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1. Introduction

Levitation is the process of suspending an 
object in the air in a stable position without any 
physical contact (Shu’aibu et al., 2017). It can 
be accomplished through the use of electric or 
magnetic forces. In a magnetic levitation system, 
an object (made of nickel, aluminum, iron, etc.) 
achieves equilibrium in air space under the 
influence of magnetic field only.

Magnetic levitation, also known as maglev, is 
an advanced technology in which an object is 
suspended or levitated in the midair with no 
support other than the magnetic field (Santhiya & 
Kishore, 2020). Due to the lack of contact with 
the levitated object, the magnetic levitation system 
(MLS) provides no wear and friction. Friction 
plays a significant role in real-world applications 
as it reduces performance in most cases. MLS is 
one of the approaches that has made a significant 
contribution to the reduction of friction (Banerjee 
et al., 2019). Many applications are focused 
on maglev technology since it is a non-contact 
technology that results in zero friction losses and 
higher energy efficiency. As a result, the cost of 
maintenance is low. MLS is used in frictionless 
bearings, high-speed ground transportation system, 
maglev heart pumps, maglev fans, space launching 
stations, wind turbines, high-precision positioning 
stages, and many other applications (Dalwadi et 
al., 2021). The most common application of this 
system is the magnetic levitation train.

The magnetic levitation (maglev) train is a 
new large-scale transportation system that uses 
magnetic fields to levitate, provide propulsion and 
direction. Due to technological advancements, it is 
becoming more viable in the public transport field, 
providing faster, more comfortable, and safer 
transportation than the conventional train (Braga 
Júnior & Barreiros, 2013). There are two different 
approaches for designing maglev train systems. 
The electrodynamic suspension (EDS) system is 
based on eddy current magnetic repulsive force, 
while the electromagnetic suspension (EMS) 
system is based on electromagnetic attractive 
force (Raj et al., 2019). EMS maglev train has 
unstable behaviour (Kim et al., 2017; Leng et al., 
2019). Therefore, designing an excellent tracking 
controller is required to stabilize the train in the 
air and follow the desired reference signal in the 
presence of load variation. 

Since suspension air gap control and following 
the desired reference signal are essential for the 
effective operation of the maglev system, several 
scholars and researchers have proposed a variety 
of control strategies and optimization techniques. 

The system dynamic characteristics were analyzed 
in linear controllers, such as PID controller (Dey 
et al., 2020; Khan et al., 2018), FOPID controller 
(Mughees & Mohsin, 2020) and, state feedback 
controller (Awelewa et al., 2019), are based on 
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the linearized models, which are implemented in 
a small neighborhood near the equilibrium point. 
So, if the system deviates from equilibrium, the 
linearized model may become invalid. The high 
nonlinearity of the magnetic levitation train 
system makes the nonlinear controllers more 
desirable. In (Karabacak et al., 2023), the PID 
and LQR control were applied to a MLS, and 
their performances  were compared. The PID 
parameters were calculated using the Matlab PID 
tuning function and the Q and R matrices of LQR 
control were chosen by the trial and error method. 
LQR control does not exceed the reference input 
and reaches the desired value in a considerably 
quicker period. Furthermore, disturbance effects 
achieve the reference input faster in LQR control. 
A comparative evaluation of magnetic levitation 
controllers employing the proportional-integral-
derivative (PID) controller based optimal tuning 
was presented in (Abdalhadi et al., 2022). 
Three tuning strategies are investigated: radial 
basis function neural network (RBFNN) based 
metamodel, gradient descent, and standard PID 
based on Ziegler-Nichols tuning. The gradient 
descent algorithm gave the best rising time 
and overshoot in comparison with the RBFNN 
metamodel approach, hence the latter was the less 
successful method employed for tuning the PID 
controller in this paper.

In (Singh & Kumar, 2018), two control strategies, 
that is, PID controller and backstepping controller 
(BSC) were developed for the stabilization and 
control of a magnetic levitation system. The 
PID parameters were tuned with a model-based 
tuning algorithm, while BSC parameters were 
chosen by the trial and error method. The BSC 
approach achieved the desired control objective 
by providing better response and requiring less 
control effort than the PID controller while 
BSC parameters were chosen by the trial and 
error method. The robustness of the proposed 
control system was not tested in the paper. In 
(Adil et al., 2020), super-twisting and integral 
backstepping sliding mode controllers were 
proposed for controlling a maglev system and 
the system robustness was evaluated by adding 
external disturbance. The super-twisting SMC 
performed better than the integral backstepping 
SMC in terms of dynamic performance and 
robustness against disturbances. Jibril et al. (2020) 
investigated NARMA-L2, model reference and 
predictive controllers for a nonlinear magnetic 
levitation train. The simulation results showed 

that the magnetic levitation train system with the 
NARMA-L2 neuro controller has an effective 
performance with the lowest percentage overshoot 
compared with the other controllers. 

This paper presents the mathematical model of a 
maglev train system. A BSC law is designed for 
obtaining desired tracking performance of the 
feedback system. The control law is designed to 
guarantee the global asymptotic stability of the 
nonlinear system regardless of load disturbance 
changes present in the system. The parameters 
of the controller are tuned using particle swarm 
optimization (PSO) so that the integral of absolute 
error and control deviation (IAEU) performance 
criterion is minimized. By penalizing both large 
errors and large control inputs, the proposed 
controller is tuned to optimize the trade-off 
between the tracking error and control effort. 
Meanwhile, the proportional-Integral (PI)-type 
LQR is designed for comparison purpose and the 
Q and R matrices are determined by the trial and 
error method. A set of simulation works are carried 
out to validate the effectiveness of the proposed 
control method by comparing it with that of the 
PI-type LQR controller.

The paper is organized as follows. Section 2 
presents the mathematical model of the maglev 
train system. Section 3 provides the details about 
the design of the BSC for the maglev train system. 
Section 4 discusses the simulation results and 
Section 5 contains the conclusion of this work.

2. The Modelling of a Magnetic 
Levitation System 

This section focuses on the analysis of a single- 
point suspension of the EMS train system using a 
single electromagnet system, which is helpful in 
understanding the behavior of the entire levitation 
system. Figure 1 depicts the simplified model of 
the single electromagnet suspension. 

Figure 1. Simplified model of the single 
electromagnet suspension
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The suspension of an MLS roughly comprises 
the mechanical and electrical subsystems. The 
mechanical subsystem represents the system’s 
vertical motion. Newton’s second law of motion is 
applied for obtaining the model, where the upward 
direction is assumed to be negative. Considering 
all balancing forces acting on the levitated system, 
the following equation of motion is obtained: 

2

2 mag
d zm f mg
dt

= − +
                                      

(1)

where z is the levitation gap between the track and 
the electromagnet, m is the mass of the maglev 
train, g is the acceleration due to gravity and fmag 
is the electromagnetic force, denoted as F(i,z) in 
Figure 1. 

The electromagnetic force can be expressed by
2 2

0
24mag

N i Af
z

µ
=

                                           
(2)

where µ0 is the permeability of free space, N is the 
number of turns of the coil, i is the coil current of 
the suspension electromagnet and A is the cross-
section area of the magnetic path.

Substituting equation (2) into equation (1) gives
2 22

0
2 24

N i Ad zm mg
dt z

µ
= − +

                               
(3)

In addition, the voltage equation in the 
electromagnet winding circuit can be derived using 
the Kirchhoff’s voltage law as in (Alkurawy, 2019).

2 2
0 0

2

( )( ) ( )( )+ ( )
2 ( ) 2 ( )

N A N Ai tdi t dz tRi t u t
z t dt z t dt

µ µ
− =

     
(4)

where u is the applied voltage input and R is the 
magnetic reluctance of the circuit.

Defining the state variables as x1(t)= z(t), x2(t)= (t), 
and x3(t)= i(t) gives the model in state space form as

1 2( ) ( )x t x t=                                                  (5a)
2
3

2 2
1

( )( )
( )

x tx t a g
x t

= − +

                                    
(5b)

3 2 3 1 1
3

1

( ) ( ) ( ) ( ) ( )( ) ( )
( )

x t x t Rx t x t x tx t u t
x t k k

= − +

     
(5c)

1( ) ( )y t x t=                                                 (5d)

where
 

2
0

2
N Ak µ

=
 
and

 2
ka
m

= .

From equations (5a-d), the state variables and the 
control input at an operating point, y = yr, become

10 20 30 10 0 30, 0, ,r
gx y x x x u Rx
a

= = = =
         

(6)

It is assumed that the motion of the equations (5a-
d) is in the neighborhood of the operating point, 
that is

x x x∆ = −                                                  (7a)
0u u u∆ = −                                                 (7b)
ry y y∆ = −                                                  (7c)

where ∆x, ∆u, and ∆y are small deviations of x, u, 
and y, respectively. The nonlinear system can be 
linearized around (x0, u0).

x A x B u∆ = ∆ + ∆                                          (8a)
y C x∆ = ∆                                                    (8b)

where

30 30
3 2
10 10

30 0 30 10

10

0 1 0
2 20ax axA

x x
Rx u x Rx

k k x k

 
 
 
 −

=  
 
 
− + − 
  

,
10

0
0B

x
k

 
 
 

=  
 
 
 

,

  
[ ]1 0 0C =                                                

(8c)

3. Controller Design 

3.1 Backstepping Controller Design

Backstepping is a recursive method that uses a 
systematic design approach and the Lyapunov 
controller design functions for particular types 
of nonlinear dynamical systems (Bai et al., 2013; 
Basri et al., 2018; Singh & Kumar, 2018). 

Firstly, the following error is considered:

1 1re y x= −                                                   (9)

The time derivative of the error is:

1 1 2r re y x y x= − = −                                        (10)

Considering x2 as virtual control law w1, equation 
(10) can be rewritten as:

1 1re y w= −                                                   (11)

For the stability analysis of equation (11), the 
candidate Lyapunov function is considered:

2
1 1

1
2

V e=
                                                     

(12)
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Differentiating equation (12) and substituting 
Equation (11) into equation (12) yields:

1 1 1( )rV e y w= −

                                            (13)

If the virtual control law w1 is expressed as: 

1 1 1rw y k e= +                                               (14)

where k1 is a positive design parameter, then 
equation (13) becomes 2

1 1 1 0V k e= − < .

This means that according to Lyapunov stability 
theorem, the closed-loop system of equation (11) 
with equation (14) is globally asymptotically stable.

For backstepping control, the change of variable 
is used as:

2 2 1 2 1 1re x w x y k e= − = − −                             (15)

Namely,

2 2 1 1rx e y k e= + +                                         (16)

From equation (10) and equation (16), the 
following is obtained:

1 2 2 1 1re y x e k e= − = − −                                  (17)

Differentiating equation (15) and substituting 
equations (5b) and (17) into equation (15) yields:

( )

2
3

2 1 12
1

2
3

1 2 1 12
1

   ( )

r

r
r

xe a g y k e
x

xa g y k e k e
y e

= − + − −

= − + − + +
−

  



        

(18)

Considering x3 as virtual control law w2, equation 
(18) can be rewritten as:

( )

2
2

2 1 2 1 12
1

( )r
r

we a g y k e k e
y e

= − + − + +
−

 

        
(19)

The second Lyapunov function shall be 
considered as:

2 2
2 1 2

1 ( )
2

V e e= +
                                           

(20)

Accordingly, the time derivative of V2 can be 
obtained as:

( )

2 1 1 2 2

2
2 2 2

      1 1 2 1 1 2
1

2 1 2

(1 )
( )

     +
r

r

V e e e e

wk e e e k a
y e

e k e g y

= +

 
= − + − − − − 

+ −



 

       

(21)

If the virtual control law 2w  is expressed in such 
a way that 2V  is negative definite,

2 1( )rw y e q= −                                        (22a)

( )2
2 1 2 1 1

1 ( ) (1 )rq g y e k k e k
a

= − + + − −

         
(22b)

where k2 is a positive design parameter. Then 
substituting equations (22a-b) into equation (21) 
gives 2 2

2 1 1 2 2 0V k e k e= − − < .

It is clear that 2V  is negative definite. Thus, the 
closed-loop system of equation (19) with equation 
(22) is globally asymptotically stable.

Finally, the change of variable is used as:

3 3 2 3 1( )re x w x y e q= − = − −                       (23)

Namely,

3 3 1( )rx e y e q= + −                                     (24)

By taking the time derivative of equation (23) and 
substituting equation (5c), the following is obtained:

3 3 2

3 2 3 1
1 2

1

1   

e x w
x x Rx x x u w
x k k

= −

= − + −

  



                     

(25)

Substituting equations (9), (16) and (24) into 
equation (25) yields:

( )( )
( )

( )( )

( )

3 1 2 1 1
3

1

3 1 1

1 2

( )

R ( )
    

1    

r r

r

r r

r

e y e q e y k e
e

y e

e y e q y e

k

y e u w
k

+ − + +
=

−

+ − −
−

+ − −







          

(26)

The Lyapunov function for the overall system is 
considered as:

2 2 2
3 1 2 3

1 ( )
2

V e e e= + +
                                    

(27)

Computing the time derivative of V3 and 
substituting equations (17), (18), (24) and (26) 
into equation (27) yields:

( )

( )

( )( )
( )

1 1 2 2 3 3

2 2
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If the applied voltage input u  is selected in such 
a way that 3V  is negative definite,

( )

( ) ( )
( )

( ) ( )

2
3 12

1 1

3 12 1 1

1 1

2 3 3 3 1
1

2( )
( ) ( )

( )
  

( )

    + + ( )
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r
r r

rr

r r

r
r

aeku e y e q
y e y e

e y e qk e y k e
y e y e

k w k e R e y e q
y e

 
= + − − − 

 + −+ +  −
 − −
 

− + −
−





  

(29)

where 2w  is computed by

( )2 1 1( )
2r r

qw y e q y e
q

= − + −


  

                
(30)

( )( )2
2 1 2 1 1

1 ( ) 1rq y e k k e k
a

= − + + − −   

           
(31)

then 
2 2 2

3 1 1 2 2 3 3V k e k e k e= − − −                               (32)

It is clear that 3V  is negative definite and 
the overall closed-loop system is globally 
asymptotically stable. 

3.2 Controller Parameter Tuning  

As it is known from the previous subsection, 
the designed backstepping controller has three 
parameters, k1, k2 and k3 that affect the performance 
of the maglev train system. The tuning of these 
parameters leads to a multivariate optimization 
problem and needs the selection of an appropriate 
objective function. In this work, the IAEU 
performance criterion is adopted as the objective 
function. IAEU can avoid an excessive control 
input when the setpoint and/or disturbances 
change abruptly (Durand et al., 2014).

It is defined as:

0
IAEU ( ( ) )ft

e t w u dt= + ∆∫                        
(33)

where e is the error, that is, the difference between 
the reference input and the output with e = yr-y 
and ∆u is the deviation of the control input from 
u0 with ∆u = u-u0 where u0 is obtained from 
equation (6) and w is the weighting factor. Once 
the objective function is chosen, the next step is to 
apply the optimization method. In this study, the 
PSO algorithm is used for tuning the three design 
parameters. Figure 2 shows block diagram for 
offline-tuning the BSC using the PSO algorithm. 

Figure 2. Offline-tuning of the backstepping 
controller using PSO

3.3 PI-Type Linear Quadratic 
Regulator 

For comparison purposes, a linear quadratic 
regulator (LQR) is designed based on the linearized 
model in equations (8a-c). In order to eliminate the 
steady-state error and design a tracking controller, 
a new state variable is added as:

( )rz y y dt= −∫                                           (34)

where yr is the setpoint. Differentiating Equation 
(34) and combining it with equation (8a) gives the 
following augmented model:

10

0
( )

1 rx A x B u y x 
∆ = ∆ + ∆ + + − 

 

 

              
(35a)

where 

x
x

z
∆ 

∆ =  
 

 ,
 

0
0

A
A

C
 

=  
 



 
and

 0
B

B  
=  
 



       
(35b)

Then, the feedback control law is represented 
as follows:

u K x∆ = − ∆                                                 (36)
The gain matrix K  can be obtained in several ways, 
but here the optimal control technique is applied so 
that the quadratic cost function is minimized:

0
( )T TJ x Q x u R u dt

∞
= ∆ ∆ + ∆ ∆∫  

 

                    
(37)

where Q  is a positive semi-definite matrix and 
R  is a positive definite matrix. Then K  can be 
obtained from:

1 TK R B P−= −    .                                           (38)

where P  is the solution of the algebraic  
Riccati equation:

1 0T TPA A P PBR B P Q−+ − + =                           (39)
Rewriting equation (36) results in:

 0 1 0( ) ( )i ru u K x x k y y dt= − − + −∫              
(40)

where [ ]1 iK K k= .
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4. Simulation and Discussion 

The parameter values for simulation are the same 
as used in (Xu et al., 2017) and (Xu et al., 2018).

The initial position of the suspension air gap used 
in this work is 10mm, which was selected based 
on the operating range. With this selection, u0 = 
25.45.

Table 1. Physical parameter values of the magnetic 
levitation train system

Parameters with symbol Values with unit

Mass of the EMS train (m) 700kg
Cross-section area of the magnetic 

path (A) 0.024m2

Number of turns of the coil (N) 450
Magnetic reluctance of the magnetic 

circuit (R) 1.2Ω

Permeability of free space (µ0) 4π×10-7H/m

4.1 Parameter Settings of the 
Controllers  

In order to tune the proposed controller optimally, 
the particle swarm optimization function in 
MATLAB is used for adjusting the controller 
parameters k1, k2 and k3. The parameters were 
chosen within the bound 0 ≤ k1, k2, k3 ≤ 80 with 
w = 0.2×10-3. The average values for running the 
program 20 times with different random seeds are 
k1 = 33.542, k2 = 33.673 and k3 = 31.160. Figure 
3 shows a typical example of the optimization 
process for the BSC with PSO.

0 5 10 15 20 25 30 35

Iteration

0.02027

0.020272

0.020274

0.020276

0.020278

Fu
nc

tio
n 

va
lu

e

Best Function Value: 0.020271

Figure 3. Optimization process of the BSC with PSO

For LQR, the weighting matrices were selected 
by the trial and error method as:

8(50,1,1,9 10 )Q diag= ×  and 31 10R −= ×

that results in:
51 10 [-2.3595, -0.0426, 0.0006, -9.4868]K = × .

4.2 Tracking Performance Test  

The tracking performance of the backstepping 
controller was assessed for different step inputs 
without load variation. For this test, the suspension 
air gap was increased from 10mm to 12mm. The 
responses of the proposed controller were compared 
with those of the LQR controller. Figure 4 shows 
the responses obtained by the two controllers for 
the upward change of the setpoint. In order to 
gauge the setpoint tracking performance of the 
two control methods quantitatively, overshoot Mp, 
rise time tr, 2% settling time ts, and IAEU were 
obtained. Table 2 illustrates the values obtained 
for the above-mentioned performance indices for 
the upward change of the setpoint. Figure 5 shows 
the responses of the two methods when the setpoint 
was decreased from 10mm to 8mm. Table 3 shows 
the quantitative performances of the two controllers 
for the downward change of the setpoint.
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Figure 4. Responses of the proposed and LQR 
controllers for the upward change of the setpoint
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Figure 5. Responses of the proposed and LQR 
controllers for the downward change of the setpoint
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Table 2. Tracking performance for the upward 
change of the setpoint

Controller
Performance indices

Mp tr ts IAEU
Proposed 0 0.128 0.190 0.181

LQR 0 0.173 0.267 0.245

Table 3. Tracking performance for the downward 
change of the setpoint

Controller
Performance indices

Mp tr ts IAEU
Proposed 0 0.129 0.193 0.183

LQR 0 0.176 0.267 0.245

As it can be seen from Figures 4 and 5 and from 
Tables 2 and 3, both controllers have no overshoot 
but the transient response of the BSC shows a 
better tracking performance with tr = 0.128s, 
ts= 0.190s and IAEU = 0.181 for upward, and 
tr = 0.129s, ts = 0.193s and IAEU = 0.183 for 
downward setpoint changes, respectively.

So, it is clear from these numerical indicators that 
the BSC has a better tracking performance for the 
given setpoint changes when compared with the 
LQR controller.

4.3 Performance Test Against  
Load Variation

The suspension must support the total mass of 
the train which includes both the vehicle’s mass 
and the load (weight of passengers). In this 
work, the load variations of 10 and 30% of the 
total mass are considered. Figure 6 shows the 
robustness of the two control methods in the 
presence of mass changes of 10% and 30%. As 
it can be seen in Figure 6, both control methods 
satisfactorily follow the reference signal with an 
internal disturbance of 70kg and a load mass of 
210kg. However, the results clearly show that the 
proposed backstepping controller settles faster 
than the LQR controller. 

In order to assess the disturbance rejection 
performance of the two methods quantitatively, 
the perturbance peak Mpeak, peak time tpeak, 
recovery time trcy and IAEU in equation (33) are 
used. Mpeak means |ymax − yr| and trcy denotes the 
time that it takes for y to recover within 2% of yr. 
A comparison of the performances of both control 
strategies for a 10% and a 30% increase in load 
mass is illustrated in Tables 4 and 5, respectively. 
It can be seen from these tables that the BSC has 

a better response with smaller values of Mpeak, tpeak, 
trcy, and IAEU for increase in load mass. These 
numerical performances indicate that the BSC 
shows a higher robustness under load variations 
than the LQR controller. 
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Figure 6. Responses of the proposed and the LQR 
controller for: a) a 10% increment of m; b) a 30% 

increment of m 

Table 4. Performance measures against load variation 
for a 10% increment of m

Controller
Performance indices

Mpeak tpeak trcy IAEU
Proposed 0.218 0.018 0.269 0.024

LQR 0.494 0.294 0.307 0.063

Table 5. Performance measures against load variation 
for a 30% increment of m

Controller
Performance indices

Mpeak tpeak trcy IAEU
Proposed 0.574 0.059 0.269 0.064

LQR 1.548 0.080 0.357 0.194

5. Conclusion

In this paper, a nonlinear backstepping control 
scheme based on Lyapunov’s theorem was studied 
for a maglev levitation system and the controller 
parameters were optimally tuned by minimizing 
the IAEU performance criterion using PSO. The 
main results derived from a set of simulation 
studies on the nonlinear model are as follows.

First, the BSC not only has no overshoot but also 
outperforms the LQR by reducing ts by 28.8% and 
27.7%, and IAEU by 26.1% and 25.3%, for upward 
and downward setpoint changes, respectively.



https://www.sic.ici.ro

64 Yeabisra Wubishet Engda, Gang Gyoo Jin, Yung-Deug Son

Second, for robustness against load change of 
10%, the BSC achieves a better performance than 
the LQR controller by reducing the overshoot by 
55.9%, peak time by 93.9%, the recovery time 
by 12.4%, and IAEU by 61.9% in comparison 
with the results obtained for the LQR. As for 
robustness against a load change of 30%, the BSC 
also achieves a better performance than the LQR 
by reducing Mpeak by 55.9%, tpeak by 26.3%, trcy by 
24.6%, and IAEU by 67.0%. 

In conclusion, the BSC shows a better setpoint 
tracking and load disturbance rejection 
performance than the LQR controller. 

Future research can focus on simplifying the 
control algorithm using a nonlinear transformation 
and implementing it in a real system.
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