
31

ICI Bucharest © Copyright 2012-2023. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

Machine learning (ML) algorithms gain more
significance as they enhance the decision-making
processes and help us understand trends using
predictions (Lungu et al., 2016) and consumers’
behaviour. Numerous data sets are studied
with ML algorithms aiming to foresee clusters
(Huang et al., 2020), classify records (Oprea
& Bâra, 2021), detect anomalies (Himeur et
al., 2021) or improve estimator error (Garcia
Rodriguez et al., 2021) in various fields. Usually,
the pre-processing stage is performed to fix
issues such as missing data and non-numeric
variables that impede ML algorithms to run
properly. Recently, more attention has been
given to the hyperparameters of the algorithms
to improve their performance (Schmied et al.,
2021) or even to trends such as hyperautomation
(Lasso Rodriguez et al. 2020). Moreover, an
inquiry into machine learning-based automatic
configuration tuning services on real-world
database management systems is provided in
(Van Aken et al., 2021). As AutoML optimizes
the ML pipelines and hyperparameters, it also
provides a search at the architectural level. Auto-
PyTorch is showcased in (Zimmer, Lindauer &
Hutter, 2021), which combines the two functions
to allow fully automated deep learning and
proposes a benchmark for learning curves for
deep neural networks. Therefore, data pre-

processing is a stage that is carried out once and
sometimes with simple methods, whereas tuning
is predominantly focusing on the ML algorithms`
optimizers, their combinations (Khan et al.,
2020) and cross-validation stages. In this way, a
gap regarding data pre-processing was identified,
as it is omitted or tackled at a superficial level in
most scientific papers.

The concept for this framework is based on the
premise that each step in the development of a
ML model can be developed in an individual
capsule application which will be referred to as
a component. Each component comes with a pre-
defined role, but it can be called at any time by
the user. The result obtained after each called step
will be stored at the component level so that it can
be used later by methods from other components.
Thus, the proposed solution must bring together
a series of independent functionalities, specific
to data analysis and the implementation of ML
algorithms. The complexity of the problem of such
a framework can be solved by decomposing it into
simple services, dealing with a single aspect, easy
to maintain and extend.

For developing the technical solution, the process
started from a basic concept typical of the
classic software design methods, domain-based
architectures, according to which the application is

Studies in Informatics and Control, 32(3) 31-43 September 2023

https://doi.org/10.24846/v32i3y202303

A Horizontal Tuning Framework for Machine Learning
Algorithms Using a Microservice-based Architecture

Simona-Vasilica OPREA1, Adela BÂRA1, Gabriela DOBRIȚA (ENE)1,2, Dragoș-Cătălin BARBU1,2*
1 Bucharest University of Economic Studies, Department of Economic Informatics and Cybernetics,
6 Piața Romană, Bucharest, 010374, Romania
simona.oprea@csie.ase.ro, bara.adela@ie.ase.ro
2 Bucharest University of Economic Studies, Doctoral School of Economic Informatics, 11 Tache Ionescu Street,
Bucharest, 010352, Romania
gabrielaene02@gmail.com, barbu.dragos@gmail.com (*Corresponding author)

Abstract: Usually, data collected through surveys or by means of sensors is prone to errors and inaccuracies, such as missing
data and outliers. Such datasets consist of numerical and string variables, with a high variety of values. Emerging issues,
for instance, missing or categorical data lead to errors in running most of the machine learning algorithms. Data analysis
and pre-processing are usually more substantial and time-consuming than the implementation of the machine algorithms.
Nevertheless, the obtained results are significantly influenced by the way missing data or outliers are approached. This paper
presents various methods for coping with null and extreme values. Furthermore, it highlights the significance of encoding and
scaling the analysed data and their impact on the performance of the machine learning algorithms. Thus, this paper proposes
a methodology for a Missing, Outliers, Encoding & Scaling (MOES) horizontal tuning framework using microservices
as applications for data processing in order to obtain the best combination of the employed methods. For exemplification
purposes, a real data set from the banking sector is used. Furthermore, the proposed methodology was tested using a second
real data set from the utilities sector and the results also showed that both the AUC (Area under the Curve) and execution
time were better than in the case of employing the PyCaret Python library.

Keywords: Microservices, Data pre-processing, Machine learning, Horizontal framework.

https://www.sic.ici.ro

32 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița (Ene), Dragoș-Cătălin Barbu

built around the business domain that the respective
software must serve. It is a fundamental notion for
microservice-based architecture because it helps to
identify the purpose of each individual service, thus
being the boundary of the service’s scope of activity
(Auer et al, 2021). It should not be forgotten that
each built model must be applicable to a singular
context and not intersect with other areas of the
application. This contextualization ensures the
logical and structural unity of the components and
leads to the avoidance of confusion. The contexts
will be mapped onto a map that will outline the
application as a whole (Hannousse & Yahiouche,
2021). Unlike a Service-Oriented Architecture
(SOA) or layered architecture (Hustad & Olsen,
2021; Haghgoo et al., 2021) a specific context
also involves the inclusion of data model and
data, all specific to that context (Lenarduzzi et al.,
2020). Microservices outline functionality of the
process logic and do not exclusively refer to layers
with a technical role, laid horizontally, from user
interaction to the database (Mazzara et al., 2021).
Their most important feature must be independent
operation. A microservice is considered loosely
coupled if it can be changed without changing other
areas of the application. It must be built in such a
way that it has a unitary structure, that is, it has a
single, well-defined purpose (Di Francesco, Lago
& Malavolta, 2019; Hamzehloui, Sahibuddin, &
Ashabi, 2019).

The remainder of this paper is structured as
follows. Section 2 briefly presents similar scientific
research. Section 3 proposes an original framework
using microservices as applications for tuning the
data pre-processing methods and evaluating their
impact on the results of a classification problem.
For simulation purposes, in Section 4 a simple
ML classification algorithm - linear regression,
was considered as tuning several algorithms is
out of the scope of this paper. The analysed data
set refers to the clients of a bank, their credits and
the probability of contracting a new credit. Details
regarding clients, such as age, sex, profession,
fidelity, prescoring and previous credits depiction
are included in the data set. The conclusions of this
research are presented in Section 5.

2. Literature Survey

Microservices can be deployed to run using virtual
machines or containers. Containers are preferred
for the proposed particular solutions because they
are portable, offer modularity, and require far fewer

resources than virtual machines, not requiring the
embedded operating system to function (Soldani,
Tamburri & Van Den Heuvel, 2018). This approach
ensures efficient scaling, and existing container
orchestration mechanisms such as Kubernetes help
manage container clusters on single systems (Shi et
al., 2021; Bernstein, 2014). An important decision
is related to how the components communicate. In
the case of synchronous communication, a request
is initialized by a component to the server on which
another component is running, during which the
request remains blocked until the operation is
completed. On the other hand, in the case of
asynchronous communication, the caller does not
wait for the results to be received to initiate another
operation. Considering the possibility of long
waiting times for running algorithms for example,
asynchronous implementation is preferable,
because it is not necessary to keep the connection
open between components for long time intervals.
A hybrid model of these two approaches lends itself
well to the architectural concept of the application.
Therefore, APIs will be implemented that are based
on the request-response model, but also on event
handling (Cinque, Corte & Pecchia, 2022).

Effective and successful use of ML techniques in
data analysis requires considerable effort on the
part of programmers, but especially on the part
of end users, for whom effective analysis brings
value. Expertise in the field of application of the
business sector is a necessary factor for achieving
performance. Most of the time, the experience
of the programmers does not cover the technical
notions necessary to understand the context in
which the algorithm is applied, and the importance
of the obtained results cannot be fully assimilated
(Abdullah, Iqbal, & Erradi, 2019). So constant
interaction between ML developers and end users is
necessary, but this involves increased development
time and effort on both sides. Therefore, the
proposed solution consists in granularizing the
involved processes, by implementing specific
functionalities and calling them as needed, in the
desired order, using data sets which were previously
altered by other methods. Thus, the analysis
process can be more efficient, and to some extent
automated, by storing the obtained results and
sending them to other methods, without repeating
the implementation steps. In this way, a dynamic
analysis environment is outlined, through which
a rapid testing of multiple analysis variations can
be achieved, from preprocessing to the selection
of the best model. Once the data has been entered

	 33

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Horizontal Tuning Framework for Machine Learning Algorithms Using a Microservice-based Architecture

into the pre-processing system, it is desired to
validate and verify the data in a scalable way to
run the algorithms, and even change or adjust the
implementation method for various models by
adjusting certain parameters or even the training
data and checking the accuracy of the results
(Baškarada, Nguyen & Koronios, 2020). All these
steps can be automated, but human intervention
cannot be completely excluded.

Several data pre-processing stages, such as
cleaning, transforming, reduction, scaling,
partitioning, augmentation and transfer learning
are surveyed by Fan et al. (2021) focussing mainly
on building operational data and its usage. The
impact of the data pre-processing is emphasised
by Zhu & Gao (2016) for classification purposes.
Moreover, a survey of the data pre-processing
methods for IoT data is performed by Jane &
Arockiam (2021) focusing on its usage and
impact on the performance indicators. The
necessity to implement pre-processing methods
is clarified and some criteria for implementation
are provided, which underlines the influence of
the pre-processing on the performance of the
classification algorithms.

Furthermore, influence of data pre-processing on
neural network performance is studied in (Zhou
& Ooka, 2021). Without data pre-processing,
the gradient descent algorithm can fail to reduce
errors during the training process. Kakkar et al.
(2018) combined data pre-processing methods
with imputation techniques for software defect
prediction. The effect of pre-processing of the
numeric features on the performance of the
classification algorithms is also investigated
(Alshdaifat et al., 2021).

Several normalization methods and techniques for
missing values are evaluated for various datasets
implementing a couple of classification algorithms.
It was concluded that the impact of the pre-
processing techniques depends on the classification
algorithm. Žliobaite & Gabrys (2014) investigated
the problem of adaptive pre-processing. Three
scenarios were described using computational
examples. They found that combining adaptive
pre-processing with adaptive online prediction is
a good approach that could be the starting point
in building future data pre-processing frameworks
to enhance the prediction accuracy. A combined
framework based on data pre-processing, neural
networks and a multi-tracker optimizer for wind

speed prediction is proposed in (Wang et al., 2020).
The results proved that the framework achieves
a higher forecast accuracy and support for wind
power dispatch.

3. Methods and Materials

The implementation of the ML algorithms usually
implies several stages, such as: Exploratory Data
Analysis (EDA), pre-processing, processing,
tuning the hyperparameters of the ML algorithms
and evaluation of the results. They can be
organized in a pipeline that consists in a sequence
of end-to-end activities. First, it is essential to
understand the data and potential issues that
could arise while running the ML algorithms.
For instance, the missing data issue has to be
identified and approached as only few algorithms
are able to handle it. Most of ML algorithms fail
to run and end in error when they encounter null
values. Furthermore, categorical data columns
are not usually processed by ML algorithms, thus
encoding them is mandatory.

Pre-processing the data mainly consists of several
stages, such as: treating the missing and extreme
values, encoding and scaling. These tasks are
probably the most time-consuming for data
scientists because there are numerous methods that
could lead to the best results, and it is difficult to
guess the right combination. Processing the data
is the next step in ML algorithm implementation
containing feature engineering, extraction and
selection, splitting, training and testing the data
sets. Tuning the hyperparameters of the ML
algorithms to improve the involved models is
a well-known practice that data sciences often
experience, but this paper proposes a method
to tune the pre-processing stages that are
incorporated into a flexible horizontal tuning
framework. It represents a combination of the
main pre-processing stages to enhance the
performance of the ML algorithms. Let us assume
that the available methods for missing values are
numbered from M.0 to M.n, where M.0 is the no
missing value method. Considering Python as
the software development platform, M.1 could
be fillna with mean method, M.2 could be fillna
with bfill or ffill method or a combination of the
two, M.3 could be interpolation (interpolate)
and M.4 could be multiple imputation with
chained equations or mice method and so on.
The extreme value methods are numbered from
O.0 to O.m, where O.0 is the no outlier treatment

https://www.sic.ici.ro

34 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița(Ene), Dragoș-Cătălin Barbu

and so on. In Figure 1, the MOES (missing,
outliers, encoding and scaling) horizontal tuning
framework is depicted. Depending on EDA, pre-
processing activities are carried out, but instead
of just considering one method for each activity
for missing values (for instance fillna with zero),
multiple methods are considered in combination
with other methods for outliers, encoding and
scaling. Thus, all combinations are tested for one or
more performance indicators that are characteristic
for a ML algorithm. This enables one to obtain the
best combination of the data pre-processing methods
that will generate the pre-processed data set that will
be subject to feature selection and training.

The purpose of the proposed framework is to offer
an efficient and optimal mechanism to achieve
the necessary combination of human interaction
at a minimum necessary level with the automatic
process of data analysis and machine learning.

3.1 Data Insights

The user will be presented with information about
the uploaded data set depending on the button
chosen. The file is passed to the constructor of the
Pandas package DataFrame object, and information
such as the number of records, column names, and
data type for each column is displayed by retrieving
the results of the pandas.DataFrame.info() function
call as it is illustrated in Figure 2.

3.2 Data Insights Application Using
User Input

The user may prepare the data set for analysis,
and the information is taken through forms in
which the user fills in information according to
the chosen process. If it is desired to remove
columns from the data set that are not relevant
for the analysis, the names of the columns must

Figure 1. MOES horizontal tuning framework

Figure 2. Getting data insights

	 35

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Horizontal Tuning Framework for Machine Learning Algorithms Using a Microservice-based Architecture

be specified, and they will be deleted by calling
the pandas.DataFrame.drop() function. Pandas
package allows selecting rows and/or columns
using indexing. The index therefore represents the
address where a certain piece of information can
be found. After the dataset is loaded, an integer
index is assigned to each row and each column,
starting from 0. If a specific column is desired to
be used for indexing, the user provides the name of
that column, and the loaded dataset will be altered
by the pd.DataFrame.set_index() function. If the
data set has to be sorted, the names of the columns
that will establish the order of the records as well
as the sorting mechanism must be mentioned.
It is also necessary for the user to specify the
names of the columns that hold calendar data
for their conversion, which is done through the
pd.DataFrame.to_datetime() function as it is

shown in Figure 3. Character string or numeric
data are automatically identified by Pandas.

3.3 Application for Processing and
Cleaning Data

The user can choose whether to delete duplicate
information, which is done by the pandas.
DataFrame.drop_duplicates() method. The
names of numeric or character string columns that
hold categorical variables can be also specified,
so that they can be processed efficiently later.
The conversion is done through the pandas.
DataFrame.astype() method, with the “category”
parameter. Furthermore, an important step in data
preprocessing is data encoding (as it can be seen
in Figure 4), given that many ML algorithms can
only make use of numerical data. The framework

Figure 3. Data insights application using user input

Figure 4. Application for preprocessing and cleaning data

https://www.sic.ici.ro

36 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița(Ene), Dragoș-Cătălin Barbu

implements two encoding variants, using
methods available on the SciKit-Learn library:
LabelEncoder and OneHotEncoder, with the
mention that the second one needs the first one
to be applied. So, the user can choose the desired
method, and all the columns that hold category or
character string data are transformed. The results
are displayed to the user and the data set is stored
and can be retrieved by the next service.

3.4 Application for Handling
Missing Data

The user can choose the desired option for
replacing the missing values, this step being
optional. The user fills in the information through
dropdown-type inputs from where the user
chooses the names of the columns for which
operations are performed to complete the missing
elements. For each chosen column, the user can
choose one of the following methods: deleting
the respective rows or column (implemented
using the pandas.DataFrame.dropna() method),
replacing the values ​​with a value provided by the
user (implemented using the pandas.DataFrame.
fillna(), which receives the respective value as a
parameter) or replacing the missing values ​​with
the mean or median of the values ​​of the respective
column calculated with the pandas.DataFrame.
mean() and pandas.DataFrame.median()
methods. In addition to these variants, the missing

values can be replaced with estimated values. The
prediction algorithm uses linear regression as it
is illustrated in Figure 5. Another method is to
impute values, and it is implemented by using the
SimpleImputer() model from the datawig library.
The results are displayed, and the new data set
is stored for later use. The advantage of such
an implementation approach consists in the fact
that the user can return to this service, choosing
different methods of handling missing values ​​to
re-estimate the involved models.

3.5 Application for Data
Standardization

Another particularly important step in data analysis
is standardization and/or normalization. The
performance of the implemented models is highly
dependent on the quality of the employed data,
and this step ensures smoothing and scaling of the
data. Depending on the method chosen by the user,
this service will implement two methods available
in the SciKitLearn library: MinMaxScaler() and
StandardScaler() as it can be seen in Figure 6. The
normalized data set will be saved.

3.6 Application for Outlier Treatment

The ScikitLearn library, through the ensemble
package, provides the implementation of the
Isolation Forest algorithm, which only needs the
parameter that provides the accepted margin of

Figure 5. Application for handling missing data

	 37

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Horizontal Tuning Framework for Machine Learning Algorithms Using a Microservice-based Architecture

allowed extreme values. The application trains the
algorithm on the entire data set, predicts the rows
identified as outliers, and alters the data set by
removing those rows. Similarly, the Local Outlier
Factor algorithm, available in the same library,
can be implemented. Furthermore, the algorithm
using Support Vector Machine (SVM) can be used
to classify values ​​as extreme or not. The algorithm

can be called through the OneClassSVM() class
from the sklearn.ensemble package.

The interquartile range can also be used to identify
such values ​​for each user-specified column, and
the implementation of this variant is shown in
Figure 7. The altered data set is stored at the level
of this service.

Figure 6. Application for data standardization

Figure 7. Application for outlier treatment

https://www.sic.ici.ro

38 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița(Ene), Dragoș-Cătălin Barbu

3.7 Application for Data Filtering
and Grouping

The user can filter the data set by specifying
the columns and values by which the set will
be filtered. Filtering can be approached in three
ways: filtering numeric values, string or calendar
date columns, or retrieving records within certain
ranges determined by row or column indexes. Data
grouping will be done by specifying grouping
columns and choosing grouping functions from
those provided by the application. The grouping
will be done using the two functions with the
corresponding parameters: pandas.DataFrame.
aggreagte() and pandas.DataFrame.groupby() as it
is shown in Figure 8. A similar solution for tuning
the pre-processing of data does not exist. However,
libraries (such as PyCaret from Python) represent
an end-to-end pipeline tool that automates the
entire process from data analytics to assessment
of the results. Nevertheless, PyCaret insists on the
automation of the process and the implementation
of multiple ML algorithms. In the pre-processing
stage, PyCaret handles the data set and it identifies

missing values, outliers, categorical features, data
imbalance, etc. and provides a solution to pre-
process the data set and prepare it for training. For
the missing values, the options are very simple, the
null values are replaced by mean, median or zero.
Mean is the default option. The other available
options are median and zero.

In comparison with the proposed method, PyCaret
offers a simple imputation method and does not
check the efficacy of combining the solutions for
missing values, outliers, encoding and scaling.
If the target column is imbalanced, PyCaret
imposes SMOTE to balance the data, but this is
not always worthy. Another drawback that can
be encountered with raw data sets is that it is
not easily processed by PyCaret. For instance,
columns with an unknown format will not be
automatically processed. They previously require
elimination or additional processing.

A brief comparison between missing, outliers,
encoding and scaling (MOES) and PyCaret is
described in Table 1.

Figure 8. Application for data filtering and grouping

Table 1. Comparison between MOES and PyCaret
Criteria MOES PyCaret
Flexible Yes No

Architecture Horizontal Vertical
Pipeline Yes Yes

Advantages Better results
Less time-consuming

Lower involvement of the researcher
Lower-level coding

Disadvantages More coding and involvement of the data scientist Not capable to handle all data sets (trouble)
Lower performance indicators

	 39

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Horizontal Tuning Framework for Machine Learning Algorithms Using a Microservice-based Architecture

4. Results

The analyzed data set consists of 20 columns and
18,239 rows with details about the clients of a
commercial bank, such as client identifier, name,
profession, sex, age, marital status, currency, annual
income, annual income in RON, account, credit,
date, credit category, credit description, prescoring,
savings, fidelity score, requested amount, threshold
amount, and contracting probability of a new
credit. Out of them 12 columns are numeric, and
8 columns are non-numeric, thus the data set has
a heterogenous structure.

Figure 9 describes the missing values as a heatmap
(left side) and in percentages (right side) for the
analyzed data set. 4,784 (26.23%) and 4,391
(24,07%) out of the 18,239 total values are
missing from the prescoring and fidelity column,
respectively. Without treating the missing values,
the ML algorithm (logistic regression) fails to
provide results. In addition, most ML algorithms
end in error when they encounter null values.

In this section, several simulations were described.
First, for missing values, four methods were
implemented with MOES, and the results were
compared. The rest of the pre-processing stages
were not modified. The settings for the other three

pre-processing stages are: the outliers were not
approached, LabelEncoder and StandardScaler
were considered for encoding the categorical
columns and scaling. The four methods for
missing values are: fillna with mean method, fillna
with bfill, interpolate and mice.

Initially, PyCaret failed to process the data set
as the Date column has an unknown format. The
column was eliminated from the raw data set.
With MOES, the same column was converted
to datetime and then the month and year were
extracted, and Date column was finally eliminated.
Therefore, PyCaret fails to work properly with
problematic data sets and data science has to
remove or previously transform them.

As PyCaret performs numerous steps, it requires
more time to run, and the results are not always
the best ones. For instance, in Table 2, the Area
Under the Curve (AUC) performance indicator
and the execution time are compared for MOES
with four different missing values methods and
for PyCaret. Although PyCaret requires only a few
lines of code, the execution time for only one basic
ML algorithm (linear regression) is much longer
in comparison with the execution time for MOES.

Figure 9. Missing values for the analyzed data set

Table 2. AUC and execution time for MOES and PyCaret

Fillna mean Fillna bfill Interpolate Mice PyCaret

AUC 0.952 0.928 0.934 0.999 0.986

Execution time 0m 26s 0m 26s 0m 26s 0m 41s 8m 15s

https://www.sic.ici.ro

40 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița(Ene), Dragoș-Cătălin Barbu

(a) Fillna with mean method

(b) Fillna with bfill method

(c) Interpolation with linear method

(d) Multiple imputation with chained equations

Figure 10. ROC-AUC curves and confusion matrices for the four methods for missing values

	 41

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Horizontal Tuning Framework for Machine Learning Algorithms Using a Microservice-based Architecture

In Figure 10, the ROC-AUC curves and confusion
matrices are presented for MOES, whereas in
Figure 11, similar graphs are shown for PyCaret
Python library.

The training data set includes 3,347 clients that
will not contract a new credit and 301 clients that
will contract a new credit from the bank. In the
scenario using fillna with mean method (Figure
10(a)), 61 of the 3,347 clients are mistakenly
classified as clients that would contract a new
credit. Moreover, 106 of the 301 clients are also
mistakenly classified as clients that would not
contract a new credit. Similar results are obtained
in the second and third scenario using fillna with
bfill method and interpolation (Figure 10(b), (c)).
However, the best results are obtained with mice
method, only 2 of the 3,347 and 2 of the 301
clients are mistakenly classified (Figure 10(d)),
which is a very good performance for a model
using a classifier. Furthermore, AUC score is
almost perfect (0.99).

As it is illustrated in Figure 11, PyCaret split the
initial data set into 4,030 clients with no intention
to opt for a new credit contract and 348 clients that
will contract a new credit. The area under the curve
is good (0.99), but the clients who were mistakenly
classified are more numerous compared with the
case when MOES was implemented.

Thus, the horizontal tuning framework provided
the best combination of the pre-processing stages:
mice for missing values, no method for outliers,
LabelEncoder for encoding and StandardScaler
for scaling data.

For outliers, two methods where implemented:
zscore and elimination of the values that were
under or above certain quantiles (for instance:

0.01 and 0.99), but the best results were obtained
when no method for outliers was implemented as
outliers are acceptable for ML algorithms.

However, for encoding the categorical columns,
two methods were used: LabelEncoder and
OneHotEncoder. Similarly to the case of missing
values, encoding the categorical columns is
mandatory. The first method, LabelEncoder,
outperformed OneHoteEncoder.

For scaling purposes, two methods were
implemented, namely RobustScaler and
MinMaxScaler, but StandardScaler slightly
outperformed them.

5. Conclusion

This paper proposed a horizontal tuning framework
using microservices as applications for data pre-
processing. It consists in combining methods for
missing values, outlier encoding and scaling. For
replicability purposes, detailed diagrams of the
analyzed applications were provided.

For the tested data set, the horizontal tuning
framework provided the best combination
of the pre-processing stages in the following
configuration: mice method for missing values, no
method for outliers, LabelEncoder for encoding
and StandardScaler for scaling data.

Although there is no similar framework, the
results obtained with the proposed framework
were compared with those obtained with the
PyCaret Python library and the conclusion was
that the proposed framework provided better
results in terms of execution time and area under
the curve performance indicator. One thing
that should be noticed is that one method could

Figure 11. ROC-AUC curves and confusion matrix with PyCaret library

https://www.sic.ici.ro

42 Simona-Vasilica Oprea, Adela Bâra, Gabriela Dobrița(Ene), Dragoș-Cătălin Barbu

perform best for a certain data set, that is why the
horizontal tuning framework using microservices
as applications was proposed, namely to combine
the pre-processing stages and obtain the best
combination for a certain data set.

Furthermore, the proposed method and PyCaret
were also applied for another data set that
consisted of electricity data for Tunisia used for
identifying non-technical losses and found out that

the proposed method outperformed PyCaret for
both AUC and execution time.

Acknowledgements

This work was supported by a grant of the
Ministry of Research, Innovation and Digitization,
CNCS-UEFISCDI, project number PN-III-P4-
PCE-2021-0334, within PNCDI III.

REFERENCES

Abdullah, M., Iqbal, W. & Erradi, A. (2019)
Unsupervised learning approach for web application
auto-decomposition into microservices. Journal of
Systems and Software. 151, 243-257. doi: 10.1016/j.
jss.2019.02.031.

Alshdaifat, E., Alshdaifat, D., Alsarhan, A., Hussein,
F. & El-Salhi, S. (2021) The effect of preprocessing
techniques, applied to numeric features, on
classification algorithms’ performance. Data. 6(2): 11.
doi: 10.3390/data6020011.

Auer, F., Lenarduzzi, V., Felderer, M. & Taibi, D.
(2021) From monolithic systems to Microservices:
An assessment framework. Information and
Software Technology. 137: 106600. doi: 10.1016/j.
infsof.2021.106600.

Baškarada, S., Nguyen, V. & Koronios, A.
(2020) Architecting Microservices: Practical
Opportunities and Challenges. Journal of Computer
Information Systems. 60(5), 428-436. doi:
10.1080/08874417.2018.1520056.

Bernstein, D. (2014) Containers and cloud: From LXC
to docker to kubernetes. IEEE Cloud Computing. 1(3),
81-84. doi: 10.1109/MCC.2014.51.

Cinque, M., Corte, R. D. & Pecchia, A. (2022)
Microservices Monitoring with Event Logs and
Black Box Execution Tracing. IEEE Transactions on
Services Computing. 15(1), 294-307. doi: 10.1109/
TSC.2019.2940009.

Di Francesco, P., Lago, P. & Malavolta, I. (2019)
Architecting with microservices: A systematic
mapping study. Journal of Systems and Software. 150,
77-97. doi: 10.1016/j.jss.2019.01.001.

Fan, C., Chen, M., Wang, X., Wang, J. & Huang, B.
(2021) A Review on Data Preprocessing Techniques
Toward Efficient and Reliable Knowledge Discovery
From Building Operational Data. Frontiers in Energy
Research. 9: 652801. doi: 10.3389/fenrg.2021.652801.

Garcia Rodriguez, M.J., Rodriguez Montequin,
V., Aranguren Ubierna, A., Santana Hermida, R.,
Sierra Araujo, B. & Zelaia Jauregi, A. (2021) Award

Price Estimator for Public Procurement Auctions
Using Machine Learning Algorithms: Case Study
with Tenders from Spain. Studies in Informatics and
Control. 30(4), 67-76. doi:10.24846/v30i4y202106.

Haghgoo, M., Dognini, A., Storek, T., Plamanescu, R.,
Rahe, U., Gheorghe, S., Albu, M., Monti, A. & Müller,
D. (2021) A cloud-based service-oriented architecture
to unlock smart energy services. Energy Informatics.
4(1). doi: 10.1186/s42162-021-00143-x.

Hamzehloui, M. S., Sahibuddin, S. & Ashabi, A.
(2019) A study on the most prominent areas of
research in microservices. International Journal of
Machine Learning and Computing. 9(2), 242-247.
doi: 10.18178/ijmlc.2019.9.2.793.

Hannousse, A. & Yahiouche, S. (2021) Securing
microservices and microservice architectures: A
systematic mapping study. Computer Science Review.
41, 100415. doi: 10.1016/j.cosrev.2021.100415.

Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F. &
Amira, A. (2021) Artificial intelligence based anomaly
detection of energy consumption in buildings: A review,
current trends and new perspectives. Applied Energy.
287(3): 116601. doi:. 10.1016/j.apenergy.2021.116601.

Huang, D., Wang, C.D., Wu, J.S., Lai, J.H. & Kwoh,
C. K. (2020) Ultra-scalable spectral clustering
and ensemble clustering. IEEE Transactions on
Knowledge and Data Engineering. 32(6), 1212-1226.
doi: 10.1109/TKDE.2019.2903410.

Hustad, E. & Olsen, D. H. (2021) Creating a
sustainable digital infrastructure: The role of service-
oriented architecture. Procedia Computer Science.
181, 597-604. doi: 10.1016/j.procs.2021.01.210.

Jane, V. & Arockiam, L. (2021) Survey on IoT Data
Preprocessing. Turkish Journal of Computer and
Mathematics Education. 12(9), 238-244.

Kakkar, M., Jain, S., Bansal, A. & Grover, P. S. (2018)
Combining data preprocessing methods with imputation
techniques for software defect prediction. International
Journal of Open Source Software and Processes. 9(1),
1-19. doi: 10.4018/IJOSSP.2018010101.

	 43

ICI Bucharest © Copyright 2012-2023. All rights reserved

A Horizontal Tuning Framework for Machine Learning Algorithms Using a Microservice-based Architecture

Khan, Z., Gul, A., Perperoglou, A., Miftahuddin,
M., Mahmoud, O., Adler, W. & Lausen, B. (2020)
Ensemble of optimal trees, random forest and random
projection ensemble classification. Advances in Data
Analysis and Classification. 14, 97-116. doi: 10.1007/
s11634-019-00364-9.

Lasso-Rodriguez, G., Winkler, K. (2020)
Hyperautomation to fulfil jobs rather than executing
tasks: the BPM manager robot vs human case,
Romanian Journal of Information Technology and
Automatic Control [Revista Română de Informatică
şi Automatică]. 30(3), 7-22. doi:10.33436/
v30i3y202001.

Lenarduzzi, V., Lomio, F., Saarimäki, N. & Taibi,
D. (2020). Does migrating a monolithic system to
microservices decrease the technical debt?. Journal
of Systems and Software. 169: 110710. doi: 10.1016/j.
jss.2020.110710.

Lungu, I., Bâra, A., Căruțașu, G. Pîrjan, A. & Oprea,
S.V. (2016) Prediction intelligent system in the field of
renewable energies through neural networks. Economic
Computation and Economic Cybernetics Studies and
Research. 50(1), 85-102. WOS: 000372478800005

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta,
A., Larsen, S.T. & Dustdar, S. (2021) Microservices:
Migration of a Mission Critical System. IEEE
Transactions on Services Computing. 14(5), 1464-
1477. doi: 10.1109/TSC.2018.2889087.

Oprea, S.-V. & Bâra, A. (2021) Machine learning
classification algorithms and anomaly detection
in conventional meters and Tunisian electricity
consumption large datasets. Computers & Electrical
Engineering. 94(C): 107329. doi: 10.1016/j.
compeleceng.2021.107329.

Schmied, T., Didona, D., Döring, A., Parnell, T. &
Ioannou, N. (2021) Towards a General Framework for
ML-based Self-tuning Databases. In: Proceedings of
the 1st Workshop on Machine Learning and Systems,
EuroMLSys 2021, 26 April, 2021, Online, United
Kingdom. New York, NY, United States, Association
for Computing Machinery. pp. 24-30.

Shi, Z., Jiang, C., Jiang, L. & Liu, X. (2021) HPKS:
High Performance Kubernetes Scheduling for
Dynamic Blockchain Workloads in Cloud Computing.
In: IEEE 14th International Conference on Cloud
Computing, CLOUD, 5-10 September, 2021, Chicago,
USA. IEEE. pp. 456-466.

Soldani, J., Tamburri, D. A. & Van Den Heuvel,
W. J. (2018) The pains and gains of microservices:
A Systematic grey literature review. Journal of
Systems and Software. 146: 215-232. doi: 10.1016/j.
jss.2018.09.082.

Van Aken, D., Yang, D., Brillard, S., Fiorino, A., Zhang,
B., Bilien, C. & Pavlo, A. (2021) An inquiry into
machine learning-based automatic configuration tuning
services on real-world database management systems.
In: Proceedings of the VLDB Endowment. 14(7). pp.
1241-1253. doi: 10.14778/3450980.3450992.

Wang, J., Wang, Y., Li, Z., Li, H. & Yang, H. (2020)
A combined framework based on data preprocessing,
neural networks and multi-tracker optimizer for wind
speed prediction. Sustainable Energy Technologies
and Assessments. 40: 100757. doi: 10.1016/j.
seta.2020.100757.

Zhou, Q. & Ooka, R. (2021) Influence of data
preprocessing on neural network performance for
reproducing CFD simulations of non-isothermal
indoor airflow distribution. Energy and Buildings.
230: 110525. doi: 10.1016/j.enbuild.2020.110525.

Zhu, C. & Gao, D. (2016) Influence of data preprocessing.
Journal of Computing Science and Engineering. 10(2),
51-57. doi: 10.5626/JCSE.2016.10.2.51.

Zimmer, L., Lindauer, M. & Hutter, F. (2021) Auto-
Pytorch: Multi-Fidelity MetaLearning for Efficient
and Robust AutoDL. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(9), 3079-3090.
https://doi: 10.1109/TPAMI.2021.3067763.

Žliobaite, I. & Gabrys, B. (2014) Adaptive
preprocessing for streaming data. IEEE Transactions
on Knowledge and Data Engineering. 26(2), 309-321.
doi: 10.1109/TKDE.2012.147.

