes the processing of the edit distance
matrix elements in the same row. Row flow
computing increases parallelism and decreases
synchronization compared to the diagonal parallel
technique. The proposed PPM offers a method for
removing the data dependency problem based on
row flow computing.

A matrix X has to be constructed whose dimension
is |Σ| × SL, where |Σ| is the size of the character
set in the PR string, abbreviated as PRL, and SL is
the length of the input string S. PR[0,...,|Σ| − 1]
refers to characters in Σ. The matrix X [u, v] can be
calculated using equation (2), where u and v are the
indices devoted for each matching inside GPU. Each

 23

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Parallel Pairwise-Clustering Matching Algorithm for Large-Scale Metadata Models...

character in the character set of the input string S is
indexed, assuming that each token is viewed as an
independent matching unit. At the start of each token,
the index becomes 0. This set is known as SIndices.

0, []
(,) [], [] []

[, 1], . .

if S v
ED u v SIndices v if S v PR u

X u v o w

= ′,′
= =
 −

(2)

To compute matrix X, because the data of each
row are independent, data in each row can be
computed in parallel. Additionally, the barrier
sync, BS, is called to verify completing all rows
before calculating the edit distance matrix.

According to matrix X, it is possible to redraft
equation (1) such that computation of the data
of the u-th row of the edit distance matrix, ED
depends exclusively on the data of the (u-1)-
th row. minVal represents the minimum value
between the neighboring elements in the previous
row, (1,)ED u v− , (1, 1)ED u v− − . This can be
explained using equation (3), where PIndices is
a set of indices for characters inside the target
pattern, P, regenerated for each token. k is the
location of P[u] inside matrix X where 1 ≤ u ≤
PL and PL is the total length of the target pattern.
All elements in each row can be processed in
parallel. In contrast to matrix X computation, each
row has to be finished before proceeding to the
next. Barrier sync, BS, ensures that all threads can
process all elements of a row before proceeding
to the next row. Algorithm 1 is used to implement
both steps of the proposed PPM matching strategy:

construction of the matrix X and computation of
the ED matrix.

4.4 Computation of Entities Similarities

This stage aims to retrieve corresponding entities
across concatenated strings inside the GPU. This
can be realized across the parallel construction
for a set of similarity matrices; tokens similarity
matrix T_Sim, words-tokens similarity matrices,
WT_Sim1 Matrix, WT_Sim2 Matrix, and words
similarity matrices W_Sim Matrices.

Tokens similarity matrix, T_Sim, calculation
has to be performed after finalizing ED matrix
construction. Through ED matrix, the bottom-
right elements of the edit distance spaces of the
pairs of tokens are collected. Due to the non-
dependency between rows, threads work on the
same row to compute all elements in parallel
without synchronization. However, the barrier
sync must be applied after the entire matrix
building for the next step. T_Sim(u, v) can be
determined through equation (4). It is based
upon two parameters, var1, and var2, given
in equations (5) and (6), respectively. Token
counts are stored in TSN and TPN. SSIndices and
PSIndices represent the occurrence of a separator
along the input string S, and the target pattern P,
respectively. STL and PTL are abbreviations for
the lists of all token lengths of the input string S,
and the target pattern P, respectively.

[], [] 0
[], [] 0

(,) (1, 1), [] []
1 min(min , [] [] 1), [,] 0
1 min(min , [1, [] [,] 1) [] 1 [,],

SIndics v if PIndices u
PIndices u if SIndices v

ED u v ED u v if S v P u
Val PIndices u SIndices v if X k v
Val ED u v SIndices v X k v SIndices v X k v o

=
=

= − − =
+ + − =
+ − − + − + − − . .w

(3)

(var1, var 2)_ [,] 1
max([], [])

EDT Sim u v
STL v PTL u

= −
 (4)

where var1 and var2 can be determined as follows:

1, 1
var1

[1] 1, . .
PL if u TPN

PSIndices u o w
− = −

= + −
(5)

1, 1
var 2

[1] 1, . .
SL if v TSN

SSIndices v o w
− = −

= + −
(6)

Algorithm 1. GPU kernel pseudo-code of Matrix X
construction and ED Matrix computation of PPM Algorithm
1. Input: SL, S, SIndices, PL, P, PIndices, PRL, PR.
2. Output: X, ED.
3. FOR ALL u ∈ PRL PARALLEL DO //Matrix X
4. FOR v ← 0 to SL DO
5. Compute X[u, v] using equation 2;
6. END FOR
7. END PARALLEL FOR
8. Barrier synchronization;
9. FOR u ← 0 to PL DO //ED Matrix
10. FOR ALL v ∈ SL PARALLEL DO
11. Compute ED(u, v) using equation 3;
12. END PARALLEL FOR
13. Barrier synchronization;
14. END FOR

https://www.sic.ici.ro

24 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

Words-tokens similarity matrices are of two kinds:
the first words-tokens similarity matrix, WT_Sim1,
and the second words-tokens similarity matrix, WT_
Sim2. They have different parallelization natures
subject to their subordinate to the input string S or
the target pattern P. In WT_Sim1, a single thread
works on the same row inside the matrix. Each
S token must be compared to all tokens of each
word of P in their matching area. Hence, the entries
of the matrix are filled with the largest similarity
values. On the contrary, WT_Sim2 has all threads
working on the same row within the matching area
without synchronization. Each P token is compared
to all tokens of each word of S in their matching
area, and then the greatest similarity values are
computed. Finally, the barrier sync BS must be used
after each matrix construction to complete the next
step. Tokens similarity and words-tokens similarity
matrices are implemented using Algorithm 2.
SWTSFIndices and PWTSFIndices hold the start
and end indices for each word token in the input
string and the target pattern, respectively.

Three-word similarity matrices are filled in the
same parallelization manner. Parallelization is
performed in all matching regions on a single row.
The first matrix W_Sim1 is based on the first words-
tokens similarity matrix WT_Sim1, in which each
thread sums the maximum similarities of a single
word in P against its tokens in S in their matching
area. The second matrix W_Sim2 is based on the
second words-tokens similarity matrix WT_Sim2.
Each thread sums the maximum similarities of a
single word in S against its tokens in P in their
matching area. The third matrix W_Sim stores the
final output transferred from the device to the host.
A single thread sums the values in the prior two
matrices for a pair of words divided by the sum of
counts of their tokens. Thus, the final output holds
the similarity values between words of the input
string against words of the target pattern and can
be estimated using equation 7. Algorithm 3 is used
to implement words similarity matrices. The counts
of words of the input string and the target pattern
are set into WSN and WPN, respectively.

1 2(_ [,] _ [,])
(([1] []) ([1] []))

W Sim u v W Sim u vsumFinal
SWTSFIndices v SWTSFIndices v PWTSFIndices u PWTSFIndices u

+
=

+ − + + −
(7)

Algorithm 2. General GPU kernel pseudo-code of
Tokens Similarity and Words-Tokens Similarity Matrices

1. Input: SL, TSN, SWTSFIndices, SSIndices, WSN PL,
TPN, PWTSFIndices, PSIndices, WPN.

2. Output: T_Sim, WT_Sim1, WT_Sim2.
3. FOR u ← 0 to TPN DO //T_sim
4. FOR All v ∈ TSN PARALLEL DO
5. Compute T_sim[u, v] using equation 4;
6. END PARALLEL FOR
7. END FOR
8. Barrier synchronization;
9. FOR ALL u ∈ WPN PARALLEL DO //WT_Sim1
10. FOR v ← 0 to TSN DO
11. max = 0.0f;
12. FOR k ← PWTSFIndices [u] to PWTSFIndices

[u + 1] DO
13. Result = T_sim[k , v];
14. IF Result > max THEN
15. max = Result;
16. END FOR
17. WT_Sim1[u, v] = max;
18. END FOR
19. END PARALLEL FOR
20. Barrier synchronization;
21. FOR u ← 0 to TPN DO //WT_Sim2
22. FOR ALL v ∈ WSN PARALLEL DO
23. max = 0.0f;
24. FOR k ← SWTSFIndices[v] to SWTSFIndices

[v + 1] DO
25. Result = T_sim[u , k];
26. IF Result > max THEN
27. max = Result;
28. END FOR
29. WT_Sim2[u, v] = max;
30. END PARALLEL FOR
31. END FOR
32. Barrier synchronization;

Algorithm 3. GPU kernel pseudo-code of Words
Similarity Matrices

1. Input: WPN, SWTSFIndices, WSN, PWTSFIndices.
2. Output: W_Sim1, W_Sim2, W_Sim.
3. FOR v ← 0 to WSN DO //W_Sim1
4. FOR ALL u ∈ WPN PARALLEL DO
5. Sum = 0.0f;
6. FOR k ← SWTSFIndices[v] to

SWTSFIndices[v + 1] DO
7. Sum+ = WT_Sim1[u , k];
8. END FOR
9. W_Sim1[u, v] = Sum;
10. END PARALLEL FOR
11. END FOR
12. Barrier synchronization;
13. FOR u ← 0 to WPN DO //W_Sim2
14. FOR ALL v ∈ WSN PARALLEL DO
15. Sum = 0.0f;
16. FOR k ←PWTSFIndices[u] to PWTSFIndices

[u+1] DO
17. Sum+ = WT_Sim2[k, v];
18. END FOR
19. W_Sim2[u, v] = Sum;
20. END PARALLEL FOR
21. END FOR
22. Barrier synchronization;
23. FOR u ← 0 to WPN DO //W_Sim
24. FOR ALL v ∈ WSN PARALLEL DO
25. Calculate sumFinal using equation 7
26. W_Sim [u, v] = sumFinal;
27. END PARALLEL FOR
28. END FOR
29. Barrier synchronization;

 25

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Parallel Pairwise-Clustering Matching Algorithm for Large-Scale Metadata Models...

As a supplemental contribution, all independent
matching tasks can be accumulated and sent to the
device into two batches, one for the input string
and another for the target pattern. Then individual
matching tasks can be isolated and executed in
parallel, one after the other. It is called the Parallel
Accumulated Matching strategy for metadata
models, PAM. PPM and PAM have the same
implementation except for displacements that
enable accessibility through clusters and structures
inside GPU in the PAM alternative.

5. Experimental Evaluation

In this section, PPM matching algorithm is tested
on various real-world schemas and ontologies,
in order to determine if the matching efficiency
could be improved, while preserving quality
regarding precision, recall, and F-measure. In all
experiments, PPM has been compared against
dynamic approximate string matching, ASM, and
parallel accumulated matching strategy, PAM.
The experiments have been carried out on Intel
Core i7-4710HQ, 2.5GHz, and installed memory
(RAM) of 16 GB. It has dual display adapters,
Intel(R) HD Graphics 4600, and NVIDIA GeForce
GTX 860M. The algorithm has been implemented
using JCuda 10.0.0, CUDA 10.0 on the Java
environment of jdk-15.0.1, and Apache-NetBeans
12.0 for Windows 10.

5.1 Schemas Test

Schemas describe the structure and legal building
blocks of XML documents. In the proposed
evaluation, a dataset that consists of a number of
real-world mapping tasks from various domains
is exploited (Institute for Informatics. Georg-
August-Universität Göttingen, n. d.; UW CSE
Department Data Set, n. d.), ranging in size from
small to large.

5.1.1 Efficiency Evaluation

In this track, the performance of the proposed
parallel matching strategy PPM is compared to
those of the PAM and ASM strategies. A threshold
of 0.2 is used to detect the most comparable
clusters, and a threshold of 0.5 is utilized for
matching. Each matching task was executed five
times with identical parameters, and the average
value for each test was calculated.

According to the number of matching candidates,
the efficiency results are listed in descending
order, as shown in Figure 4.

Figure 4. Efficiency on schemas

The graph shows that execution times increase
as cluster size increases, but decrease as GPU
performance improves. The graph shows that
MONDIAL achieves the best timing performance,
while FINANCE achieves the worst, across
all the tested algorithms. For MONDIAL, the
performance of PAM and PPM on GPU was
achieved 13.48 and 17.77 times faster than that
of ASM. For GENEX, PAM and PPM attained
the performance 26.89 and 30.70 times faster than
ASM. For WEB, the speedups of PAM and PPM
achieved 19.97 and 20.25 times faster than those
of ASM. For TPC_H, PAM and PPM achieved
speedups 19.6 and 22.47 times faster than
those of ASM. For SPICY, parallel algorithms
PAM and PPM are estimated to be 16.03 and
18.57 times faster than those of ASM. For the
popular UNIVERSITY schema, PAM and PPM
outperformed those of ASM by 12.89 and 14.84
times. Finally, for FINANCE, PAM and PPM
perform 16.29 and 19.48 times faster than those
of ASM. In this regard, the PPM parallel matching
strategy outperforms the PAM parallel matching
algorithm on GPU and the ASM serial algorithm
on CPU.

5.1.2 Effectiveness Evaluation

Through the experiment, the consistency of
the matching quality was evaluated across
the compared implementations utilized in the
efficiency evaluation test, at varying threshold
numbers (0.1-0.9). It is deduced that all parallel
matching techniques have maintained the same

https://www.sic.ici.ro

26 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

matching quality at any selected threshold. As
it can be seen in Figure 5, the threshold that
produces the maximum quality of matching was
selected for each schema.

Figure 5. Matching Quality Comparisons

5.2 Ontology Test

Additional tests were conducted to validate
the performance of the proposed parallel PPM
algorithm using real-world ontologies from the
OAEI dataset (Ontology Alignment Evaluation
Initiative, n. d.). To determine which matcher is
superior for accelerating GPU performance, all
matchers are evaluated using benchmarks and
anatomy matching tracks. These tracks vary in
size and cover various facets of the ontology
matching problem.

5.2.1 Benchmarks Track
The benchmark test set is based on a seed ontol-
ogy and its many variants. Variations are created
by removing and modifying features from the
seed ontology. Entity names, comments, special-
ization hierarchy, instances, properties, and class-
es are all considered features.

Table 1. Efficiency Evaluation of Benchmarks at threshold 0.2 for VSM, 0.5 for matching (ms)

Test Prec. Rec. ASM PAM PPM Test Prec. Rec. ASM PAM PPM Test Prec. Rec. ASM PAM PPM

101 0.5 1.0 51.26 7.23 6.12 248-6 0.48 0.22 33.56 4.26 3.55 257-2 0.44 0.76 40.88 3.99 3.16

201 0.41 0.27 37.03 5.02 4.10 248-8 0.48 0.21 42.62 4.72 3.99 257-4 0.48 0.58 31.71 3.56 2.83

201-2 0.48 0.84 50.73 7.36 5.93 249 0.33 0.01 13.53 1.81 1.54 257-6 0.47 0.42 27.00 3.33 2.64

201-4 0.47 0.72 50.93 7.11 5.44 249-2 0.49 0.77 51.73 6.83 5.60 257-8 0.50 0.21 20.00 2.39 1.91

201-6 0.45 0.60 48.09 6.69 5.52 249-4 0.48 0.58 53.91 6.48 5.34 258 0.33 0.01 13.24 1.38 1.17

201-8 0.44 0.43 39.89 6.00 5.01 249-6 0.47 0.40 48.38 6.12 5.04 258-2 0.51 0.77 56.70 6.89 5.60

202 0.33 0.01 13.63 1.84 1.66 249-8 0.48 0.21 35.68 4.51 3.73 258-4 0.51 0.58 50.78 6.52 5.29

202-2 0.49 0.77 45.30 6.73 5.45 250-2 0.44 0.76 36.85 3.82 3.02 258-6 0.51 0.39 45.05 6.09 5.93

202-4 0.49 0.58 56.65 6.53 5.32 250-4 0.46 0.58 34.30 3.70 2.96 258-8 0.49 0.20 36.25 4.94 4.08

202-6 0.46 0.4 50.30 5.99 5.08 250-6 0.45 0.42 23.97 3.22 2.57 259 0.33 0.01 14.60 1.90 1.60

202-8 0.48 0.21 38.91 4.77 3.95 250-8 0.5 0.21 19.34 2.37 1.97 259-2 0.45 0.77 66.49 7.40 5.93

221 0.51 1.0 60.55 8.0 6.40 251 0.33 0.01 12.04 1.79 1.54 259-4 0.44 0.76 59.50 7.06 5.80

222 0.52 1.0 56.21 7.67 6.15 251-2 0.51 0.77 53.74 6.92 5.65 259-6 0.44 0.77 61.76 7.26 5.94

223 0.41 0.99 76.4 8.67 6.90 251-4 0.5 0.58 49.04 6.35 5.13 259-8 0.45 0.77 55.08 6.99 5.76

224 0.5 1.0 51.18 7.64 6.34 251-6 0.51 0.4 41.19 5.97 4.84 260 0.0 0.0 13.08 1.38 1.14

225 0.5 1.0 62.11 8.00 6.59 251-8 0.48 0.22 33.56 4.26 3.55 260-2 0.42 0.76 35.41 3.56 2.84

228 0.41 1.0 41.52 4.37 3.44 252 0.33 0.01 13.65 1.84 1.62 260-4 0.47 0.59 30.46 3.47 2.82

232 0.5 1.0 60.28 7.98 6.45 252-2 0.4 0.77 58.16 7.26 5.84 260-6 0.48 0.41 26.04 3.06 2.40

233 0.44 1.0 37.13 4.71 3.67 252-4 0.4 0.77 62.76 7.19 5.83 260-8 0.41 0.24 19.66 2.38 1.91

236 0.42 1.0 50.43 4.31 3.37 252-6 0.4 0.77 62.07 7.20 5.80 261 0.0 0.0 11.85 1.25 1.03

237 0.52 1.0 59.44 7.64 6.17 252-8 0.4 0.77 59.37 7.33 5.86 261-2 0.33 0.76 44.50 5.42 4.34

238 0.4 0.99 84.70 8.95 7.11 253 0.33 0.01 10.25 1.48 1.22 261-4 0.32 0.73 43.50 5.48 4.38

239 0.4 1.0 47.65 4.21 3.13 253-2 0.47 0.77 61.51 7.30 5.9 261-6 0.31 0.73 47.36 5.55 4.48

240 0.26 0.97 78.31 7.7 6.19 253-4 0.46 0.58 54.14 6.70 5.44 261-8 0.34 0.76 42.81 5.47 4.31

241 0.43 1.0 42.46 4.84 3.71 253-6 0.45 0.40 46.42 6.15 5.08 262-2 0.46 0.76 31.94 4.00 3.05

246 0.4 1.0 45.55 4.26 3.33 253-8 0.47 0.21 38.22 4.94 3.96 262-4 0.49 0.58 28.74 3.57 2.76

247 0.26 0.97 77.52 7.45 7.45 254-2 0.46 0.76 29.88 3.90 3.06 262-6 0.45 0.42 23.16 3.10 2.42

248 0.33 0.01 12.19 1.8 1.62 254-4 0.44 0.58 32.85 3.43 2.68 262-8 0.5 0.21 19.22 2.09 1.73

248-2 0.48 0.78 58.29 6.86 5.69 254-6 0.45 0.42 24.46 3.02 2.43 265 0.0 0.0 14.08 1.44 1.19

248-4 0.47 0.58 51.95 6.47 5.18 254-8 0.5 0.21 17.54 2.15 1.81 266 0.0 0.0 13.32 1.20 0.98

 27

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Parallel Pairwise-Clustering Matching Algorithm for Large-Scale Metadata Models...

To perform the test, the bibliographic seed
ontology is chosen. Since the beginning of OAEI
campaigns, it has served as the primary reference
ontology. The data set contains 94 ontology pairs.
First, the performance of the proposed parallel
PPM matching strategy is evaluated through
a series of experiments using ontologies from
the OAEI benchmarks track. A 0.2 threshold
determines the most similar clusters, and a 0.5
threshold is used for matching. Each matching
task was done with the same settings five times,
and the average value was calculated for each test.
Table 1 shows the comparisons of the present tests.
It conveys the precision, recall, and F-measure
values for each pair in the benchmarks track. PPM
and PAM have demonstrated the same matching
quality as their serial counterpart ASM. Table 1
also compares the efficiency of PPM and PAM to
that of ASM. Compared to ASM, PAM achieves
speedups ranging from 6.64 to 11.70 times, and
the performance of PPM was improved, ranging
from 7.79 to 14.95 times.

5.2.2 Anatomy Track

The primary goal of the anatomy matching track
is to find an alignment between the Adult Mouse
Anatomy (2744 concepts) and a part of the NCI
Thesaurus (3304 concepts) describing human
anatomy. Due to the limited resources of the GPU,
it was not feasible to match the anatomy data set
using PPM and PAM parallel matching strategies.
Therefore, for the whole anatomy dataset, the
final similarity structure of the preparation
module, Rsim is divided into 12 divisions; each is
treated as a standalone dataset and is emitted to
GPU individually.

A 0.6 threshold is used to discover the most
comparable clusters and a 0.5 threshold is used
to match them. Each matching task was run five
times with the same settings, and the average time
for each test was calculated in milliseconds. The
quality and efficiency evaluation tests are collected
in Table 2. For PAM, the achievements in timing
performance due to divisions attain speedups
ranging from 4.76 to 7.52 times faster than
dynamic ASM, while PPM enhances the speed
from 5.84 to 11.85 times compared to dynamic
ASM. The achievement in timing performance
of the whole anatomy track acquires 5.21 times
more rapidly than dynamic ASM for the proposed
parallel PPM matching algorithm. Still, for PAM,
it reaches 4.26 times faster than dynamic ASM.

Table 2. Efficiency Evaluation of Anatomy at
threshold 0.6 for VSM, 0.5 for matching (ms)

Part.
No Prec. Rec. ASM PAM PPM

1 0.22 0.02 35.72 6.47 5.23
2 0.15 0.01 30.96 6.24 5.09
3 0.13 0.02 34.20 7.18 5.85
4 0.18 0.04 102.98 13.69 11.63
5 0.15 0.06 250.65 25.53 21.16
6 0.2 0.05 129.07 18.00 14.91
7 0.18 0.03 114.88 14.51 12.10
8 0.24 0.04 93.09 13.48 11.24
9 0.23 0.04 89.03 13.39 10.93
10 0.22 0.04 104.00 14.19 11.89
11 0.16 0.03 123.09 16.21 13.32
12 0.18 0.03 86.75 14.74 12.26

Total 0.18 0.40 699.24 164.00 134.31

6. Conclusion

Metadata models are becoming increasingly
popular to share and reuse knowledge. This
has resulted in the developing of large-scale
independent metadata models within the same
or separate domains, with some information
overlapping. Automatic matching has become
a mandatory solution. However, the process of
matching large metadata models is time and space-
consuming. To this end, the work proposed in this
paper presents PPM (Parallel Pairwise Matching),
an efficient hardware implementable matching
algorithm on GPU for large-scale metadata models
when clustering techniques exist. It is based on
approximate string-matching using k-difference
(ASM). It dispatches pairs of the similarity set
to GPU in a consecutive manner and relies upon
row flow computing that hinders data dependency
obstacles. It is proven that PPM is a promising
approach to accelerate large-scale metadata model
matching. It overcomes ASM and the parallel
accumulated matching algorithm, PAM that
simultaneously migrates all structures and clusters
to the device. To maintain stability, a method for
dividing long bulks should be included so that
entities cannot be intersected. This improves
matching efficiency while maintaining matching
quality without requiring it to be promoted to a
higher resource level.

https://www.sic.ici.ro

28 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

REFERENCES

Abadi, M. & Zamanifar, K. (2011) Producing complete
modules in ontology partitioning. In: 2011 International
Conference on Semantic Technology and Information
Retrieval, 27 ‒ 29 June 2011, Putrajaya, Kuala Lumpur,
Malaysia. New Jersey, SUA, Institute of Electrical and
Electronics Engineers (IEEE). pp. 137-143.

Algergawy, A., Massmann, S. & Rahm, E. A. (2011) A
Clustering-Based Approach for Large-Scale Ontology
Matching. In: Eder, J., Bielikova, M. & Tjoa, A.
M. (eds.) Advances in Databases and Information
Systems: Proceedings of the 15th International
Conference (ADBIS 2011), 20 ‒ 23 September 2011,
Vienna, Austria. Berlin, Heidelberg, Springer. pp. 415-
428. doi: 10.1007/978-3-642-23737-9_30.

Algergawy, A., Moawed, S., Sarhan, A., Eldosouky,
A. & Saake, G. (2014) Improving clustering-based
schema matching using latent semantic indexing.
In: Hameurlain, A., Küng, J. Wagner, R., Catania,
B., Guerrini, G., Palpanas, T., Pokorný, J. & Vakali,
A. (eds.) Transactions on Large-Scale Data and
Knowledge-Centered Systems XV: Selected Papers
from the 17th East-European Conference on Advances
in Databases and Information Systems (ADBIS 2013)
Satellite Events, 1 – 4 September 2013, Genova,
Italy. Berlin, Heidelberg, Springer. pp. 102-123. doi:
10.1007/978-3-662-45761-0.

Amin, M., Batool, R., Khan, W., Lee, S. & Huh, E.
(2014) SPHeRe: A Performance Initiative Towards
Ontology Matching by Implementing Parallelism
over Cloud Platform. The Journal of Supercomputing.
68(1), 274-301. doi: 10.1007/s11227-013-1037-1.

Amin, M., Khan, W., Hussain, S., Bui, D., Banos,
O., Kang, B. & Lee, S. (2016) Evaluating large-scale
biomedical ontology matching over parallel platforms.
Institution of Electronics and Telecommunication
Engineers (IETE) Technical Review. 33(4), 415-427.
doi: 10.1080/02564602.2015.1117399.

Apache Jena. (n. d.) https://jena.apache.org/ [Accessed
1st August 2022].

Babalou, S., Kargar, M. & Davarpanah, S. (2016)
Large-scale ontology matching: a review of the
literature. In: 2016 Second International Conference
on Web Research (ICWR), 27 ‒ 28 April 2016,
Tehran, Iran. New York, USA, Institute of Electrical
and Electronics Engineers (IEEE). pp. 158-165. doi:
10.1109/ICWR.2016.7498461.

Chen, X., Wang, C., Tang, S., Yu, C. & Zou, Q. (2017)
CMSA: a heterogeneous CPU/GPU computing system
for multiple similar RNA/DNA sequence alignment.
BMC Bioinformatics. 18, 1-10. doi: 10.1186/s12859-
017-1725-6.

Chong, I. & Lee, S. (2022) Deep learning based
semantic ontology alignment process and predictive

analysis of depressive disorder. In: 2022 International
Conference on Information Networking (ICOIN), 12
‒ 15 January 2022, Jeju-si, Republic of Korea. New
York, USA, Institute of Electrical and Electronics
Engineers (IEEE). pp. 164-167. doi: 10.1109/
ICOIN53446.2022.9687251.

Coyle, K. (2010) Metadata models of the world wide
web. Library Technology Reports. 46(2), 12-19.

Cuenca Grau, B., Horrocks, I., Kazakov, Y. & Sattler,
U. (2007) A Logical Framework for Modularity of
Ontologies. In: Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), 6
‒ 12 January 2007, Hyderabad, India. Menlo Park,
USA, AAAI Press. pp. 298–303.

Cuenca Grau, B., Horrocks, I., Kazakov, Y. & Sattler,
U. (2008) Modular reuse of ontologies: Theory and
practice. Journal of Artificial Intelligence Research.
31, 273-318. doi: 10.1613/jair.2375.

Djeddi, W., Khadir, M. & Ben-Yahia, S. (2014)
XMap++: results for OAEI 2014. In: Proceedings of
the 9th International Workshop on Ontology Matching,
20 October 2014, Riva del Garda, Trentino, Italy. pp.
163-169.

Do, H. & Rahm, E. (2007) Matching large schemas:
Approaches and evaluation. Information Systems.
32(6), 857-885. doi: 10.1016/j.is.2006.09.002.

El Abdi, M., Souid, H., Kachroudi, M. & Yahia,
S. (2015) CLONA results for OAEI 2015. In:
Proceedings of the 10th International Workshop on
Ontology Matching, 12 October 2015, Bethlehem, PA,
USA. pp. 124-129.

Groß, A., Hartung, M., Kirsten, T. & Rahm, E. (2010)
On matching large life science ontologies in parallel.
In: Lambrix, P. & Kemp, G. (eds.) Data Integration in
the Life Sciences: Proceedings of the 7th International
Conference DILS 2010, August, Gothenburg,
Sweden. Berlin, Heidelberg, Springer. pp. 35-49. doi:
10.1007/978-3-642-15120-0_4.

Groß, A., Hartung, M., Kirsten, T. & Rahm, E. (2012)
GOMMA results for OAEI 2012. In: Proceedings of
the 7th International Workshop on Ontology Matching,
11 November 2012, MA, USA. pp. 133–140.

Guo, L., Du, S., Ren, M., Liu, Y., Li, J., He, J., Tian, N.
& Li, K. (2013) Parallel Algorithm for Approximate
String Matching with K Differences. In: 2013 IEEE
Eighth International Conference on Networking,
Architecture and Storage, 17 ‒ 19 July 2013, Xi’an,
China. New York, USA, Institute of Electrical and
Electronics Engineers (IEEE). pp. 257-261. doi:
10.1109/NAS.2013.40.

 29

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Parallel Pairwise-Clustering Matching Algorithm for Large-Scale Metadata Models...

Huber, J., Sztyler, T., Noessner, J. & Meilicke, C.
(2011) CODI: Combinatorial optimization for data
integration – results for OAEI 2011. In: Proceedings
of the 6th International Conference on Ontology
Matching, 24 October 2011, Bonn, Germany. pp.
142-146.

Institute for Informatics. Georg-August-Universität
Göttingen. (n. d.) The MONDIAL Database. http://
www.dbis.informatik.uni-goettingen.de/Mondial/
[Accessed 5th April 2022].

Java Enterprise Edition (Java EE). (n. d.) https://xsom.
java.net/ [Accessed 1st January 2022].

Jung, H., Yoo, S. & Park, S. (2012) Context Modelling
Using Semantic Web Technologies. Studies in
Informatics and Control. 21(2), 173-180. doi:
10.24846/v21i2y201207.

Kirsten, T., Groß, A., Hartung, M. & Rahm, E. (2011)
GOMMA: a component-based infrastructure for
managing and analyzing life science ontologies and
their evolution. Journal of Biomedical Semantics.
2(1): 6. doi: 10.1186/2041-1480-2-6.

Kusnierczyk, W. (2008) Taxonomy-based partitioning
of the Gene Ontology. Journal of Biomedical
Informatics. 41(2), 282-292. doi: 10.1016/j.
jbi.2007.07.007.

Lee, M. L., Yang. L. H., Hsu. W. & Yang, X. (2002)
XClust: clustering XML schemas for effective
integration. In: Proceedings of the International
Conference on Information and Knowledge
Management (CIKM ‘02), 4 ‒ 9 November 2002,
McLean, Virginia, USA. New York, USA, Association
for Computing Machinery (ACM). pp. 292–299. doi:
10.1145/584792.584841.

Mani, S. & Annadurai, S. (2021) Explicit Link
Discovery Scheme Optimized with Ontology Mapping
using Improved Machine Learning Approach. Studies
in Informatics and Control. 30(1), 67-75. doi:
10.24846/v30i1y202106.

Navarro, G. (2001). A guided tour to approximate
string matching. ACM Computing Surveys. 33(1), 31-
88. doi: 10.1145/375360.375365.

Ngo, D. & Bellahsene, Z. (2016) Overview of
YAM++—(not) Yet Another Matcher for ontology
alignment task. Journal of Web Semantics. 41, 30-49.
doi: 10.1016/j.websem.2016.09.002.

Ochieng, P. & Kyanda, S. (2018) Large-scale ontology
matching: State-of-the-art analysis. ACM Computing
Surveys. 51(4), 1-35. doi: 10.1145/3211871.

Ontology Alignment Evaluation Initiative. (n. d.)
http://oaei.ontologymatching.org/ [Accessed 1st
December 2022].

Otero-Cerdeira, L., Rodríguez-Martínez, F. J. &
Gómez-Rodríguez, A. (2015) Ontology matching: A
literature review. Expert Systems with Applications.
42(2), 949-971. doi: 10.1016/j.eswa.2014.08.032.

Owens, J., Houston, M., Luebke, D., Green, S.,
Stone, J. & Phillips, J. (2008) GPU Computing. In:
Proceedings of the IEEE. 96(5). pp. 879-899. doi:
10.1109/JPROC.2008.917757.

Rahm, E. (2011) Towards large-scale schema and
ontology matching. In: Bellahsene, Z., Bonifati, A.
& Rahm, E. (eds.) Schema Matching and Mapping.
Berlin, Heidelberg, Springer, pp. 3-27.

Saruladha, K. & Ranjini, S. (2016) COGOM:
Cognitive Theory Based Ontology Matching System.
Procedia Computer Science. 85, 301-308. doi:
10.1016/j.procs.2016.05.237.

Schadd, F. & Roos, N. (2014) Alignment evaluation
of MaasMatch for the OAEI 2014 campaign. In:
Proceedings of the 9th International Workshop on
Ontology Matching, 20 October 2014, Riva del Garda,
Trentino, Italy. pp. 135-141.

Schlicht, A. & Stuckenschmidt, H. (2007) Criteria-
based partitioning of large ontologies. In: Proceedings
of the 4th International Conference on Knowledge
Capture (K-CAP07), 28-31 October 2007, Whistler,
BC, Canada. New York, USA, Association for
Computing Machinery (ACM). pp. 171-172.

Sellami, S., Benharkat, A., Amghar, Y. & Rifaieh, R.
(2008) Study of Challenges and Techniques in Large
Scale Matching. In: Filipe, J. & Cordeiro, J. (eds.)
Enterprise Information Systems: Proceedings of the
Tenth International Conference (ICEIS), 12-16 June
2008, Barcelona, Spain. Berlin Heidelberg, Springer.
pp. 355-361. doi: 10.1007/978-3-642-00670-8.

Shvaiko, P. & Euzenat, J. (2008) Ten challenges for
ontology matching. In: Meersman, R. & Tari, Z.
(eds.) On the Move to Meaningful Internet Systems:
Proceedings of OTM 2008 Confederated International
Conferences, CoopIS, DOA, GADA, IS, and ODBASE
2008, 9 ‒ 14, November 2008, Monterrey, Mexico.
Berlin, Heidelberg, Springer. pp. 1164-1182. doi:
10.1007/978-3-540-88873-4_18.

Shvaiko, P., Euzenat, J., Jiménez-Ruiz, E., Cheatham,
M., Hassanzadeh, O. & Ichise, R. (eds.) (2016)
Proceedings of the 11th International Workshop on
Ontology Matching (OM-2016), 18 October 2016,
Kobe, Japan.

Sivasankari, S. & Shomona, G. J. (2016) A Novel
Semi-Automated Ontology Construction Framework
(SOCF) for Psoriasis Detection: Pioneering the
Psoriasis Risk Assessment Remedy (PRAR) Database.
Studies in Informatics and Control. 25(2), 237-244.
doi: 10.24846/v25i2y201611.

https://www.sic.ici.ro

30 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

Tenschert, A., Assel, M., Cheptsov, A., Gallizo, G.,
Della Valle, E. & Celino, I. (2009) Parallelization and
Distribution Techniques for Ontology Matching in
Urban Computing Environments. In: Proceedings of
the 4th International Workshop on Ontology Matching,
25 October 2009, Chantilly, USA. pp. 248-249.

Tran, T., Liu, Y. & Schmidt, B. (2016) Bit-parallel
approximate pattern matching: Kepler GPU versus
Xeon Phi. Parallel Computing. 54, 128-138. doi:
10.1016/j.parco.2015.11.001.

UW CSE Department Data Set. (n. d.) XMLData
Repository. http://www.cs.washington.edu/research/
xmldatasets/ [Accessed 5th April 2022].

Wang, P. (2010) Lily-LOM: An efficient system
for matching large ontologies with non-partitioned
method. In: Proceedings of the 2010 International
Conference on Posters & Demonstrations Track
(CEUR Workshop), 9 November 2010, Shanghai,
China. pp. 69-72.

Xue, X., Jiang, C., Wang, H., Tsai, P., Mao, G. & Zhu,
H. (2021) An improved multi-objective evolutionary
optimization algorithm with inverse model for
matching sensor ontologies. Soft Computing. 25(18),
12227-12240. doi: 10.1007/s00500-021-05895-y.

Zhang, Z., Che, H., Shi, P., Sun, Y., & Gu, J.
(2006) Formulation schema matching problem for
combinatorial optimization problem. Interoperability
in Business Information Systems (IBIS). 1(1), 33-60.

