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1. Introduction

In order to develop diagnosis or control strategies 
of a nonlinear system one has to provide a model 
for such a system. Several modeling approaches 
have been developed in the specialized literature 
such as: NARX, NARMAX, Volterra series 
(Fang et al., 2022; Levin et al.; Nguyen & Yin, 
2017; Wang, 2020; Wang et al., 2022), structured 
block models (Wiener and Hammerstien) (Brouri 
et al., 2022; Mzyk & Wachel, 2017; Quachio & 
Garcia, 2019) and multimodels (Wang, 2020; 
Young & Holsteen, 2017). The latter approach, 
which will be used in this paper, consist in 
representing a nonlinear system by a finite 
number of submodels. These linear submodels 
describe the dynamic behavior of the system 
for each fraction of the operating domain. 
In the specialized literature, two multimodel 
structures have been developed: the coupled 
multimodel (Takagi & Sugeno, 1985), in which 
the submodels share the same state vector and 
the decoupled multimodel (Shin et al., 2020), in 
which each submodel has its own state vector. 
Since each submodel can be decomposed on the 
Laguerre orthogonal basis, nonlinear systems 
can be represented as a linear with respect 
to the Fourier coefficients characterizing this 
decomposition which allows the application of 
classical identification procedures.

In this context, nonlinear systems modeling using 
decoupled ARX-Laguerre can be mentioned. In 
(Adaily et al., 2018), the authors have exploited 
multimodel approach with the ARX-Laguerre 
model. For this representation, each submodel 
was express by an ARX-Laguerre linear model. 
The synthesis of the decoupled ARX-Laguerre 
multimodel requires firstly the estimation of the 
ARX-Laguerre multimodel parameters using 
a recursive identification method, then the 
determination of the parameters of the weighting 
functions. These latter will be identified using 
Genetic Algorithms (GA). 

For the diagnosis of complex nonlinear systems, 
Takagi–Sugeno (T–S) fuzzy models provides a 
solution to the actuator fault estimation problem 
estimation problem, which consists in a set of 
locally linearized dynamics connected by fuzzy 
membership functions (Han et al., 2023; Zhang 
et al., 2023). However, the reconstructed T-S 
fuzzy model may contain a large number of 
fuzzy local models for the nonlinear system 
with complicated nonlinearities (Li et al., 2023). 
To avoid this problem, this paper proposes 
also a new method for estimating the input 
fault or the actuator fault based on the ARX-
Laguerre multimodel which is characterized by 
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a simple recursive vector representation and a 
significant parametric reduction. This can also 
be achieved by exploiting the online parametric 
identification approach over a sliding window 
recently addressed in (Adaily et al., 2018), for 
the detection of the operating mode change. 
Based on the same principle, the new proposed 
approach of input fault estimation consists in 
updating parameters according to the evolution 
of the output of the system, influenced by the 
input impact with or without the presence of 
the fault. Thus, the online identification of 
the parameters relies on updating the Fourier 
coefficients, as well as the Laguerre poles, by 
shifting the sliding window at each sampling 
time, while keeping the weighting functions 
identified by genetic algorithms. This update 
can be obtained by implementing the offline 
parametric identification method on a sliding 
window of variable size. Following this update, 
the development of an algorithm is proposed to 
estimate the input fault at each sampling time.

To validate the offline identification method of the 
ARX-Laguerre multimodels parameters, as well 
as this new approach of input fault estimation they 
were applied to a CSTR Benchmark. To prove 
the efficiency of the method proposed for input 
fault estimation in this paper, a comparative study 
with input fault estimation using the classical PI 
observer based on the ARX-Laguerre multimodel 
(Benamor et al., 2020) is presented. 

Accordingly, the contributions of this paper 
are mainly threefold: first, the proposition of 
an algorithm for the optimization of the ARX-
Laguerre multimodel using genetic algorithm; 
second, the development of a new algorithm for 
nonlinear systems diagnosis according to the 
input fault estimation applied on the proposed 
ARX-Laguerre multimodel based on the online 
parameters update using the sliding window 
principle; and third, the validation of the proposed 
algorithm for parametric identification and input 
fault estimation through a comparative study 
regarding the results provided by a Proportional 
Integral (PI) observer.

The present paper is organized as follows. 
Section 2 focuses on a bibliographical study of 
the simple recursive representation of decoupled 

ARX-Laguerre multimodel. In section 3, an 
algorithm for the offline parametric optimization 
of the ARX-Laguerre multimodel based on 
Genetic Algorithms is developed. In section 
4, the algorithm of the new approach needed 
for estimating the input fault is developed. 
Section 5 is allocated to the validation of two 
algorithms developed on a CSTR Benchmark 
and to a comparative study with an input fault 
estimation method based on the PI observer. 
Finally, section 6 provides the conclusion of the 
proposed research.

2. Decoupled ARX-Laguerre 
Multimodel

Following the development of Bouzrara et al. 
(2013), the decoupled ARX-Laguerre of a sub-
model (s) is:

( 1) ( ) ( ) ( )

( ) ( ) ( )

s s s s s s
u y

s s T s

k k u k y k

y k k

+ = + +

=





X A X b b

C X    
(1)

where u(k) is the input, s = 1,..., L and L is the 
number of submodels.  

yS(k) is the submodel output given by:
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where na and nb are the truncating orders of the 
ARX-Laguerre submodel, ,
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s
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 - As is a square matrix depending on the 
Laguerre poles s

aξ  and s
bξ : 
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where ,0q m  is the null matrix ( )q m×  dimensional.
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s
yA  and s

uA  are square matrices given by:
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 - bs
u and bs

y are column vectors of dimensions 
( )a bn n+  depending on the Laguerre pole: 
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 - Cs is a column vector arranging the Fourier 
coefficients: 

( )
0, 1, 0, 1,, , , , , a b

a b

T n ns s s s s
a n a b n bg g g g +

− − = ∈ℜ  C   (8)

Figure 1 presents the architecture of the decoupled 
ARX-Laguerre multimodel.

Figure 1. Decoupled ARX-Laguerre  
multimodel structure

where ( )y k  is the output of the ARX-Laguerre 
multimodel given by the following expression:

1
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and ( ( ))s kµ ζ  is a weighting function characterizing 
the contribution of each ARX Laguerre submodel;

with ( )kζ  being a decision parameter which can 
be chosen as either input or output of the system.

These functions satisfy the convex property:
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These functions ( ( ))s kµ ζ  can be built based on 
Gaussian functions ( ( ))s kω ζ : 
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where cs is the center of ( ( ))s kω ζ  and σs 
represents its standard deviation.

3. Offline Parametric Identification

3.1 Fourier Coefficients Identification

The compact recursive vector representation of 
the ARX-Laguerre multimodel is obtained from 
equations (1) and (9).
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 - X(k) is the column vector given by:
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 - Mu is a ( )a bL n n+  dimensional square matrix 
defined by:
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Referred to (13), the recursive identification 
of the vector Cs is based on minimizing the 
regularized quadratic error J at each iteration p 
(Fang et al., 2022):
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where α > 0 is a regularization constant which can 
keep a low variation of the Fourier coefficients 
between two consecutive instants. 

From (18), the matrix form of J can be rewritten as:  
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The estimated vector of Fourier coefficients 
ˆ ( )C p  is:

( ) ( )1

( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( 1)

a b

T T
L n n mC p p p p Y p C pψ ψ α ψ α

−

+= + × + −I   (23)

where ( )a bL n n+I  is a ( )a bL n n+  dimensional 
identity matrix.

3.2 Laguerre Poles Identification

One of the advantages of the ARX Laguerre 
multimodel is the reduction of the number of 
parameters when the Laguerre poles reach their 
optimal values. To achieve this, the Laguerre poles 
are calculated in an iterative way, according to 
the Fourier coefficients of the ARX-Laguerre 
multimodel (Han et al., 2023). Therefore, the 
following quantities are defined: 
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Hence, the optimal Laguerre poles ,
s
opt aξ  and 

, , 1, .s
opt b s Lξ =   are obtained (Han et al., 2023):
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3.3 Identification of the Parameters 
of the Weighting Function Using 
Genetic Algorithms

Genetic Algorithms are based on the selection 
of the most suitable individuals from an initial 
population of random Nind individuals. Using 
the genetic algorithm, a new population is 
produced following the application of three 
genetic operations: selection, crossing and 
mutation (Vajda et al., 2008). In the present 
case, the exploitation of Genetic Algorithms 
for the identification of weighting function is 
proposed. The optimal solution is obtained from 
the minimization of a NMSE (Normalized Mean 
Square Error) given by:

2
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2

1

( ( ) ( ))

( ( ))
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m
k

M

m
k

y k y k
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y k

=

=

−

=
∑

∑
                      

(28)

where M is the number of measurements.

A random initial population Ind of Nind 
individuals of the parameters of the weighting 
functions is generated.

1 2 ; 1, ..,, .l l L
indI Nnd l× ℜ= ∈ = c σ       

(29)

where:

 - Cl is the vector containing the centers of the 
weighting functions:

1
1 ,,. ..., ; 1,. .L

i d
l

n
l l

Lc c l N× ∈ℜ = =c       
(30)

 - σl is the vector containing the dispersions:

1
1 ,,. ..., ; 1,. .L

i
l

nd
l l

L l Nσ σ × ∈ℜ = =σ    
(31)

It can be noted that a number of iterations Gmax 
of the genetic algorithm is fixed and that at each 
iteration the evaluation function NMSE is applied 
for the current population Ind. This evaluation 
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allows the selection of the best individuals 
resulting from the genetic operations of selection, 
crossover and mutation. These operations are 
applied at each iteration of the genetic algorithm 
until the parameters of the weighting functions 
converge to their optimal values. It should be 
noted that the evaluation of the NMSE criterion 
requires the calculation of the Laguerre poles and 
the Fourier coefficients.

Algorithm 1. Identification of the parameters of 
the weighting function with genetic algorithm

1. Assuming that there are M input/output data pairs 
(u(k), ym(k)).
2. Fix the submodel number L, the truncating orders 
na and nb and the regularization constant α.
3. Fix the iteration number Gmax, the population size 
Nind, as well as the crossover rate Pc (≤100%) and 
the mutation rate Pm (≤100%).
4. Initialization: Create a random initial population 
Ind of Nind vectors of weighting functions parameters 
Ind1 = [c1, σ1] and a set counter = 1.
5. As long as counter < Gmax, for each population, do:

5.1. Evaluation:

a. Identify the Fourier coefficients and the 
Laguerre poles as follows:

i. Estimate the Fourier coefficients ,
s
n ag  

and ,
s
n bg  by (23) 1, ,k M∀ =   

knowing that ,1(0) 0
a bn nC += .

ii. Calculate 1,
s
iT  and 2,

s
iT  , i = a, b, s =1, 

..., L from (24) and (25) respectively.

iii. If 1,
s
iT  and 2,

s
iT  are close to zero go to 

step b. Otherwise:

 - Calculate 
s
aρ  and 

s
bρ  from (27).

 - Update the poles ,
s
opt aξ  and ,

s
opt bξ  

given in (26), then return to step (i).

b. Evaluate the NMSE from (28).

5.2. Selection: select Pc×Nind individual of 
the up-to-date population depending on the 
evaluation of the values of the NMSE.
5.3. Crossover and mutation: practice the 
crossover on the selected populations and then 
apply the mutation with a rate of Pm to generate 
the new population. 
5.4. Reintegration: The best new solution is 
inserted in the new population in ascending 
order according to its NMSE evaluation.

5.5. increment the counter and back in step 5

4. Proposed Approach for the Input 
Fault Estimation

In what follows, the concept of the new proposed 
approach for estimating an input fault η(k), injected 
at the system input u(k), is presented. To achieve this, 
it is taken into consideration that, in the presence of 
the fault, the input is written in this additive form 
u(k) + η(k) and, referring to (13), the output ( )y kη  
with input fault is obtained as follows: 

( )( 1) ( ) ( ) ( ) ( )

( ) ( )

c u

T

X k k u k k

y k X k
η µ

η+ = + + +

=





A b X b

C M     
(32)

From (32), one obtains:
( ) ( ) ( 1) ( 1) ( 1)T Ty k X k u k kc u uηη µ µ= + − + − + −  C M A b b C M b   (33)

Thus, it can be noticed that the input fault η(k) 
is retained in an additive form to the input u(k) 
and that the quantities , ,c uA b b  and C  remain 
unchanged. However, the output changes in 
presence of the fault which requires a new 
formulation of (32) as: ) ( ) (y k y kη ≠ . In this case, 
an update of the quantities , ,c uA b b  and C  is 
necessary. This update leads to a new identification 
of the parameters (Fourier coefficients and 
Laguerre poles) of the ARX Laguerre multimodel, 
in the presence of the input fault η(k) :
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( ) ( )

c u

T

k k u k

y k k

η η ηη η

ηηη µ

+ = + +

=





X A b X b

C M X   
(34)

where: 

 - Aη is a square matrix of dimension ( )a bL n n+  
defined as follows:
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A
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where , 1,...,s s Lη =A  are matrices defined from 
(4), by replacing s

aξ  and s
bξ  with their updated 

values ,
s
a ηξ  and ,

s
b ηξ , respectively.

 - bc,η, bu,η and Cη are column vectors defined as 
follows:

( ) ( )1 1
, , ,

( )( ) , , ( ) a b
TT TT L L T

c y y
L n nbloc diagη η η η η

+ = × × ∈  
ℜb b C b C   (36)

1

, , ,

( ), ,
TT TL

u u u
a bL n n

η η η

+= ∈ ℜ        b b b
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a bL n nL
η η η
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 C C C
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where the vectors , ,,s s
y uη ηb b  and , 1,...,s s Lη =C  

are obtained from (7) and (8) by replacing ,s s
a bξ ξ  

with ,
s
a ηξ , ,

s
b ηξ  and ,

s
n ag , ,

s
n bg  with their new 

updates , , , ,,s s
n a n bg gη η , respectively.

 - Xη(k) is a column vector of dimension 
( )a bL n n+ .

The new form (34) needs the identification of the 
ARX-Laguerre multimodel resulting from the 
fault introduction. The output of system can be 
expressed as follows:

, ,( ) ( ) ( 1) ( 1)T
c uy k k u kη ηη η ηη µ  = + − + − C M A b X b   (39)

Replacing ( )y kη  in (33) by its expression in 
(39), the expression of the input fault ( 1)kη −  
is given by:

( )
( )

1
, ,( 1) ( ) ( ) ( 1) ( 1)

( ) ( 1) ( 1)

T T
u c u

T
c u

k k u k

k u k

η ηη η ηµ µ

µ

η − 





− = + − + −

− + − + −

C M b C M A b X b

C M A b X b   
(40)

In what follows, the calculated input fault ( )cal kη  
at iteration k is taken into consideration, so that:

                         ( ) ( 1)ca l k kη η= −                   (41)

It should be emphasized that, in order to obtain 
the updated values of the Fourier coefficients 
and Laguerre poles, one opts for the exploitation 
of online identification on a sliding window
[ ]0 01 , ,p n p p n+ − ∀ > , where n0 is the width 
of the window (Quachion & Garcia, 2019).

However, the online parametric -identification 
of the ARX-Laguerre multimodel on the sliding 
window relies on the update of the Laguerre 
poles. Then, the updates of the Fourier coefficients 
rely on a number of iterations n0, while keeping 
the weighting functions obtained by the 
genetic algorithm. This update is obtained by 
implementing the offline parametric identification 
method on a sliding window. At each iteration 

0p n>  in the interval [ ]01 ,p n p+ − , the 
Fourier coefficient identification method is applied 
on the sliding window of n0 observations which 
leads to the update of the Laguerre poles given 
by (26). The regularized criterion J(p) is written 
according to (18) in the following form: 

( )
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, , , , , , , ,
1 0 0
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(42)

Subsequently, the estimated vector of Fourier 
coefficients is expressed as follows:
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1
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In order to check the execution of the update of the 
Laguerre poles depending on the estimated vector 
of Fourier coefficients ˆ ( )C pη , the following 
convergence criterion is taken into consideration:

2ˆ ˆ( ) ( 1)C p C pη η ε− − <
                      

(46)

where ε  is the convergence threshold.

At each iteration k, the vector of Fourier 
coefficients ˆ ( )C p  is adapted on the sliding 
window. [ ]01 ,p n p+ − . A new estimation of the 
Laguerre poles is executed once the condition (46) 
isn’t satisfied. The proposed input fault estimation 
algorithm is:

Algorithm 2. Input fault estimation algorithm
(1) Offline identification phase using algorithm 
For k=1,…,n0, it is considered that ( ) 0cal kη = ,  ˆ ˆ( ) ( )C p C Hη = , ,

s
a ηξ  = ξ , ,

s
b ηξ = ,

s
b ηξ , ∀

1,...s L=  and ( ) ( )y k y kη =  by applying (13).

(2)  Online identification phase 0p n∀ > : for each 
iteration k of the interval [p+1−no , p]:

2.1. Measure the system output of ym(k). 
2.2. Calculate the vector ˆ ( )C pη

 using (23).

2.3. If 
2ˆ ˆ( ) ( 1)C p C pη η ε− − <  then 

Calculate the value of the input fault 
( )cal kη  from  (40), increment and 

return to step 2.1. Otherwise: Compute 
the new Laguerre poles ,

s
a ηξ  and ,

s
b ηξ , 

1,..,s L=  from (26).
2.4. Calculate the matrices ,, cη ηA b  and ,u ηb   

from (35), (36) and (37).
2.5. Calculate the new vector of Fourier 

coefficients ˆ ( )C pη
 from (43).

2.6. Calculate the vectors ( )kX  and ( )kηX   
from (32) and (34) respectively.

2.7. Calculate the value of the input fault           
( )cal kη  from (40).

2.8. Increment p and return to step 2.1.

The proposed approach for estimating the input 
fault using the ARX-Laguerre multimodel is 
illustrated by Figure 2.
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5. Validation of the New Approach 
on the CSTR Benchmark

To test the performances of the developed 
algorithms, they are tested on CSTR (Seborg et al., 
2004). First, Algorithm 1 is tested for the offline 
identification of parameters of the ARX-Laguerre 
multimodel. After that, Algorithm 2 is tested for 
input fault estimation, where both constant and 
random faults are considered. To highlight the 
performances of the new proposed approach, a 
comparative study with PI observer method based 
on the ARX-Laguerre multimodel is taken into 
consideration (Benamor et al., 2020).

The CSTR Benchmark displayed in Figure 3 
mixes two products: b1 and b2, with consecutive 
concentrations Cb1 and Cb2. The flow rates of 
b1 and b2 are w1 and w2, respectively. The final 
obtained product is characterized by three 
features: the concentration Cb, the flow rate w0 
and the product height h. The interaction between 
concentration and flow rates is summarized by the 
following equation system. 

Figure 3. Graph of the CSTR- Benchmark

The physical model of this process is expressed 
by this following system of nonlinear  
differential equations:

( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )
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1 2

1 1 2
1 22

2

0, 2

.

1 .
b b

b b b b

b

dh t
h t w t w t

dt

dC t w t k C t w t
C C t Cb C t

dt h t h tk C t

+

 = − +




 = − − + −
 +   

(47)

In the present case, a subsystem Simple Input 
Simple Output (SISO) is taken into account, 
whose input is the flow rate w1 and whose output 
is the concentration Cb, as illustrated in Figure 4.

To achieve this, the consumption rates k1 and k2, 
the concentrations Cb1 and Cb2 and the flow rate w2 
are assigned to the fixed values given in Table 1.  

Table 1. -Fixed values of the parameters of the  
CSTR- Benchmark

Parameters Cb1 Cb2 w2 k1=k2

Values
25.1 

Kmol.
m-3

0.1 Kmol. 
m-3 0.7L.min-1 0.9

Figure 4. The SISO subsystem of the  
CSTR Benchmark

For this study, the sampling time is Te=1s and the 
system’s input w1 is chosen as a pseudo-random 
Gaussian signal whose value varies between 0.05 

Figure 2. Proposed input fault estimation approach
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and 2.4 as it can be depicted in Figure 5. The 
evolution of output signal Cb is plotted in Figure 6.
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Figure 5. The system’s input signal w1
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Figure 6. The system’s output signal Cb

5.1 Offline Identification of  
the Parameters

To accomplish the offline identification step, 
1000 input/output measurements are used. The 
yielded model is validated over the remaining 
500 measurements. 

For the identification phase, Algorithm 1 is 
employed to identify the Fourier coefficients, 
the Laguerre poles and the parameters of the 
weighting functions. The truncating orders 
values na=nb=2 and the number of submodels 
is fixed to L=2, in order to reduce the number 
of parameters that will to be identified. In order 
to apply Algorithm 1, an initial population of 
Nind=60 individuals, a crossover rate Pc=90%, a 
number of generations Gmax=30, a mutation rate 
Pm=3.2% and a constant regularization value 
α=1.2 are taken into consideration. The output of 
the system is considered as a decision parameter 

( ) ( )bk C kζ = . So, one obtains two weighting 
functions 1( ( ))bC kµ  and 2 ( ( ))bC kµ  defined by 
(11), constructed from two Gaussian functions 

1( ( ))bC kω  and 2 ( ( ))bC kω , such that:

( )2

2

( )
( ( )) exp , 1,2b s

s b
s

C k c
C k sω

σ

 −
= − = 

 
    

(48)

For the identification phase, the evolution of the 
parameters of the weighting functions is presented 
in Figure 7.
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-Figure 7. Parameters of weighting functions

The identified weighting functions are plotted in 
Figures 8.
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Figure 8. Weighting functions

Figure 9 presents the evolution of the Laguerre poles. 
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Figure 9. Offline identification of Laguerre poles 
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The last population (counter=30) of parameters of 
the weighting functions are classified in Table 2 
and the Fourier coefficients and optimal Laguerre 
poles in Table 3, respectively.

Table 2. Identified parameters of the  
weighting functions 

Values

Gaussian centers 1 2[ ] [10.14 12.1]T Tc c c= =

Dispersions 1 2[ ] [10 6.585]T Tσ σ σ= =

Table 3. Identified Fourier coefficients and  
Laguerre poles

s 0 1
s
ag 0

s
bg

1 0.00013 -0.013 0.7499
2 1. 148 0.01 -0. 48

s 1
s
bg s

aξ
s
bξ

1 -0.0244 0.035 0.31
2 0.8956 -0.103 -0. 39

The evolution of the NMSE of the genetic 
algorithm is illustrated in Figure 10. 
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Figure 10. Evolution of the NMSE

Over 30 generations, the evaluation function 
NMSE was minimized from one generation to 
another to converge to a final value of 4.35.10-6. 

The offline recursive estimation of the Fourier 
coefficients over the offline identification phase 
is shown in Figure 11. It can be noticed that the 
identified values converge from iteration 600. 
Subsequently, Figure 12 illustrates the evolution 
of the output of the Benchmark ym(k) = Cb(k) 
and ARX-Laguerre multimodel output ym(k) over 
the validation phase and proves the matching of 
both outputs.

Figure 11. Estimation of Fourier coefficients
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Figure 12. Validation phase of  
ARX--Laguerre multimodel

5.2 Estimation of the Input Fault of the 
CSTR Benchmark

Algorithm 2 is applied to carry out this step. The 
sliding window width is fixed at no=50 and the 
convergence threshold at 210ε −= . The weighting 
functions are calculated based on the values of the 
parameters in Table 2. Figures 13 and 14 draw 
the evolution of the estimated fault ( )cal kη  for 
constant and random fault respectively. In both 
figures, the estimated values converge to applied 
ones. By examining these figures, it can be noticed 
that the new approach of identifying the input fault 
allows to estimate a random fault with variable 
and low amplitude.
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Figure 13. Evolution of the estimated and the 
constant applied fault
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number of iterations

200 400 600 800 1 000 1 200 1500

L.
m

in
-1

-0.5

-0.3

0

0.3

0.5

Figure 14. Evolution of the estimated and the 
random applied fault

The -Least -Mean Square -Errors the real fault and 
the estimated one for both cases are given by 
4.65.10-17 and 1,48.10-16 respectively.

The identified Laguerre poles of the ARX-
Laguerre multimodel in presence of an input fault 
for both tests are shown in Figures 15 and 16, 
respectively.
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Figure 15. Estimated Laguerre poles in the presence 
of a constant fault 
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Figure 16. Estimated Laguerre poles in the presence 
of a random fault

The estimated Fourier coefficients values in 
Figures 17 and 18.
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Figure 17. Estimated Fourier coefficients in the 
presence of a constant fault
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Figure 18. Estimated Fourier coefficients in the 
presence of a random fault

The evolution of the criterion (46) for both tests is 
presented in Figures 19 and 20. It can be noticed 
that this criterion exceeds the threshold value 

210ε −=  at the time of the fault injection. The 
estimated Laguerre poles and Fourier coefficients 
are shaken too.
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Figure 19. Evolution of the criterion in the presence 
of a constant fault
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Figure 20. Evolution of the criterion in the presence 
of a random fault

Figures 21 and 22 draw the output of the ARX-
Laguerre multimodel ( )y kη  and that of the 
Benchmark ( )bC k  in the presence of a fault, at 
time instant t=200s, for the constant fault and for 
the variable random fault, respectively. 
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Figure 21. Evolution of ( )bC k  and ( )y kη  case for 
a constant fault
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Figure 22. Evolution of ( )bC k  and ( )y kη  case for 
a random fault

It can be seen that the system output ( )bC k  tracks 
the ARX-Laguerre multimodel output ( )y kη  for 
both faults. This observation emphasizes the 

good performances of the proposed input fault 
estimation algorithm, as this algorithm is tested 
for constant and random faults.

To confirm the efficiency of the proposed 
algorithm, a comparative study with the diagnosis 
approach using a PI observer based on ARX-
Laguerre multimodel was developed (Wang et al., 
2023), for the constant and the variable random 
faults. By fixing β=0.25, one obtains the observer 
gains pK  and :IK

;1.0103 0.4419 0.1006 0.2935 0.5688 0.9868 0.1761 -0.2174
1.6

p
T

I

K
K

 
 =

=   (49)

Figures 23 and 24 show the evolution of the 
real fault ( )kη  and the estimated one ˆ( )kη  for 
constant and random faults respectively.
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Figure 23. PI observer for test 1 for a constant fault: 
evolution of ˆ( )kη  and ( )kη
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Figure 24. PI observer for test 2 for a variable 
random fault: evolution of ˆ( )kη  and ( )kη

The Benchmark output ( )bC k  and the output that 
was estimated by the PI observer ˆ( )y k  for the case 
of the constant fault and for the case of the random 
variable fault are presented in Figures 25 and 26, 
respectively. We note that the PI observer output 

b
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doesn’t match the reel system output ( )bC k  for 
constant and random faults which confirms the 
supremacy of our proposed approach.
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Figure 25. Evolution of ( )bC k  and PI observer 
ˆ( )y k  case for a constant fault

0 200 400 600 800 1 000 1200 1 500

km
ol

.m
-3

6

8

10

12

14

16

18

20

22

Figure 26. Evolution of ( )bC k  and PI observer
ˆ( )y k  case for a random fault

6. Conclusion

In this article, a new algorithm for offline 
parametric identification of the ARX-Laguerre 
multimodel was developed using genetic 
algorithms. Subsequently, a new approach for 
estimating an input fault of a nonlinear SISO 
system was proposed, based on updating the 
ARX-Laguerre multimodel parameters over a 
sliding window. In order to test the effectiveness 
of the algorithm of the offline identification of the 
parameters of the ARX-Laguerre multimodel and 
the proposed approach of input fault estimation, 
a validation on a CSTR Benchmark was retained 
with two forms of the fault: constant fault and 
random variable fault. Finally, a comparative 
study with another method of fault estimation 
based on a PI observer was considered. As a 
future perspective regarding the present work, 
the exploitation of the fault estimation method 
should be considered, in order to develop a fault 
tolerant control which will be able to make use of 
the nonlinear SISO ARX-Laguerre multimodel.

The suggested input fault estimation method aims 
to serve as a foundational tool for identifying 
faults in the system inputs. Subsequently, it will be 
integrated into the development of a fault-tolerant 
control that specifically addresses issues arising 
from actuator faults.
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