
31

ICI Bucharest © Copyright 2012-2023. All rights reserved

ISSN: 1220-1766  eISSN: 1841-429X	

1. Introduction

Machine learning (ML) algorithms gain more 
significance as they enhance the decision-making 
processes and help us understand trends using 
predictions (Lungu et al., 2016) and consumers’ 
behaviour. Numerous data sets are studied 
with ML algorithms aiming to foresee clusters 
(Huang et al., 2020), classify records (Oprea 
& Bâra, 2021), detect anomalies (Himeur et 
al., 2021) or improve estimator error (Garcia 
Rodriguez et al., 2021) in various fields. Usually, 
the pre-processing stage is performed to fix 
issues such as missing data and non-numeric 
variables that impede ML algorithms to run 
properly. Recently, more attention has been 
given to the hyperparameters of the algorithms 
to improve their performance (Schmied et al., 
2021) or even to trends such as hyperautomation 
(Lasso Rodriguez et al. 2020). Moreover, an 
inquiry into machine learning-based automatic 
configuration tuning services on real-world 
database management systems is provided in 
(Van Aken et al., 2021). As AutoML optimizes 
the ML pipelines and hyperparameters, it also 
provides a search at the architectural level. Auto-
PyTorch is showcased in (Zimmer, Lindauer & 
Hutter, 2021), which combines the two functions 
to allow fully automated deep learning and 
proposes a benchmark for learning curves for 
deep neural networks. Therefore, data pre-

processing is a stage that is carried out once and 
sometimes with simple methods, whereas tuning 
is predominantly focusing on the ML algorithms` 
optimizers, their combinations (Khan et al., 
2020) and cross-validation stages. In this way, a 
gap regarding data pre-processing was identified, 
as it is omitted or tackled at a superficial level in 
most scientific papers. 

The concept for this framework is based on the 
premise that each step in the development of a 
ML model can be developed in an individual 
capsule application which will be referred to as 
a component. Each component comes with a pre-
defined role, but it can be called at any time by 
the user. The result obtained after each called step 
will be stored at the component level so that it can 
be used later by methods from other components. 
Thus, the proposed solution must bring together 
a series of independent functionalities, specific 
to data analysis and the implementation of ML 
algorithms. The complexity of the problem of such 
a framework can be solved by decomposing it into 
simple services, dealing with a single aspect, easy 
to maintain and extend.

For developing the technical solution, the process 
started from a basic concept typical of the 
classic software design methods, domain-based 
architectures, according to which the application is 
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built around the business domain that the respective 
software must serve. It is a fundamental notion for 
microservice-based architecture because it helps to 
identify the purpose of each individual service, thus 
being the boundary of the service’s scope of activity 
(Auer et al, 2021). It should not be forgotten that 
each built model must be applicable to a singular 
context and not intersect with other areas of the 
application. This contextualization ensures the 
logical and structural unity of the components and 
leads to the avoidance of confusion. The contexts 
will be mapped onto a map that will outline the 
application as a whole (Hannousse & Yahiouche, 
2021). Unlike a Service-Oriented Architecture 
(SOA) or layered architecture (Hustad & Olsen, 
2021; Haghgoo et al., 2021) a specific context 
also involves the inclusion of data model and 
data, all specific to that context (Lenarduzzi et al., 
2020). Microservices outline functionality of the 
process logic and do not exclusively refer to layers 
with a technical role, laid horizontally, from user 
interaction to the database (Mazzara et al., 2021). 
Their most important feature must be independent 
operation. A microservice is considered loosely 
coupled if it can be changed without changing other 
areas of the application. It must be built in such a 
way that it has a unitary structure, that is, it has a 
single, well-defined purpose (Di Francesco, Lago 
& Malavolta, 2019; Hamzehloui, Sahibuddin, & 
Ashabi, 2019).

The remainder of this paper is structured as 
follows. Section 2 briefly presents similar scientific 
research. Section 3 proposes an original framework 
using microservices as applications for tuning the 
data pre-processing methods and evaluating their 
impact on the results of a classification problem. 
For simulation purposes, in Section 4 a simple 
ML classification algorithm - linear regression, 
was considered as tuning several algorithms is 
out of the scope of this paper. The analysed data 
set refers to the clients of a bank, their credits and 
the probability of contracting a new credit. Details 
regarding clients, such as age, sex, profession, 
fidelity, prescoring and previous credits depiction 
are included in the data set. The conclusions of this 
research are presented in Section 5.

2. Literature Survey

Microservices can be deployed to run using virtual 
machines or containers. Containers are preferred 
for the proposed particular solutions because they 
are portable, offer modularity, and require far fewer 

resources than virtual machines, not requiring the 
embedded operating system to function (Soldani, 
Tamburri & Van Den Heuvel, 2018). This approach 
ensures efficient scaling, and existing container 
orchestration mechanisms such as Kubernetes help 
manage container clusters on single systems (Shi et 
al., 2021; Bernstein, 2014). An important decision 
is related to how the components communicate. In 
the case of synchronous communication, a request 
is initialized by a component to the server on which 
another component is running, during which the 
request remains blocked until the operation is 
completed. On the other hand, in the case of 
asynchronous communication, the caller does not 
wait for the results to be received to initiate another 
operation. Considering the possibility of long 
waiting times for running algorithms for example, 
asynchronous implementation is preferable, 
because it is not necessary to keep the connection 
open between components for long time intervals. 
A hybrid model of these two approaches lends itself 
well to the architectural concept of the application. 
Therefore, APIs will be implemented that are based 
on the request-response model, but also on event 
handling (Cinque, Corte & Pecchia, 2022).

Effective and successful use of ML techniques in 
data analysis requires considerable effort on the 
part of programmers, but especially on the part 
of end users, for whom effective analysis brings 
value. Expertise in the field of application of the 
business sector is a necessary factor for achieving 
performance. Most of the time, the experience 
of the programmers does not cover the technical 
notions necessary to understand the context in 
which the algorithm is applied, and the importance 
of the obtained results cannot be fully assimilated 
(Abdullah, Iqbal, & Erradi, 2019). So constant 
interaction between ML developers and end users is 
necessary, but this involves increased development 
time and effort on both sides. Therefore, the 
proposed solution consists in granularizing the 
involved processes, by implementing specific 
functionalities and calling them as needed, in the 
desired order, using data sets which were previously 
altered by other methods. Thus, the analysis 
process can be more efficient, and to some extent 
automated, by storing the obtained results and 
sending them to other methods, without repeating 
the implementation steps. In this way, a dynamic 
analysis environment is outlined, through which 
a rapid testing of multiple analysis variations can 
be achieved, from preprocessing to the selection 
of the best model. Once the data has been entered 
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into the pre-processing system, it is desired to 
validate and verify the data in a scalable way to 
run the algorithms, and even change or adjust the 
implementation method for various models by 
adjusting certain parameters or even the training 
data and checking the accuracy of the results 
(Baškarada, Nguyen & Koronios, 2020). All these 
steps can be automated, but human intervention 
cannot be completely excluded.

Several data pre-processing stages, such as 
cleaning, transforming, reduction, scaling, 
partitioning, augmentation and transfer learning 
are surveyed by Fan et al. (2021) focussing mainly 
on building operational data and its usage. The 
impact of the data pre-processing is emphasised 
by Zhu & Gao (2016) for classification purposes. 
Moreover, a survey of the data pre-processing 
methods for IoT data is performed by Jane & 
Arockiam (2021) focusing on its usage and 
impact on the performance indicators. The 
necessity to implement pre-processing methods 
is clarified and some criteria for implementation 
are provided, which underlines the influence of 
the pre-processing on the performance of the 
classification algorithms.

Furthermore, influence of data pre-processing on 
neural network performance is studied in (Zhou 
& Ooka, 2021). Without data pre-processing, 
the gradient descent algorithm can fail to reduce 
errors during the training process. Kakkar et al. 
(2018) combined data pre-processing methods 
with imputation techniques for software defect 
prediction. The effect of pre-processing of the 
numeric features on the performance of the 
classification algorithms is also investigated 
(Alshdaifat et al., 2021). 

Several normalization methods and techniques for 
missing values are evaluated for various datasets 
implementing a couple of classification algorithms. 
It was concluded that the impact of the pre-
processing techniques depends on the classification 
algorithm. Žliobaite & Gabrys (2014) investigated 
the problem of adaptive pre-processing. Three 
scenarios were described using computational 
examples. They found that combining adaptive 
pre-processing with adaptive online prediction is 
a good approach that could be the starting point 
in building future data pre-processing frameworks 
to enhance the prediction accuracy. A combined 
framework based on data pre-processing, neural 
networks and a multi-tracker optimizer for wind 

speed prediction is proposed in (Wang et al., 2020). 
The results proved that the framework achieves 
a higher forecast accuracy and support for wind 
power dispatch.

3. Methods and Materials

The implementation of the ML algorithms usually 
implies several stages, such as: Exploratory Data 
Analysis (EDA), pre-processing, processing, 
tuning the hyperparameters of the ML algorithms 
and evaluation of the results. They can be 
organized in a pipeline that consists in a sequence 
of end-to-end activities. First, it is essential to 
understand the data and potential issues that 
could arise while running the ML algorithms. 
For instance, the missing data issue has to be 
identified and approached as only few algorithms 
are able to handle it. Most of ML algorithms fail 
to run and end in error when they encounter null 
values. Furthermore, categorical data columns 
are not usually processed by ML algorithms, thus 
encoding them is mandatory. 

Pre-processing the data mainly consists of several 
stages, such as: treating the missing and extreme 
values, encoding and scaling. These tasks are 
probably the most time-consuming for data 
scientists because there are numerous methods that 
could lead to the best results, and it is difficult to 
guess the right combination.  Processing the data 
is the next step in ML algorithm implementation 
containing feature engineering, extraction and 
selection, splitting, training and testing the data 
sets. Tuning the hyperparameters of the ML 
algorithms to improve the involved models is 
a well-known practice that data sciences often 
experience, but this paper proposes a method 
to tune the pre-processing stages that are 
incorporated into a flexible horizontal tuning 
framework. It represents a combination of the 
main pre-processing stages to enhance the 
performance of the ML algorithms. Let us assume 
that the available methods for missing values are 
numbered from M.0 to M.n, where M.0 is the no 
missing value method. Considering Python as 
the software development platform, M.1 could 
be fillna with mean method, M.2 could be fillna 
with bfill or ffill method or a combination of the 
two, M.3 could be interpolation (interpolate) 
and M.4 could be multiple imputation with 
chained equations or mice method and so on. 
The extreme value methods are numbered from 
O.0 to O.m, where O.0 is the no outlier treatment 
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and so on. In Figure 1, the MOES (missing, 
outliers, encoding and scaling) horizontal tuning 
framework is depicted. Depending on EDA, pre-
processing activities are carried out, but instead 
of just considering one method for each activity 
for missing values (for instance fillna with zero), 
multiple methods are considered in combination 
with other methods for outliers, encoding and 
scaling. Thus, all combinations are tested for one or 
more performance indicators that are characteristic 
for a ML algorithm. This enables  one to obtain the 
best combination of the data pre-processing methods 
that will generate the pre-processed data set that will 
be subject to feature selection and training.

The purpose of the proposed framework is to offer 
an efficient and optimal mechanism to achieve 
the necessary combination of human interaction 
at a minimum necessary level with the automatic 
process of data analysis and machine learning.

3.1 Data Insights

The user will be presented with information about 
the uploaded data set depending on the button 
chosen. The file is passed to the constructor of the 
Pandas package DataFrame object, and information 
such as the number of records, column names, and 
data type for each column is displayed by retrieving 
the results of the pandas.DataFrame.info() function 
call as it is illustrated in Figure 2.

3.2 Data Insights Application Using 
User Input

The user may prepare the data set for analysis, 
and the information is taken through forms in 
which the user fills in information according to 
the chosen process. If it is desired to remove 
columns from the data set that are not relevant 
for the analysis, the names of the columns must 

Figure 1. MOES horizontal tuning framework

Figure 2. Getting data insights
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be specified, and they will be deleted by calling 
the pandas.DataFrame.drop() function. Pandas 
package allows selecting rows and/or columns 
using indexing. The index therefore represents the 
address where a certain piece of information can 
be found. After the dataset is loaded, an integer 
index is assigned to each row and each column, 
starting from 0. If a specific column is desired to 
be used for indexing, the user provides the name of 
that column, and the loaded dataset will be altered 
by the pd.DataFrame.set_index() function. If the 
data set has to be sorted, the names of the columns 
that will establish the order of the records as well 
as the sorting mechanism must be mentioned. 
It is also necessary for the user to specify the 
names of the columns that hold calendar data 
for their conversion, which is done through the 
pd.DataFrame.to_datetime() function as it is 

shown in Figure 3. Character string or numeric 
data are automatically identified by Pandas.

3.3 Application for Processing and 
Cleaning Data

The user can choose whether to delete duplicate 
information, which is done by the pandas.
DataFrame.drop_duplicates() method. The 
names of numeric or character string columns that 
hold categorical variables can be also specified, 
so that they can be processed efficiently later. 
The conversion is done through the pandas.
DataFrame.astype() method, with the “category” 
parameter. Furthermore, an important step in data 
preprocessing is data encoding (as it can be seen 
in Figure 4), given that many ML algorithms can 
only make use of numerical data. The framework 

Figure 3. Data insights application using user input

Figure 4. Application for preprocessing and cleaning data
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implements two encoding variants, using 
methods available on the SciKit-Learn library: 
LabelEncoder and OneHotEncoder, with the 
mention that the second one needs the first one 
to be applied. So, the user can choose the desired 
method, and all the columns that hold category or 
character string data are transformed. The results 
are displayed to the user and the data set is stored 
and can be retrieved by the next service.

3.4 Application for Handling  
Missing Data

The user can choose the desired option for 
replacing the missing values, this step being 
optional. The user fills in the information through 
dropdown-type inputs from where the user 
chooses the names of the columns for which 
operations are performed to complete the missing 
elements. For each chosen column, the user can 
choose one of the following methods: deleting 
the respective rows or column (implemented 
using the pandas.DataFrame.dropna() method), 
replacing the values ​​with a value provided by the 
user (implemented using the pandas.DataFrame. 
fillna(), which receives the respective value as a 
parameter) or replacing the missing values ​​with 
the mean or median of the values ​​of the respective 
column calculated with the pandas.DataFrame.
mean() and pandas.DataFrame.median() 
methods. In addition to these variants, the missing 

values can be replaced with estimated values. The 
prediction algorithm uses linear regression as it 
is illustrated in Figure 5. Another method is to 
impute values, and it is implemented by using the 
SimpleImputer() model from the datawig library. 
The results are displayed, and the new data set 
is stored for later use. The advantage of such 
an implementation approach consists in the fact 
that the user can return to this service, choosing 
different methods of handling missing values ​​to 
re-estimate the involved models.

3.5 Application for Data 
Standardization

Another particularly important step in data analysis 
is standardization and/or normalization. The 
performance of the implemented models is highly 
dependent on the quality of the employed data, 
and this step ensures smoothing and scaling of the 
data. Depending on the method chosen by the user, 
this service will implement two methods available 
in the SciKitLearn library: MinMaxScaler() and 
StandardScaler() as it can be seen in Figure 6. The 
normalized data set will be saved.

3.6 Application for Outlier Treatment

The ScikitLearn library, through the ensemble 
package, provides the implementation of the 
Isolation Forest algorithm, which only needs the 
parameter that provides the accepted margin of 

Figure 5. Application for handling missing data
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allowed extreme values. The application trains the 
algorithm on the entire data set, predicts the rows 
identified as outliers, and alters the data set by 
removing those rows. Similarly, the Local Outlier 
Factor algorithm, available in the same library, 
can be implemented. Furthermore, the algorithm 
using Support Vector Machine (SVM) can be used 
to classify values ​​as extreme or not. The algorithm 

can be called through the OneClassSVM() class 
from the sklearn.ensemble package.

The interquartile range can also be used to identify 
such values ​​for each user-specified column, and 
the implementation of this variant is shown in 
Figure 7. The altered data set is stored at the level 
of this service.

Figure 6. Application for data standardization

Figure 7. Application for outlier treatment
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3.7 Application for Data Filtering  
and Grouping

The user can filter the data set by specifying 
the columns and values by which the set will 
be filtered. Filtering can be approached in three 
ways: filtering numeric values, string or calendar 
date columns, or retrieving records within certain 
ranges determined by row or column indexes. Data 
grouping will be done by specifying grouping 
columns and choosing grouping functions from 
those provided by the application. The grouping 
will be done using the two functions with the 
corresponding parameters: pandas.DataFrame.
aggreagte() and pandas.DataFrame.groupby() as it 
is shown in Figure 8. A similar solution for tuning 
the pre-processing of data does not exist. However, 
libraries (such as PyCaret from Python) represent 
an end-to-end pipeline tool that automates the 
entire process from data analytics to assessment 
of the results. Nevertheless, PyCaret insists on the 
automation of the process and the implementation 
of multiple ML algorithms. In the pre-processing 
stage, PyCaret handles the data set and it identifies 

missing values, outliers, categorical features, data 
imbalance, etc. and provides a solution to pre-
process the data set and prepare it for training. For 
the missing values, the options are very simple, the 
null values are replaced by mean, median or zero. 
Mean is the default option. The other available 
options are median and zero. 

In comparison with the proposed method, PyCaret 
offers a simple imputation method and does not 
check the efficacy of combining the solutions for 
missing values, outliers, encoding and scaling. 
If the target column is imbalanced, PyCaret 
imposes SMOTE to balance the data, but this is 
not always worthy. Another drawback that can 
be encountered with raw data sets is that it is 
not easily processed by PyCaret. For instance, 
columns with an unknown format will not be 
automatically processed. They previously require 
elimination or additional processing.

A brief comparison between missing, outliers, 
encoding and scaling (MOES) and PyCaret is 
described in Table 1.

Figure 8. Application for data filtering and grouping

Table 1. Comparison between MOES and PyCaret
Criteria MOES PyCaret
Flexible Yes No

Architecture Horizontal Vertical
Pipeline Yes Yes

Advantages Better results
Less time-consuming

Lower involvement of the researcher
Lower-level coding

Disadvantages More coding and involvement of the data scientist Not capable to handle all data sets (trouble)
Lower performance indicators
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4. Results

The analyzed data set consists of 20 columns and 
18,239 rows with details about the clients of a 
commercial bank, such as client identifier, name, 
profession, sex, age, marital status, currency, annual 
income, annual income in RON, account, credit, 
date, credit category, credit description, prescoring, 
savings, fidelity score, requested amount, threshold 
amount, and contracting probability of a new 
credit. Out of them 12 columns are numeric, and 
8 columns are non-numeric, thus the data set has 
a heterogenous structure.

Figure 9 describes the missing values as a heatmap 
(left side) and in percentages (right side) for the 
analyzed data set. 4,784 (26.23%) and 4,391 
(24,07%) out of the 18,239 total values are 
missing from the prescoring and fidelity column, 
respectively. Without treating the missing values, 
the ML algorithm (logistic regression) fails to 
provide results. In addition, most ML algorithms 
end in error when they encounter null values.

In this section, several simulations were described. 
First, for missing values, four methods were 
implemented with MOES, and the results were 
compared. The rest of the pre-processing stages 
were not modified. The settings for the other three 

pre-processing stages are: the outliers were not 
approached, LabelEncoder and StandardScaler 
were considered for encoding the categorical 
columns and scaling. The four methods for 
missing values are: fillna with mean method, fillna 
with bfill, interpolate and mice.

Initially, PyCaret failed to process the data set 
as the Date column has an unknown format. The 
column was eliminated from the raw data set. 
With MOES, the same column was converted 
to datetime and then the month and year were 
extracted, and Date column was finally eliminated. 
Therefore, PyCaret fails to work properly with 
problematic data sets and data science has to 
remove or previously transform them.

As PyCaret performs numerous steps, it requires 
more time to run, and the results are not always 
the best ones. For instance, in Table 2, the Area 
Under the Curve (AUC) performance indicator 
and the execution time are compared for MOES 
with four different missing values methods and 
for PyCaret. Although PyCaret requires only a few 
lines of code, the execution time for only one basic 
ML algorithm (linear regression) is much longer 
in comparison with the execution time for MOES.

Figure 9. Missing values for the analyzed data set

Table 2. AUC and execution time for MOES and PyCaret

Fillna mean Fillna bfill Interpolate Mice PyCaret

AUC 0.952 0.928 0.934 0.999 0.986

Execution time 0m 26s 0m 26s 0m 26s 0m 41s 8m 15s



https://www.sic.ici.ro

40 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița(Ene), Dragoș-Cătălin Barbu

(a) Fillna with mean method 

(b) Fillna with bfill method

(c) Interpolation with linear method

(d) Multiple imputation with chained equations

Figure 10. ROC-AUC curves and confusion matrices for the four methods for missing values
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In Figure 10, the ROC-AUC curves and confusion 
matrices are presented for MOES, whereas in 
Figure 11, similar graphs are shown for PyCaret 
Python library.

The training data set includes 3,347 clients that 
will not contract a new credit and 301 clients that 
will contract a new credit from the bank. In the 
scenario using fillna with mean method (Figure 
10(a)), 61 of the 3,347 clients are mistakenly 
classified as clients that would contract a new 
credit. Moreover, 106 of the 301 clients are also 
mistakenly classified as clients that would not 
contract a new credit. Similar results are obtained 
in the second and third scenario using fillna with 
bfill method and interpolation (Figure 10(b), (c)). 
However, the best results are obtained with mice 
method, only 2 of the 3,347 and 2 of the 301 
clients are mistakenly classified (Figure 10(d)), 
which is a very good performance for a model 
using a classifier. Furthermore, AUC score is 
almost perfect (0.99).

As it is illustrated in Figure 11, PyCaret split the 
initial data set into 4,030 clients with no intention 
to opt for a new credit contract and 348 clients that 
will contract a new credit. The area under the curve 
is good (0.99), but the clients who were mistakenly 
classified are more numerous compared with the 
case when MOES was implemented.

Thus, the horizontal tuning framework provided 
the best combination of the pre-processing stages: 
mice for missing values, no method for outliers, 
LabelEncoder for encoding and StandardScaler 
for scaling data.

For outliers, two methods where implemented: 
zscore and elimination of the values that were 
under or above certain quantiles (for instance: 

0.01 and 0.99), but the best results were obtained 
when no method for outliers was implemented as 
outliers are acceptable for ML algorithms.

However, for encoding the categorical columns, 
two methods were used: LabelEncoder and 
OneHotEncoder. Similarly to the case of missing 
values, encoding the categorical columns is 
mandatory. The first method, LabelEncoder, 
outperformed OneHoteEncoder.

For scaling purposes, two methods were 
implemented, namely RobustScaler and 
MinMaxScaler, but StandardScaler slightly 
outperformed them.

5. Conclusion

This paper proposed a horizontal tuning framework 
using microservices as applications for data pre-
processing. It consists in combining methods for 
missing values, outlier encoding and scaling. For 
replicability purposes, detailed diagrams of the 
analyzed applications were provided.

For the tested data set, the horizontal tuning 
framework provided the best combination 
of the pre-processing stages in the following 
configuration: mice method for missing values, no 
method for outliers, LabelEncoder for encoding 
and StandardScaler for scaling data.

Although there is no similar framework, the 
results obtained with the proposed framework 
were compared with those obtained with the 
PyCaret Python library and the conclusion was 
that the proposed framework provided better 
results in terms of execution time and area under 
the curve performance indicator. One thing 
that should be noticed is that one method could 

Figure 11. ROC-AUC curves and confusion matrix with PyCaret library
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perform best for a certain data set, that is why the 
horizontal tuning framework using microservices 
as applications was proposed, namely to combine 
the pre-processing stages and obtain the best 
combination for a certain data set.

Furthermore, the proposed method and PyCaret 
were also applied for another data set that 
consisted of electricity data for Tunisia used for 
identifying non-technical losses and found out that 

the proposed method outperformed PyCaret for 
both AUC and execution time.
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