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1. Introduction

Over the past few decades, with the rapid 
development of autonomous driving algorithms, 
research has expanded from the ability to safely 
reach a designated destination to incorporating 
constraints such as comfort into motion planning 
(Li et al., 2022). In the application of autonomous 
driving technology, velocity planning played a vital 
role, with significant implications for efficiency, 
safety, comfort, and various other factors (Subotić 
et al., 2022). Concerning safety, velocity planning 
is essential, whether for changing lanes to overtake, 
braking to follow, or stopping to avoid obstacles. 
Especially when there is no space to adjust the 
path choice to avoid a collision, it is a more 
sensible decision to achieve obstacle avoidance by 
adjusting velocity (Jian et al., 2022). Regarding 
comfort, when autonomous driving vehicles need 
to avoid obstacles during commuting or travelling, 
such as in continuous traffic light sections, velocity 
planning without comfort constraints can result in 
a terrible ride experience for passengers and may 
even cause motion sickness (Jones et al., 2019). 
Therefore, a good velocity planning is crucial 
in ensuring both driving safety and meeting the 
comfort needs of passengers.

By analyzing the problems associated with 
autonomous driving in urban driving scenarios, 
three core metrics for velocity planning algorithms 
have been summarized in this paper: simultaneity, 
safety and comfort.

High simultaneity performance was required 
for velocity planning algorithms to plan optimal 
trajectories quickly, in complex environmental 
scenarios (Chen et al., 2019; Yang et al., 2022). 
Continuous optimization algorithms have gained 
attention in recent years for their ability to define 
cost functions and constraint equations almost 
simultaneously (Consolini et al., 2017; Consolini 
et al., 2022). These approaches transform velocity 
planning into minimum time or minimum Jerk 
problems, which can be efficiently solved using 
optimization algorithms. Various solutions had 
been proposed by researchers for the minimum 
time velocity planning problem. Wang, Liu & 
Zheng (2021) utilized optimization algorithms to 
find the time-optimal velocity profile satisfying 
vehicle dynamics constraints in terms of lateral 
and longitudinal acceleration. The approach 
proposed in (Cabassi, Consolini & Locatelli, 
2018) performed three iterations to achieve the 
optimal solution for minimum time optimal 
velocity planning on a given path, which reduced 
computational and logical operations.

Optimization algorithms have been widely 
used in velocity planning due to their high real-
time performance. Most papers that employed 
optimization algorithms set hard constraints, 
such as acceleration and Jerk, which often 
caused planner solution failures in unknown 
and complex scenarios (Guarino Lo Bianco, 
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2013; Ni et al., 2022). Setting the constraint 
value too low reduced the algorithm solution 
space and limited the exploitation of vehicle 
dynamic performance. On the other hand, if the 
constraint was set too high, passenger comfort 
would be compromised. To address the issue of 
hard constraints lacking dynamic adaptability, 
researchers applied punishment to soften 
the constraints as in (Zhang et al., 2018). In 
(Artuñedo, Villagra & Godoy, 2021), a fallback 
strategy was proposed to generate an obstacle 
avoidance velocity profile by providing larger 
constraint values, when the constraints failed to 
provide a solution for the planner. However, this 
algorithm has low efficiency under its fallback 
strategy. Therefore, a method was needed to not 
only guarantee the real-time performance of the 
algorithm but also improve its dynamic adaptation 
to the environment.

Velocity planning was a major way to improving 
comfort levels in motion planning. Experiments in 
(Jones et al., 2019; Mata-Carballeira, del Campo 
& Asua, 2021) showed that high acceleration, 
deceleration, and Jerk constraint were the main 
factors causing passenger discomfort. The 
introducing of acceleration and deceleration 
constraints in (Consolini et al., 2022) improved 
the comfort index. Further research in (Artuñedo, 
Villagra & Godoy, 2021) revealed that Jerk 
constraint had a greater impact on comfort 
levels than acceleration and deceleration 
through numerous experiments. However, the 
Jerk constraint had non-convex and non-linear 
characteristics, which weakened the simultaneity 
performance of the algorithm. To address this 
issue, researchers Zhang et al. (2018) used an 
approach called Pseudo-Jerk to simplify and 
linearize the Jerk constraint. However, Pseudo-
Jerk deviated too much from the true value. In 
(Shimizu, Horibe & Watanabe, 2022), a predicted 
maximum velocity profile was obtained by using 
the maximum acceleration and Jerk constraint 
for the forward-backward Jerk filtering method, 
which in its turn linearized the Jerk constraint. 

To improve the safety and comfort of autonomous 
driving velocity planning, this work has made 
three main contributions:

 - An efficient simultaneous velocity linear 
programming solution method is proposed to 
solve the time-optimal velocity profile on the 
path quickly;

 - Through a dynamic constraint frame strategy, 
a softened relaxation of the hard constraint 
is proposed to solve the maneuverability 
degradation of the car caused by the hard 
constraint of velocity planning, in the 
obstacle avoidance scenario, thus addressing 
the lack of adaptability of hard constraints in 
dynamic scenarios;

 - The acceleration and safety avoidance model 
is used for obstacle velocity limitation 
filtering, and the linearization of Jerk 
constraint is achieved by using the LP method 
twice, in order to obtain the time-optimal 
velocity profile of the trajectory, aiming at 
addressing the non-convex and non-linear 
problem caused by the Jerk constraint.

This paper is organized into 6 sections. Section 2  
addresses the challenge of defining velocity 
planning along a predetermined path, taking 
various constraints into account. Section 3 
elaborates on the dynamic constraint framework, 
while Section 4 details the linearization treatment 
of these constraints. The effectiveness of this 
approach is validated through multiple simulation 
scenarios, as presented in Section 5. Section 6 
provides concluding remarks.

2. Problem Statement

In essence, motion planning is a three-dimensional 
process including space and time (Perri, Guarino 
& Locatelli, 2015; Iancu et al., 2022). A common 
hierarchical motion planning framework is 
presented in (Fan et al., 2018) as illustrated in 
Figure 1. 

Global 
path

Interframe 
track 

splicing

Local Path Planning

Velocity Planning

Planner

Map Perception Prediction

controller

Figure 1. Layered motion planning framework

The purpose of velocity planning is to find 
time-saving and comfortable velocity profiles 
for autonomous driving that satisfy a series of 
constraints while ensuring driving safety. 
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The following passage presents the formal definition 
of the arc length parametric velocity planning 
problem. Let the arc length along the path s  to be 
a function of time t , i.e. ( )s s t= . The ego-vehicle 
travels along path s . The single-track vehicle 
model, depicted in Figure 2, is used to represent 
the actual vehicle kinematics and dynamics.

Path 
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Ego Frame
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Figure 2. Vehicle kinematic models

In this paper, the decision variables for velocity 
planning are defined as follows:

2( ) :
,

( ) :
s s
s s

β
α
 =


=



                                                   
(1)

where β  represents the square of the first-order 
derivative of path s with respect to time t and α  
indicates the second-order derivative of path s  
with respect to time t. The relationship between
β  and α  can be obtained below:

2( ) 2 2 2 2 ,d d s ds ds dss s
ds ds ds dt ds
β α= = = = =

  

 

            
(2)

where ( )j s  is an expression for Jerk constraint 
along path s, defined as the first-order derivative 
of acceleration α  with respect to time t:

( ) : .d d ds dj s s
dt ds dt ds
α α αα β= = = = =

                
(3)

When performing velocity planning, avoiding 
dynamic or static obstacles form the path is 
essential. This paper accomplishes the obstacle 
avoidance task by imposing a time constraint on 
the ego-vehicle reaching the obstacle. The arrival 
time T corresponding to the path s can be written as:

1
2

0
( ) ( ) .

s
T s l dlβ

−

= ∫                                          
(4)

A normal acceleration constraint is introduced 
into velocity planning to prevent the vehicle 

from sliding sideways during driving, based 
on the research work from (Consolini et al., 
2017). According to the acceleration constraint, 
maximum velocity vmax and curvature κ of the ego-
vehicle should satisfy:

,
N
max

maxv
α
κ

≤
                                                

(5)

The algorithm aims to plan a time-optimal velocity 
profile that satisfies velocity, acceleration, Jerk, 
and obstacle constraints. To facilitate numerical 
calculations, the time-optimal velocity planning 
problem is discretized. Let N be the number 
of points of the discretized trajectory and the 
arc length of the thi  point be written as si. The 
problem is discretized below:
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where {1,..., }i N= . Velocity constraint is 
represented by (8), which is derived from four 
types of constraints: traffic rule, high precision 
map, comfort and dynamic constraints.

The longitudinal acceleration constraint is 
expressed in (9), while the ratio of lateral 
acceleration to curvature for velocity is described 
in (10). The Jerk constraint and obstacle avoidance 
constraint are defined in (11) and (12). However, 
due to the non-convex nature of (11) and the non-
linear nature of (12), finding the optimal solution 
of problem (6) can be time-consuming, when the 
number of discretization points N is large.

To address this velocity planning problem, the 
present paper proposes a dynamic constrained 
frame strategy by using velocity filtering with 
acceleration as the threshold and applies the LP 
method twice to calculate the velocity.
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3. Dynamic Constraint  
Framework Strategy

When a solution for obstacle avoidance cannot be 
found within the hard constraint range, a dynamic 
constraint framework is created by dynamically 
relaxing comfort constraints based on the safe 
braking distance of the vehicle. This creates a safe 
velocity profile that can adapt to different dynamic 
environments, thus enabling obstacle avoidance.

When driving on urban or high-speed roads with 
heavy traffic, velocity planning is often preferred 
over lane changing when an obstacle enters the 
trajectory of the ego-vehicle. However, in dynamic 
environment, the hard constraint restriction may 
cause the velocity planner to fail in finding a safe 
obstacle avoidance solution. To overcome this 
limitation, the hard constraint dynamic relaxation 
algorithm is used to dynamically adjust the range 
of constraint frames.

The entire braking process is divided into a brake 
preparation phase, a brake starting phase and a 
full braking phase. Firstly, the braking preparation 
phase is the duration t1 between the braking 
command and the braking operation, also known 
as the braking delay time. This section considers 
the time required for the vehicle to maintain its 
initial velocity at a constant rate, which is also the 
average time for the velocity planner to carry out 
a planning exercise. Secondly, during the brake 
starting phase, the vehicle decelerates at a rate of 

1α . Limited by the maximum Jerk constraint from 
the current acceleration it was changed to 1α  after 
time t2. The duration of this phase is t2. Finally, 
in the full braking phase, the vehicle decelerates 
uniformly until it reaches the stationary obstacle 
(a parked car with a velocity of 0), which takes a 
duration of t3.The vehicle safety braking distance 

1D  represents: 
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where vco and vcf indicate the original planning 
speed of the ego-vehicle and the travel velocity 
of the obstacle vehicle, respectively.

It’s important to note that the range of slack of the 
constraint frame is not infinite. For instance, the 
minimum braking deceleration is calculated as the 
safe braking distance of the vehicle at the initial 
moment of braking, using the distance S1 from the 
vehicle on the path: 

2 2

1 1

2 2 2
2

3
1 0 1 0

1( )
2 .

12   )
2

cf
L
c t t

c c

max

min

maxt t

j t v

S v t v t dt j t dt
α

−
=

 − − +  ∫ ∫
  

(14)

The road adhesion coefficient limits the maximum 
braking deceleration, and the maximum value is 
calculated by the formula: 

.L
min gα µ=                                                    (15)

The road adhesion coefficient and the maximum 
vehicle deceleration are expresses as µ  and 

gµ , respectively. The dynamic range of the 
constraint frame can be obtained from (14) and 
(15). The range of the maximum safe acceleration 
of the vehicle is calculated using the lateral and 
longitudinal acceleration constraints and the 
road surface adhesion coefficients. The dynamic 
constraint frame of the vehicle is depicted 
in Figure 3, where the solution spaces of the 
normal friction circle, the constraint box, and the 
relaxation constraint are also shown.

The dynamic constraint frame offers greater 
maneuverability to ensure safe driving while 
maintaining as much comfort as possible. 
Ultimately, the algorithm dynamically adjusts the 
driving parameters of the ego-vehicle for different 
traffic conditions, allowing a successful velocity 
planning for obstacle avoidance.

Figure 3. Schematic diagram of the vehicle dynamic 
restraint frame

4. Constraint Linearization Process

When Jerk and obstacle constraints are taken into 
account, velocity planning becomes a non-convex 
and non-linear problem. To address this issue, 
linear programming and obstacle velocity filtering 
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are combined in our method to the linearization 
of constraints, ensuring both high accuracy and 
computational efficiency. The linearization process 
encompasses three steps. Firstly, we devise a novel 
algorithm to filter obstacle velocities based on the 
acceleration threshold. This filtering converts the 
obstacle avoidance constraint into a maximum 
velocity constraint and completes the linearization 
process of the obstacle avoidance constraint. In 
the second step, the objective and constraints are 
used to perform the first linear programming, and 
an approximate velocity profile is obtained. This 
profile is then used to calculate the Jerk constraint, 
which is also linearized. Finally, in the third step, 
the linearized Jerk constraint is incorporated and 
a second linear programming is performed to 
generate the time-optimal velocity profile. 

4.1 Obstacle Velocity Limiting Filtering

Instead of using obstacle avoidance constraint 
expressed in (12), acceleration is introduced 
as a filtering threshold, and a new approach of 
ego-vehicle obstacle avoidance is implemented 
by modifying the maximum velocity constraint. 
In this study, it is assumed that the trajectory of 
a dynamic obstacle follows a continuous linear 
function of its velocity, as demonstrated in (16). 

( ) ( ) ,   [ , ],out obs in in in outs t v t t s t t t= − + ∈               (16)

where sin and sout represent the arc lengths of 
the obstacle cut-in and cut-out on current path 
respectively, while tin and tout represent the obstacle 
cut-in and cut-out times respectively. 

Define two deceleration thresholds Aα , Bα , 
subject to A Bα α≤ , and bring Aα , Bα  in (13) to 
find the corresponding safety threshold distances 

AD  and BD . Figure 4 illustrates a schematic 
example where the motion path of dynamic 
obstacles is indicated by the red dotted line, and 
the trajectory of the ego-vehicle with obstacle 
constraints is depicted by the green solid line.

Obstacle 
Trajectory

Trajectory
with obstacle 

avoidance

S

T

As
ins

At Bt

Figure 4. Schematic of the obstacle velocity limiting 
filtering algorithm

The ego-vehicle maintains its velocity at the 
original maximum velocity until it reaches a 
distance of AD  from the dynamic obstacle. When 
the distance to the obstacle is less than AD , the 
maximum velocity is uniformly decelerated at SA 
with a deceleration Aα . The current discrete point 
is defined as k and k+1 as next discrete point. The 
velocity during the pre-deceleration of the vehicle 
is adjusted as follows:

2
1 12 ( ).

kk A k kv v s sα+ += − −                              (17)

When the distance between ego-vehicle and 
obstacle is less than BD , the ego-vehicle 
decelerates uniformly at a deceleration Bα . The 
velocity of ego-vehicle is adjusted below:

2
1 12 ( ).

kk B k kv v s sα+ += − −                           (18)

When the distance between the ego-vehicle and the 
obstacle is less than BD , the ego-vehicle reduces 
its velocity to match that of the obstacle. Then, it 
follows the obstacle at the same velocity until it is 
no longer in the path of the ego-vehicle. Algorithm 
1 provides further details of this process:

Algorithm 1. Obstacle Velocity Limit Filtering

 Input: Obstacle Trajectory( , , ) 
            Maximum Velocity Profile ( , )

ˆ Output: Updated Maximum Velocity 
1: for   1 to -1 do
2:       Find ( , )which is nearest of ( 

in in out

ego

k

max

ma

obs obs

x

s t t
s v

v
k N

s t s
=

1

2
, , -1 -1

B

2
, , -1 -1

, ( - ) / );
3:       ds = ;
4:      if ds < D  then

ˆ5:              ( ) - 2 ( - );

6:      else if ds < D  then

ˆ7:              ( ) - 2 ( - );

8:      else 
9

k k k

k obs

A

k k A k k

k k B

max max

max m x ka k

s s v
s s

v v s s

v v s s

α

α

+

−

=

=

, ,ˆ:               ;
10:      end
11: end

ˆ12: return v

max max

max

k kv v=

where vmax represents the initial maximum 
velocity constraint. The maximum velocity 
constraint for N  discrete trajectory points 
can be expressed as T

,1 ,: [ ,..., ]max max Nmaxv v v= .The 
driving distance of vehicle on the travel path 
is denoted by Sego in this paper, which can be 
expressed as T

1: [ ,..., ]ego Ns s s= , and ˆmaxv  represents 
the velocity constraint output after the obstacle 
velocity limit filtering.
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4.2 Linearization of Jerk Constraint

This step is the Jerk constraint processing. The 
Jerk constraint in (19) is expressed as:

1 1

1 1

( ) ( ) .i i i i
i i i

i i i i

j v
s s s s
α α α α

β+ +

+ +

− −
= =

− −                    
(19)

Analysis of the above equation shows that the 
bilinear term 1

1

( )i i
i

i i

v
s s
α α+

+

−
−

 causes Jerk constraint 
to become a non-linear constraint. To linearize 
Jerk constraint, one of the linear terms vi needs 
to be fixed. The basic idea of the current study is 
to roughly estimate an optimized velocity profile 
and replace vi in the optimization process, so 
that Jerk constraint becomes linear. In (Zhang et 
al., 2018), a pseudo-Jerk approach is proposed. 
This method achieves linearization of Jerk 
constraint by omitting one of the linear terms vi. 
This transformation results in the Jerk constraint 
being changed from the first-order derivative of 
acceleration with respect to time to the first-order 
derivative of acceleration with respect to arc 
length s. However, the Pseudo-Jerk value obtained 
through this method is lower than the actual Jerk 
value over a wider range of velocity. For instance, 
when the ego-vehicle is at high velocity, the 
Pseudo-Jerk value becomes infinite while the 
ego-vehicle velocity is 0 because the velocity term 
is omitted. This significant difference makes the 
Pseudo-Jerk value less reliable than the actual Jerk 
constraint value. 

The maximum acceleration and Jerk constraint for 
Forward-backward Jerk filtering used in (Shimizu, 
Horibe & Watanabe, 2022) give an estimated 
maximum velocity profile vp to fix vi. This method 
is equivalent to amplifying the current velocity vi, 
so in 1

, , ,
1

( )min mp a
i i

i i ix
i i

a a
j v j

s s
+

+

−
≤ ≤

−
 constraint, the actual 

range of the Jerk constraint is reduced, limiting 
the acceleration change and potentially leading to 
failure in obtaining a linear programming solution 
in critical Jerk cases. 

Therefore, this paper presents a new linear 
programming approach based on the Jerk 
linearization method, building on studies in 
(Shimizu, Horibe & Watanabe, 2022; Zhang 
et al., 2018). By omitting the non-linear Jerk 
constraint, the first linear programming step 
aims to find a more accurate predicted velocity 
profile. The result of first linear programming is 
expressed as *

kβ , and the linearization of Jerk 

constraint is completed by replacing vi in the 
bilinear term 1

1

( )i i
i

i i

v
s s
α α+

+

−
−

 of Jerk constraint with 

the result *
kβ  being he approximate optimal 

solution. The final velocity profile is obtained 
by applying the linearized Jerk constraint on 
this issue and implementing a second linear 
programming solution. 

Under the constraints (7), (8), (9), (10), first linear 
programming method is used to solve function 
(6). The problem is convex and can be verified 
as such. For readers who are unfamiliar with 
convex optimization, please refer to (Boyd & 
Vandenberghe, 2004) for details. In short, it can 
be seen from (6) that the objective is a negative 
power function and hence convex. Due to the 
linearity of the derivative, β and α exhibit a convex 
relationship, making equation (7) convex. For the 
inequality constraints of velocity and acceleration, 
the constraints on β and α from the equation and 
inequality are linear, making them convex as per 
equations (8) and (9). In relation to the normal 

acceleration constraint max, 2( )
( )

α
κ

N
i

is
, with curvature 

serving as the variable (essentially acting as a 
constant value), the constraint manifests as the 
squared function of the absolute value of the 
curvature. Consequently, it exhibits convexity as 
illustrated in equation (10). In this paper, since 
function (6) is convex, the equation constraint 
(7) is mapped to each of the others, and since the 
inequality constraints (8, 9, 10) are convex, the 
optimization problem is convex.

4.3 Second Linear Programming

After the obstacle velocity limit filtering and the 
linearization of Jerk constraint, the linearized 
Jerk constraint (21) obtained from the first linear 
programming method is brought into function 
(6). Under the constraint conditions of (7), (8), 
(9), (10), (21), function (6) is solved by a second 
linear programming.

*1
, ,

1

( ) .i i
min i i max i

i i

j j
s s
α α

β+

+

−
≤ ≤

−                         
(20)

This is a linear programming problem that can be 
solved efficiently. The time-optimal velocity iv  is 
finally obtained through the obstacle velocity limit 
filtering and linear programming method for two 
times, which is shown as: 

.i iv β=                                                    (21)
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*
iβ  is the optimal solution of velocity obtained 

through the first linear programming and it ensures 
that the optimization result does not exceed the 
velocity and acceleration limits. The cost function 
of the optimization makes the velocity as large as 
possible. The velocity profile, after the initial linear 
programming solution, doesn’t deviate much from 
the actual velocity. This approximation ensures a 
higher level of accuracy in maintaining the Jerk 
constraint. Compared with (Zhang et al., 2018) 
and (Shimizu, Horibe & Watanabe, 2022), this 
approach of approximate linearization of Jerk using 
the results of linear programming is more precisely. 

5. Simulation Experiments

In this section, the proposed optimization-based 
time-optimal velocity planning method is tested 
using simulations, considering a variety of 
scenarios. The same numerical experiments as 
those in (Shimizu, Horibe & Watanabe, 2022) are 
chosen to perform challenging velocity planning 
numerical experiments under various scenarios. 
The velocity of the future 30m trajectory of 
the vehicle is solved by planning algorithm in 
the experiment. In addition, the sample size 
of path is set as N=300 and the distance of 
sampled path points is set as 0.1ds m= . The 
acceleration constraint and Jerk constraint 
are set as 2

, 2.0 /L
max i m sα = , 22.0 /L

min,i m sα = − ,  
20.6 /N

max,i m sα = ,  31.0 /max,ij m s=  a n d 
3

, 1.0 /min ij m s= − . These constraints will be applied 
in several subsequent application scenarios.

5.1 Experimental Scenario of Traffic 
Participant Cutting into the 
Trajectory of the Ego Vehicle

In the first simulation scenario, the initial values 
of the ego-vehicle velocity, acceleration and 
Jerk constraint are 0 . /2 5m sv = , 2

0 0.0 /m sα = , 
3

0 0.0 /j m s=  respectively. Deceleration thresholds 
are set to 20.8 /A m sα = , 21.5 /B m sα = . Set the 
traffic participant parameters as follows: velocity 
is vobs = 1.0m/s, cut-in time is 0 2.0=t s , departure 
time is tN = 8.0s, initial distance of the obstacle 
from the vehicle is S0 =8.0m, and obstacle sizes 
are obswidth = 2.0m, obslength = 4.0m, respectively.

5.1.1 Obstacle Velocity Limited Filtering 

Firstly, the results of obstacle velocity-limited 
filtering are presented, as shown in the previous 
section. Figure 5 shows the filtered velocity 

profile for obstacle avoidance, where the blue 
solid line denotes the original displacement time 
relationship, the red dashed line denotes the 
mapping of obstacle travel in the S-T diagram, 
and the green solid line denotes the ego-vehicle 
maximum velocity constraint after applying 
the obstacle velocity limit filtering. The safety 
threshold distances 3.31AD m=  and 1.78BD m=  
can be found according to the formula for the 
deceleration threshold in (13).

Figure 5. Obstacle vehicle velocity limitation filtered 
S-T diagram

The constraint track of the ego-vehicle (blue 
solid line) and the trajectory of the obstacle 
car (red dashed line) intersect (collide) at a 
distance of 8.61s m=  from the ego-vehicle and 
at 2.87t s=  . By creating an obstacle velocity 
limitation filter profile, this algorithm completes 
the linearization of the obstacle avoidance 
constraint. As shown in obstacle velocity 
limiting filter profile (the green solid line), the 
distance between ego-vehicle and obstacle is 
less than DA at 3.6s m=  and 1.23t s=  . Then the 
vehicle runs into the first stage of deceleration 
and brakes with deceleration Aα , the distance 
between ego-vehicle and obstacle is less than BD  
at 4.8s m=  and 1.67t s= . Next the vehicle runs 
into the second stage of deceleration and brakes 
with deceleration, the velocity of ego-vehicle 
is reduced to the same velocity as the obstacle 
vehicle until 7.0s m=  and 2.90t s= .The ego-
vehicle performs an uniform velocity motion 
and maintains a distance of 0.91m  until 8.0t = ,  
when the obstacle leaves the path and ego-
vehicle resumes the original velocity constraint. 

The non-linear obstacle avoidance constraint 
can be transformed into a linear velocity profile 
constraint by employing this obstacle velocity 
limiting filter profile method, allowing the ego-
vehicle to adjust accordingly.
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5.1.2 Initial Velocity Profile Generation 

The initial velocity profiles meet the requirements 
of road velocity constraints, dynamic obstacle 
avoidance and other hard constraints. Figure 
6 shows the distribution of the initial velocity 
profile of the ego-vehicle, where the red solid 
line indicates the original maximum velocity 
profile. By including the initial velocity profile 
into the Jerk constraint, the constraint can be 
linearized. The ink blue dashed line indicates 
the maximum velocity profile during dynamic 
obstacle avoidance. Moreover, the yellow solid 
line indicates the maximum velocity profile after 
the first LP filtering applied in this paper. The 
velocity profile obtained in this step provides 
the maximum velocity constraint for next linear 
programming step.

Figure 6. S-V diagram of the initial velocity profile

The method proposed in this paper is closer to 
the original Jerk constraint and alleviates the 
problem of solution space reduction caused by 
linearization. In conclusion, these results confirm 
that the proposed method can achieve maximum 
velocity constraint under comfort constraints.

5.1.3 Velocity Profile Solving

Figure 7 displays the velocity planning results 
of the algorithm proposed in this paper, in 
comparison with those of the algorithm proposed 
in (Shimizu, Horibe & Watanabe, 2022), at the 
same scenario. The diagram consists of three 
components: velocity, acceleration, and Jerk 
profile, with their values varying with distance s.

The purple dashed line represents the maximum 
velocity profile for dynamic obstacle avoidance. 
The green profile in the figure shows the final 
velocity profile obtained by using the obstacle 
velocity limiting filter with acceleration as 
the threshold and using LP twice, with a total 
trajectory time of 14.3 seconds. The red profile 
indicates the final velocity profile using the method 

from (Shimizu, Horibe & Watanabe, 2022), with a 
total trajectory time of 14.6 seconds. Additionally, 
compared with traditional filtering, this method 
may complete pre-acceleration preparation in 

11.8s m= .

Figure 7. Velocity, acceleration and Jerk profile for 
the obstacle vehicle cut path scenario

Although the LP adopted for two times has the 
same velocity as the method proposed in (Shimizu, 
Horibe & Watanabe, 2022), when 12.3s m= , the 
LP adopted for two times has an acceleration 
of 21.31 /m s , when the ego-vehicle has better 
maneuverability, due to the pre-acceleration. 
Therefore, compared to this algorithm, the method 
proposed can better exploit the maneuverability 
of vehicle under the same constraints. In order 
to measure the comfort of velocity planning, it 
has been confirmed in (Mata-Carballeira, del 
Campo & Asua, 2021) that Jerk constraint plays 
a dominant role in influencing comfort. Therefore, 
the mean squared error of Jerk (JMSE) values is 
introduced as a criterion for evaluating comfort. 
The formula is as follows:

2

1

1 ˆ( )
n

i i
i

JMSE j j
n =

= −∑
                                  

(22)

The JMSE value obtained by means of the 
proposed method, as calculated using (22), is 
0.64. In comparison, the JMSE value obtained 
by means of the Filtered-LP method applied in 
(Shimizu, Horibe & Watanabe, 2022) is 0.69. 
Therefore, the present velocity planning method 
yields a superior comfort metric for the generated 
velocity profiles compared to Filtered-LP method. 
In a word, the algorithm in this paper can find 
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the time-optimal velocity profile, acceleration 
profile and Jerk profile within a planned period 
of a dozen milliseconds, and all values are within 
the constraint range.

To better demonstrate the performance of the 
proposed method, experimental tests have been 
conducted on different vehicle speeds in the same 
scenario, as shown in Table 1.

The experimental comparison results show that 
the method is able to find an optimal solution that 
satisfies the constraints in various scenarios. In 
other words, the proposed method can generate 
a better solution to the original problem, without 
violating the original constraints.

5.2 Obstacle Start-stop Scenario Scene 
Avoidance Experiment

When a stationary object blocks the path of ego-
vehicle or a red light is on, the test experiment 
scenario simulates the braking process to avoid 
obstructions. The purpose of experiment is 
to check whether the ego-vehicle can brake 
successfully to avoid obstacles at a safe distance 
from obstacles. Once the obstacles disappear from 
the track, it can resume motion planning.

In this scenario, the initial vehicle velocity 
value is 0 . /1 5m sv = . The remaining initial 
parameters remain unchanged. The traffic 
participant parameters are as follows: velocity is 

/0.0obs m sv = , cut-in time is 0 3.0t s= , departure 
time is 13.0Nt s= , initial distance of the obstacle 
from the vehicle is 0 17.0S m= .

In Figure 8, the representation of the line styles 
is made consistent with that in Figure 5. The 
constrained trajectory of ego-vehicle and the 
static obstacle trajectory are shown to intersect 
at a distance of 14.9m  from the ego-vehicle, 

at 4.13t s= . Through the establishment of 
an obstacle velocity-limited filter profile, the 
linearization of the static obstacle constraint 
is accomplished. As depicted by the obstacle 
velocity-limited filter profile, the distance from 
the vehicle to the obstacle is observed to be less 
than 5.65AD m= , when 9.4s m=  and 3.13t s= . At 
this point, the vehicle enters the first deceleration 
braking phase, applying a deceleration of 

20.8 /A m sα = , at 12.1s m=  and 4.15t s= , where 
the distance between the vehicle and obstacle 
is determined to be less than 3.02BD m= .  
Subsequently, the vehicle is introduced into 
the second deceleration braking phase, with a 
deceleration of 21.5 /B m sα = . Until 14.2s m=  
and 5.81t s= , the velocity of the ego-vehicle is 
reduced to zero, allowing it to halt either before 
obstacles or at the red light stop line. This state 
is maintained until 13.0t s= , when the obstacle 
is observed to leave the path of the ego-vehicle 
or the commencement of the green light phase 
occurs, at which juncture the original velocity 
constraint of the vehicle is reinstated. 

Figure 8. Obstacle velocity-limited filtered S-T 
diagram for the obstacle start-stop scenario

As it can be seen from the S-T diagram, the 
ego-vehicle can successfully complete obstacle 
avoidance by the restriction of obstacle velocity 
limiting filter profile. After linearization of 
obstacle constraint and Jerk constraint, it is 
possible to acquire the velocity, acceleration, and 

Table 1. Comparison of experimental results for different vehicle velocities

Velocity of ego-
vehicle (m/s)

Velocity of obstacle 
course (m/s)

Twice LP Total 
time taken(s)

Filtered-LP Total time 
(s) (Shimizu, Horibe & 

Watanabe, 2022)

Twice LP
JMSN

Filtered-LP
JMSN

2.0 1.0 14.4 14.6 0.58 0.67
2.0 1.5 13.3 13.6 0.62 0.68
2.0 2.0 12.1 12.4 0.61 0.66
2.5 1.0 14.3 14.6 0.64 0.69
2.5 1.5 13.0 13.4 0.63 0.69
2.5 2.0 12.0 12.2 0.59 0.64
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Jerk profile for obstacle scenario, as shown in 
Figure 9, by using LP twice. 

Figure 9. Velocity, acceleration and Jerk profile in 
obstacle start-stop scenario

The experiment results show that the total time 
taken for the trajectory planned to use twice LP 
is 12.9s  and the total time taken for the trajectory 
using the method of (Shimizu, Horibe & Watanabe, 
2022) is 13.3s . Furthermore, in this scenario, the 
JMSE value obtained by the algorithm proposed 
in the present paper for velocity planning is 0.49, 
while the JMSE value obtained by the Filtered-LP 
method is 0.53.

The comparison reveals that the method proposed 
in this paper not only demonstrates lower total 
time consumption and improved timeliness in 
obstacle start-stop scene trajectories compared 
to the Filtered-LP method, but also offers 
superior comfort.

5.3 Dynamic Constraint Framework 
Strategy Experiments in 
Emergency Road Scenarios

One may encounter different emergency road 
scenarios while driving, such as when the ego-
vehicle travels at high velocity and a traffic 
participant suddenly cuts in, or when a traffic 
participant ahead brakes urgently. In such cases, 
the planner may fail to solve the objective 
function under hard constraints and obtain an 
obstacle avoidance velocity profile. Therefore, to 
fully utilize the maneuverability of ego-vehicle 
and ensure its safety, it is necessary to relax the 
comfort constraints of problem. 

In this scenario, the initial vehicle velocity value 
is 0 . /5 5m sv = . The remaining initial parameters 
remain unchanged. The traffic participant  
parameters are set as: velocity is /1.0obs m sv = , cut-
in time is 0 1.0t s= , departure time is 8.0Nt s= , 
initial distance of the obstacle from the vehicle is 

0 15.0S m= .

The hard constraint of traffic participants cutting 
into ego-vehicle trajectory scenario, in emergency 
scenarios, in maintained. In this scenario, the 
hard constraint approach used in (Shimizu, 
Horibe & Watanabe, 2022) causes the planner to 
fail in solving the objective function. However, 
the present dynamic constraint frame approach 
enables the generation of an obstacle avoidance 
velocity profile, through a relaxation strategy of 
hard constraint. The solution processes are shown 
in Figure 10.

Figure 10. Velocity, acceleration and Jerk profile in 
emergency road scenarios

When velocity planner fails to solve the objective 
function under hard constraints, the hard constraint 
range of 22.0 /L

min,i m sα = −  can be extended by 
relaxing the constraints. Firstly, the safe braking 
distance equation of (21) yields the slack variable 
which is 22.2 /L

min,i m sα = − , and the Jerk constraint 
obtains 31.3 /max,ij m s= , through a fallback strategy. 
Then, it performs dynamic adjustment of the 
constraint frame.

In Figure 10, when 11.2 12.4s m= − , all the 
accelerations exceed the hard constraint 

2
, 2.0 /L

min i m sα = − , achieving the effect of hard 
constraint relaxation, and the planning for 
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obstacle avoidance is completed with a total 
trajectory time of 12.76s.

Through experimental validation, it has been 
demonstrated that greater maneuverability is 
provided by the dynamic constraint frame, 
ensuring safe driving, while maintaining 
maximum comfort. The driving parameters of 
the ego-vehicle are dynamically adjusted by the 
algorithm, enabling successful velocity planning 
for obstacle avoidance.

5.4 Discussion of Experiments 

In the aforementioned section, a series of numerical 
experiments are conducted to examine the 
influence of different planning methods on velocity 
planning outcomes across multiple scenarios. The 
acceleration-based velocity filtering is employed 
and LP method is utilized twice, to solve the 
velocity planning problem. The experimental data 
showcases that the present method achieves lower 
overall time consumption and superior comfort 
metric. Furthermore, the adoption of a dynamic 
constraint framework enhances the robustness of 
the velocity planning process.

6. Conclusion

This paper describes a method for autonomous 
driving that computes time-optimal velocity 

profiles for given paths while satisfying velocity, 
acceleration, and Jerk constraints. The proposed 
method ensures a smooth velocity profile that 
provides a reference for the velocity controller 
and a comfortable ride experience for passengers. 
Furthermore, a series of numerical experiments 
demonstrate that the approach proposed in this 
paper outperforms existing velocity planners 
in terms of computational efficiency, accuracy, 
and safety. However, it is important to note that 
the current research has not considered energy 
consumption constraints. Future work will focus 
on addressing this limitation by developing 
an advanced algorithm that optimizes energy 
consumption while simultaneously providing 
the best possible trajectories. By incorporating 
energy efficiency considerations, a more 
comprehensive analysis of autonomous driving 
systems is envisaged.
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