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1. Introduction 

Due to the extensive use of Digital Signal 
Processing (DSP) and digital computers in 
controller design, much effort has been devoted to 
investigating discrete-time sliding mode control. 
Sliding mode control has proven to be a nonlinear 
control technique that combines good robustness 
and efficiency for incompletely modeled or 
uncertain systems. This approach stems from the 
theory of variable structure control and has given 
rise to multiple studies for more than sixty years 
(Utkin, Guldner & Shi, 1999; Niu, Ho & Wang, 
2010). This method is widely known as a robust 
control method and offers significant robustness 
against disturbances and uncertainties. Sliding 
mode control is favored for the simple calculations 
it involves and its excellent efficiency.

This approach includes two steps. First, a slip 
surface is determined to bring the system’s 
state trajectory towards that surface and make it 
commute using a logic of appropriate switching 
around it until the equilibrium point, resulting in 
the phenomenon of sliding. In the second phase, 
the control law must be created so that any state 
external to the slip surface reaches the surface in 
a limited amount of time and stays there (Utkin, 
1978; Hassen, Laamiri & Messaoud, 2021).

Due to their agility, speed, and ability to land and 
take off from various terrains, helicopters have a 

wide range of applications in land, sea, and air 
activities, which has led to extensive research to 
improve their control (Boukadida et al., 2019). 
However, the large nonlinearities, model errors, 
and inter-axis coupling of these systems make 
them difficult to control.

For more than twenty years, researchers have used 
the Quanser Aero 2-DoF helicopter as a testbed to 
experimentally validate different control strategies 
and analyze their effectiveness. One notable 
approach is the design of an optimal regulator 
based on a combination of SMC and LQR, which 
guarantees accurate trajectory tracking of the 
Quanser Aero system (Nuthi & Subbarao, 2015). 
Additionally, a new control scheme that uses 
an appropriate mix of adaptive control methods 
and LQR + Integrator (LQR-I) was published in 
(Niu, Ho & Wang, 2010) and has shown effective 
stability and tracking of an input.

However, there are some drawbacks to these 
studies. One major issue is the choice of the 
penalty matrices Q and R, which poses a 
significant problem for the LQR technique (Tsai 
et al., 2013; Boukadida et al., 2019).The quadratic 
cost index J, composed of these two matrices, 
is minimized by the LQR controller. However, 
determining these matrices is not a simple task 
and can significantly affect the controller’s 
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performance. Each different value of Q and R will 
ultimately result in a different system response. 
For example, choosing a higher value of R may 
stabilize the helicopter with less energy, but the 
time response will be longer. Similarly, higher Q 
values reflect faster convergence of the system 
to the origin, but higher energies must be taken 
into account.

To address these issues and strike a speed-energy 
balance, a multi-objective optimization problem 
is suggested. This approach simultaneously 
considers a multi-objective optimization (MOO) 
problem while optimizing all individual objectives. 
Metaheuristics such as Moth Flame Optimization 
(MFO) Algorithm, Gray Wolf Optimization 
(GWO) Algorithm, Particle Swarms Optimization 
(PSO), Genetic Algorithms (GAs), Ant Colony 
Optimization (ACO), Artificial Bee Colony 
(ABC), and Whale Optimization (WO) algorithms 
can be used to tune the Q and R parameters. In 
this work, the GA and WO methods are used to 
complete the LQR’s weighting matrices, while 
also improving system performance and making 
a speed-energy trade-off.

It is important to select the values of these 
two weighting matrices carefully so that the 
exploration can quickly identify regions of the 
search space that comprise high-quality points, 
without wasting too much time exploiting less 
promising regions.

Computer vision enables machines to analyze, 
process, and understand one or more pieces of 
data provided by the system. This program can 
be considered to process visual data through 
patterns based on geometry, physics, biology, 
statistics, and learning theory. Computer vision 
is also recognized as an initiative to automate and 
integrate a wide range of processes and models for 
AI-based visual perception. Artificial intelligence 
(AI) refers to a group of technologies that allow 
robots to carry out tasks and solve issues typically 
handled by people. Sometimes, AI activities are 
relatively simple for humans, such as planning a 
robot’s movements, picking up objects, or driving 
a car (He et al., 2016).

The ambition to create machines capable of 
imitating human intelligence was born in the 
1950s. Artificial intelligence seeks to create 
specific machines capable of making decisions, 
simplifying, or even replacing human intervention 

(Nadimpalli, 2017; Cui et al., 2022; Yin, Niu & 
Liu, 2017).

In the framework of the proposed strategy, the 
reliance will be on the results of metaheuristic 
algorithms previously obtained in the context of 
optimization and global minimum achievement. 
Additionally, a neural network was developed that 
plays a pivotal role in this process. This neural 
network is harnessed for deep learning, utilizing 
the insights garnered from the metaheuristic 
algorithms. The neural network undergoes training 
to predict the best solution, thereby validating 
its optimality. It is important to emphasize that 
in this approach, deep learning is leveraged for 
the neural networks. Since the primary objective 
of this research was to determine the ideal LQR 
configuration, specifically the optimal values for 
the weighting matrices Q  and R , it was crucial to 
strike the best possible balance between tracking 
precision and control effort.

The remainder of this paper is organized as 
follows. Section 2 provides an overview of the 
Quanser Aero 2-DoF Helicopter system. Section 
3 is dedicated to problem formulation, laying 
the foundation for the subsequent developments. 
In Section 4, a novel method for constructing 
an optimal controller is presented, which 
combines mode control and the LQR technique. 
Additionally, a new approach to designing the 
optimal sliding surface based on the solution of 
the Sylvester equation is presented. Section 5 
focuses on optimization techniques for controller 
parameters, with two distinct parts: multi-objective 
optimization, where genetic algorithms are 
discussed, and the latter delving into Multi-Layer 
Perceptrons. Section 6 is dedicated to validation, 
and it sets forth and analyzes simulation results 
from a comparative perspective to validate the 
proposed approach. Finally, the conclusion is 
given in Section 7.

2. The Quanser Aero 2-DoF 
Helicopter Description

The Quanser 2-DoF helicopter, shown in Figure 1, 
consists of a helicopter model mounted on a fixed 
base with 2 drive propellers, each consisting of 
2 DC motors. The front propeller controls the 
altitude of the helicopter, causing it to rotate 
around the pitch axis, while the rear propeller 
controls the lateral movement of the helicopter 
around the yaw axis. High-resolution encoders are 
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used to measure the pitch and yaw angles. As it is 
illustrated in the Quanser Aero free-body diagram 
in Figure 2, the helicopter has two degrees of 
freedom: rotation about the pitch axis, denoted by 
θ , and movement along the yaw axis, represented 
by the angle ψ . The objective of controlling the 
input voltage on the DC motor is to regulate 
the pitch, while the system is forced to follow 
the reference trajectory by the yaw angle. The 
parameters of the helicopter system are defined 
in Table 1.

Figure 1. Quanser 2-DoF Helicopter  
(Boukadida et al., 2019)

Figure 2. Simple free-body diagram of the2-DoF 
Helicopter (Boukadida et al., 2019)

Table 1. Helicopter system parameters  
(Boukadida et al., 2019)

Symbol Description Value Unit

Jp
Moment of inertia of the 

pitch axis 0.0384 Kg · m²

Jy
Moment of inertia of the 

yaw axis 0.0432 Kg · m²

Bp
Equivalent viscous 

damping of the pitch axis 0.800 N/V

By
Equivalent viscous 

damping of the yaw axis 0.318 N/V

Kpp Pitch motor thrust torque 0.204 N · m/V
Kyy Yaw motor thrust torque 0.072 N · m/V
Kpy Yaw-pitch thrust torque 0.0068 N · m/V
Kyp Pitch-yaw thrust torque 0.0219 N · m/V

m Total mass of the 
helicopter 1.3872 Kg

l Distance between center of 
mass and pitch axis 0.186 m

g Gravitational acceleration 9.81 m/s²

Using the Euler-Lagrange formula, the following 
is the helicopter system:

2

2 2

2

2 2 2
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( ) ( )( )
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( ) ( ) ( ) ( ), , , , , ,p y mpt t t t F F Vθ θ ψ ψ

  and myV
represent the pitch angle, the pitch angular 
velocity, yaw angle, yaw angular velocity, 
pitch thrust force, yaw thrust force, pitch and 
yaw motor control input voltages, respectively. 
The dynamics of the system should be modeled as 
a linear system in order to create a state regulator 
based on the LQR strategy. The given system’s 
nonlinear model is then linearized around the 
origin by adding the values 0, 0, 0θ θ ψ= = =  
and 0ψ = . The resulting differential equation is 
linearized as follows:

( )
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The system is described with four states: 
θ  := Pitch angle, θ  := Pitch angular velocity, ψ  := 
Yaw angle, and ψ  := Yaw angular velocity.

The following are the linearized coupled state and 
system output equations:

( ) ( ) ( )
( ) ( )

1 3

2 4

3 1 1 1 2 2

4 4 1 1 2 2

1 1

2 2

29.29 2.36 0.79   
3.49 0.24 0.79
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

  

(4)

It is assumed that the state vector is represented as  
[ ]2 3 41, , , , , , 

TTx x x x x θ ψ θ ψ= =   




The output vector is [ ], Ty θ ψ=  

21 sin( ) 1.1cos( ),d dt t= =  are delivered into the 
system as disturbance voltage signals.
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3. Problem Formulation

In case a continuous linear system is used, it is 
described by the following differential equation:

( ) ( ) ( ) ( )
( ) ( )

x t Ax t Bu k f t
y t Dx t

= + +
 =



                     
(5)

where:

nx∈  is the state vector and py∈  is the 
output vector. 

mu∈  is the control input. A, 
B and D are real well-known constant matrices 
of dimensions ,n n n m× ×  and .p n×  ( )f t  
represents the parametric uncertainties on the 
model and the external disturbances assumed 
to be unknown but bounded. However, the 
implementation of this theory in discrete mode 
raised great interest when the researchers focused 
on the use of digital computers DSP. Discrete-time 
uncertain systems are described by: 

( 1) ( ) ( ) ( )
( ) ( )

px k x k u k D k
y k Dx k

+ = Φ +Γ +
 =                 

(6)

where:

( ), ( )x k y k  and ( )u k  are the state vector, 
the output vector and the control input of the 
above-mentioned dimensions n, m and p.  ,  Φ Γ  
and D  are real known constant matrices and 
the vector ( )pD k  is the external disturbance, 
which is presumed to be unidentified and norm-
bounded, impacting the system, which satisfy 
the following assumptions:

Assumption 1:

The two matrices ( ),  DΦ  are observables and the 
two matrices ( ),Φ Γ  are controllables.

Assumption 2: 

( ) md k ∈  meets the corresponding criteria 
(Drazenovic, 1969):

( ) ( )pD k d k= Γ                                           
(7)

The second supposition states that (2) can be 
written as:

( 1) ( ) ( ( ) ( ))x k x k u k d k+ = Φ +Γ +              (8)

The disruptions are unknown and meet the 
criteria below:

( ) maxd k ρ<‖ ‖                                              (9)

The main goal of this work is to solve tracking 
problems with parameter uncertainty, convergence 
towards the desired state of the reference model 
and stability of the control loop can be ensured. 
The aim of this work is to fulfill the following 
conditions: to create a second-order sliding mode 
controller and ensure that the reference model’s 
trajectory is tracked. A brand-new methodical 
approach is suggested for creating sliding 
surfaces. In addition to ensuring steady operation, 
this approach also controls the dynamic reaction 
of the system by managing its parameters.

The reference model is given by Zhang et al. (2018):

(k+1)= (k)+  r(k)
(k)=  (k)

r r r r

r r r

x A x B
y D x



                       

(10)

where:

( ) n
rx k ∈ , ( ) p

ry k ∈  represent the reference 
model’s state and output vectors.

n n
rA ×∈ , n k

rB ×∈  and p n
rD ×∈  are known 

constant matrices. ( ) kr k ∈  is the reference input.

A tracking error is described as: 

( ) ( ) ( )me k y k y k= −                                    (11)

4. Optimal Second-Order Sliding 
Mode Control 

The objective is to determine a control law that 
guarantees the continuation of the trajectory of 
the model in (10). The idea is to transform the 
tracking problem into a stabilization problem. 

( ) ( ) ( ) ( )
( ) ( ) ( )

r

r

z k x k x k r k
e k y k y k

ς υ



= − −
= −                  

(12)

where ( )z k  is the new  auxiliary state, and ς  and 
υ  are two matrices to be determined. 

Theorem: If there exist n nς ×∈ , n nυ ×∈ , 
m n×Υ∈  and m n×Ω∈  satisfying:

( )

0

r

n r

r

A
I B

D D
D

ς ς
υ ς

ς
υ

Φ − = −ΓΥ
 Φ − − = −ΓΩ
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 =                               

(13)

 Then the system’s new dynamics is described by:
( 1) ( ) ( ( ) ( ) ( ) ( ))
( ) ( )

rz k z k u k x k r k d k
E k Dz k

+ = Φ



+Γ −Υ − +
=
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Ω

  
(14)
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Additionally, the different matrices are the 
solutions of the following equation: 

( )
( ) ( )

  0ò
0

T
nr r n nr

T
rn

vec I A I I
vec vec DI D

+     ⊗Φ − ⊗ ⊗Γ
=     Υ ⊗         (15)1 ò

0 0
n rI B

D
υ −Φ − Γ     

=     Ω       

where ( )vec x  is the vector obtained by arranging 
all the columns of x in one vector and ⊗  is the 
Kronecker product of the matrices.

Proof: To begin with, it is assumed that the 
reference input changes gradually over a brief 
sampling period. Moreover, based on expressions 
(8), (10), (13) and (14), the following is obtained:

( 1) ( 1) ( 1) ( 1)
( ) ( ( ) ( )) ( ) ( )

( 1)
( ) ( ( ) ( )) ( ) ( )

( )
( ( ) ( ) ( )) ( ) ( )
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ς ς υ
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− +
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−
= Φ − − +Φ +Φ
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= Φ + Φ − ) ( ) ( ) ( )

( ( ) ( ))
( ) ( ( ) ( ) ( ) ( ))
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r

A x k B r k
u k d k
z k u k x k r k d k

υ ς υ+ Φ − −
+Γ +
= Φ +Γ −Υ −Ω +  

(16)

On the other hand, according to the equations (6), 
(10), (12) and (13), one obtains:

( ) ( ) ( )
( ) ( )
( ) ( )

( ( ) ( ) ( )) ( )
( )

r

r r

r

r r

e k y k y k
Dx k D x k
Dx k D x k
D z k x k r k D x k
Dz k

ς
ς υ ς

= −
= −
= −
= + + −
=   
To determine the matrices , ,ς υ Υ  and Ω  the first 
and third equations of (13) are rewritten in matrix 
form as follows:

0
r

r

A
DD
ςςΦ Γ     

=     Υ                                    
(17)

The matrices ς  and Υ  are the solutions of 
equation (17) as they are mentioned in (Pai, 
2014). This expression can, in fact, be rewritten 
as follows:
∆Σ = Λ   (18)

where:
 

  

0

T
nr r n nr

n

I A I I
I D

+
 ⊗Φ − ⊗ ⊗Γ
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 
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,
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 ( )
0

T
rvec D

 
Λ =  
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The solutions of expression (18) exist only if 
( ) ( )rank rank∆Σ = ∆  (Pai, 2014). One of these 

solutions is given by:
+Σ = ∆ Λ                                                   (19)

where +∆  is the pseudo-inverse of ∆ . Similarly, 
the second and fourth equations of (13) are 
described in matrix form as follows:

0 0
n rI B

D
υ ςΦ − Γ     

=     Ω                             
(20)

It is assumed that:
1

11 22

21 22

 
0

nI
D

−Ψ Ψ Φ− Γ   
=   Ψ Ψ                      

(21)

It follows from (20) that:

11 22

21 22 0
rBυ ςΨ Ψ    

=     Ψ ΨΩ                            
(22)

After creating the related matrices of the reference 
model, a new optimal control law is suggested to 
satisfy the trajectory tracking:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

r

r

u k v k x k r k

v k u k x k r k





= + Υ +Ω

= − +Ω Υ                   
(23)

By replacing equation (23) in system (14), the 
following is obtained:

( ) ( ) ( ) ( )( )1z k z k v k d k+ = Φ +Γ +         
(24)

4.1 Optimal Control Law for a 
Nominal System

To choose the best controller, it is necessary to 
minimize the performance index J , calculated 
as follows:

0
( ( ) ( ) ( ) ( ))T T

op op
k

J z k Qz k u k Ru k
∞

=

= +∑
      

(25)
 

Q  and R  are two square matrices with n and m 
as their respective dimensions. The Hamiltonian is 
expressed in (Das & Mahanta, 2014) to determine 
the control that minimizes the quadratic index J :

( ) ( ) ( ) ( ) ( )
( 1) ( 1)

T T

T

H k z k Qz k u k Ru k
p k z k

= +

+ + +            
(26)

                                   



https://www.sic.ici.ro

76 Raghda Jouirou, Wafa Boukadida, Anouar Benamor

P  represents a symmetric positive matrix that 
solves the Riccati equation, which is given by:

( ) 1T T TP Q P P R P P
−

= +Φ Φ −Φ Γ +Γ Γ Γ Φ   
(27)

 
The optimal control for reducing the quadratic 
index is, based on ( )H k :

( ) ( ) ( )
( )

1T TUop k R P P z k

Kz k

−
= − + Γ Γ Γ Φ

= −       
(28)

4.2 Optimal Sliding Surface

The objective of the control is to ensure the 
stability of the system despite the uncertainties. 
The ideal sliding state is achieved by the existence 
of a finite time (tf) such that the solution of the 
system satisfies s(k) = 0 for all t ≥  tf (Zhao, Wu 
& Ma, 2013).

The following equation expresses the first-order 
sliding surface s(k):

( ) ( )s k Cz k=   (29)

with:

C C I =                                                
(30)

The sliding surface function is defined as follows:

11 21 1

12 22 2 2

( 1) ( ) ( )
( ) ( ) ( )

s k C z k
C z k u k
+ = Φ +Φ

+ Φ +Φ +Γ                   
(31)

Once the optimal sliding speed has been attained, 
the cancellation of the sliding surface leads to:

2 1( ) ( )z k Cz k= −                                        (32) 
The equivalent sliding mode controller is inferred 
from s(k +1) = 0:

1
2 11 21 1

12 22 2

( ) (( ) ( )

( ) ( ))
equ k C z k

C z k

−= −Γ Φ +Φ

+ Φ +Φ            
(33)

Based on expressions (29) and (30) the stabilizing 
control law is described as follows:

1
2 11 12 21

22 1

( ) (

) ( ))
equ k C C C

C z k

−= −Γ Φ − Φ +Φ

−Φ          
(34)

In order to find the parameters of the sliding 
surface that generate the optimal control given by 
equation (28), the following is assumed:

( ) ( )equ k Uop k=                                          (35)

Taking into account the state transformation 
( ) ( )  z k Tx k=  and based on equation (32), the 

new expression for the optimal control in (28) can 
be expressed as follows:

( )
( ) ( )

1

1
1 2 1 2 1

2

( ) ( ) ( )

[ ] (  ) 

TUop k K T z k Kz k

z k
K K K K C z k

z k

= − = −

 
= − = − 

          

(36)

According to equations (34) and (35), the new 
sliding surface is calculated by solving the 
following equation:

( )12 22 2 2 11 2 1 21) (   0C C K C C KΦ + Φ −Γ − Φ + Γ −Φ =   (37)

This equation, with the unknown term C  is 
known as the Sylvester equation.

The system below describes the new optimal 
sliding surface:
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0

20

z
z

z
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=  
 

 

K is the gain matrix, 0z  is an initial condition, and 
h(0) is a null vector of order m.

5. Optimization of  
Control Parameters

After establishing the sliding surface structure and 
determining its matrix , the optimal control law 
is designed. In order to eliminate the convergence 
phase during which the system is sensitive to 
external disturbances, the control structure can 
be modified as follows:

                 

(39)

where Ψ and G are two positive diagonal matrices 
satisfying: 0 ≤ ΨTe < 1 and GTe > 0.

The resulting control depends on the gain matrix
K , which in turn is dependent on matrices Q  and 
R . In order to anticipate the parameters leading to 
the synthesis of an optimal sliding mode control, 
genetic algorithms were employed as a multi-
objective method for establishing a database for 
neural network learning. This makes it possible 
to predict an optimal solution for the design of 
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a control law that provides a balance between 
various objectives related to trajectory tracking.

5.1 Multi-objective Optimization

To solve this problem, heuristics is used to find the 
best solution to the problem, or at least, the least 
bad solution. The main idea behind heuristics is 
to explore the space of solutions in an attempt to 
converge to an optimal solution.

While sliding mode control is important, choosing 
the Q and R matrices for the LQR method (Raghda, 
Anouar & Wafa, 2022) can be challenging, as 
there is a trade-off between energy and speed that 
must be considered. The implementation of the 
switching signal requires the determination of the 
matrices Ψ  and G  (the discontinuous control 
gain). In this paper, this problem was reformulated 
as a multi-objective optimization. Multi-objective 
optimization problems are known as the most 
common processes in engineering, where multiple 
minimized apps are resolved. A compromise was 
reached in (Ebrahim et al., 2021). The Genetic 
Algorithm (GA) optimization was used because it 
can solve difficult problems using heuristics and 
meta-heuristics.

The definition of the objective function according 
to Boukadida et al. (2019) is:

( )( ) ( ) ( ) ( )1 2 10f x t w t ISE w t log Tv= +        (40)

The total variation of the control law is denoted 
by Tv . ISE is the Integrated Squared Error. w1 and 

2w  are the weights which are defined as:

( )1
2 t| sin( ) |w t

F
Π

=
 
,
 

( ) ( )2 11w t w t= −
          

(41)

F  is the frequency controlling the rate of change 
for the weights.

5.1.1 Genetic Algorithms (GAs)

Genetic algorithms use Darwin’s theory of 
the evolution of species. It is based on three 
principles: the principle of adaptation, the 
principle of variation and the principle of 
inheritance (Thengade & Dondal, 2012). There are 
three evolutionary operators in genetic algorithms: 

Selection: Choosing the most appropriate 
individual. Crossover: Mixing by copying the 
particularities of selected individuals.

Mutation: random modification of the 
characteristics of an individual.

Figure 3 illustrates the genetic algorithm and its 
operational flow. A genetic algorithm begins with 
an initial population, evaluates the quality of each 
individual with respect to an objective, selects 
individuals based on their fitness, reproduces them 
through crossover, introduces diversity through 
mutation, and replaces the least fit individuals 
with new generations. This process is repeated 
until a satisfactory solution is achieved.

Figure 3. Procedure of GA (Albadr et al., 2020)

5.2 Multi-Layer Perceptrons (MLPs)

Multilayer perceptrons (MLPs) belong to the class 
of feedforward artificial neural networks. A MLP 
consists of at least three layers of nodes: an input 
layer, a hidden layer, and an output layer. Apart 
from input nodes, each node is a neuron that uses 
a non-linear activation function (Gerardin et al., 
2009). MLPs use a supervised learning method 
called backpropagation to adjust their weights 
during training. The multiple layers and non-
linear activations differentiate MLPs from linear 
perceptrons. MLPs are often called simple neural 
networks, especially when they have only one 
hidden layer (Figure 4).

Figure 4. The Multilayer Perceptron  
(Wang et al., 2022)
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The proposed network uses the outputs obtained 
by genetic algorithms as input data. This enables 
the development of a robust deep learning system 
capable of accurately predicting the two matrices 
Q  and R , as well as the matrices Ψ  and G . It 
is important to emphasize that neural networks 
are the essential tool in the deep learning process, 
allowing for the full exploitation of the benefits of 
this advanced approach in artificial intelligence.

Further on, this network assigns biases and 
weights to the different neurons in the network 
based on the input data.

This article focuses on regression, which involves 
predicting the most suitable values for Q , R , Ψ
and G . The input data is represented by X(i), and 
then the corresponding values Y(i) are predicted. 
The networks are commonly trained using a 
traditional feed-forward backpropagation learning 
algorithm that minimizes the Mean Squared Error 
(MSE) of the training data. The input data for 
training the network is a database of observations 
that includes different values of Q , R , Ψ  and 
G  obtained through metaheuristic algorithms.

Table 2 illustrates the obtained experimental 
results and how the parameterization data was 
used in the training method. The parameters 
used in the regression are the learning rate (LR), 
number of epochs, number of hidden layers, 
number of neurons per hidden layer, and best 
validation performance (BVP).

In relation to Table 2, a multilayer network was 
used consisting of an input layer with 280 neurons 
and ten hidden layers, each composed of eight 
neurons with Purelin transfer functions.

Table 2. Experimental results obtained for the 
regression parameters

LR No. of 
Epochs

No. of 
Hidden 
Layers
(HL)

No. of neurons 
per HL BVP

0.001 100 2 4 3.3864e-09
0.001 1000 2 4 6.9408e-13
0.001 1000 4 8 3.9724e-14
0.001 1000 10 8 1.676e-18
0.001 100 10 16 5.7537e-15
0.001 1000 4 16 6.9758e-12

6. Validation

The Quanser 2-DoF helicopter model is mounted 
on a fixed base with two propellers driven by two 
DC motors. It allows control of pitch and yaw. 
The corresponding workstations with two 
different controllers, namely SDOSMC and 
(SDOSMC+GA+DL) were simulated using 
MATLAB to show the effectiveness of the 
combination of SDOSMC, LQR, genetic 
algorithms and deep learning. Figure 5 illustrates 
the proposed methodology for predicting an 
optimal solution for the control law design. It is 
composed of 3 blocks. The GA block’s role is to 
provide a set of data for Q , R , Ψ  and G  that 
serves as inputs for the NN network. A DL-based 
learning process is then conducted to predict best 
values for Q , R , Ψ  and G  for the design of the 
optimal control law.

Figure 5. Diagram illustrating the proposed approach

Further on, the performance of the traditional 
optimal controller and that of the proposed deep 
learning-based optimal controller were compared. 
Figures 6 and 7 illustrate the evolution of two 
angles, θ  and ψ . From these plots, it is evident 
that each output converges rapidly towards its 
reference, ensuring precise trajectory tracking 
for the proposed controller. It is clear that the 
robustness of the proposed approach makes the 
effect of disturbances negligible.

Figure 6. Evolution of the pitch angle for the two 
employed optimal controllers
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Figure 7. Evolution of the yaw angle for the two 
employed optimal controllers

Figures 8 and 9 schematically represent the 
pitch and yaw motor control. Figure 9 features a 
smooth curve in steady system state, indicating the 
absence of the chattering phenomenon. 

Figure 8. Evolution of the yaw motor control input 
voltage (Vy) for the two employed optimal controllers

Figure 9. Evolution of the pitch motor control input 
voltage (Vp) for the two employed optimal controllers

These figures demonstrate that combining deep 
learning with GA and SDOSMC results in a faster 
convergence of the pitch and yaw angles to the 
desired signal.

In both cases, the employed approaches 
completely rejected the perturbations, and the 
related trajectories remained within a confined 
range of motion.

Table 3 below conclusively confirms the superior 
effectiveness of the proposed deep learning-based 
optimal control approach in comparison with that of 
the traditional optimal controller. The obtained results 
highlight a faster convergence, a higher trajectory 
tracking precision, and an enhanced robustness 
against disturbances. These findings further bolster 
the standing of the proposed method as a more 
effective and innovative solution for resolving 
tracking problems with parameter uncertainty.

The control architecture of the Quanser Aero 
helicopter seems to benefit from combining the LQR 
approach with intelligent methods, as this results in 
a fast convergence, the reduction of chattering, and 
a low oscillation amplitude. The simulation results 
demonstrate the effectiveness of this approach and 
the superiority of the proposed controller.

Table 3. Experimental results obtained for the two 
employed controllers

SDOSMC SDOSMC 
+ DL

Convergence Time for (θ) (s) ≈ 2.2 ≈ 1.1
Convergence Time for (ψ) (s) ≈ 10 ≈ 0.2

Mean Error for (θ) 0.05 0.03
Mean Error for (ψ) 3.9 × 10-4 3.7 × 10-4

Chattering (θ) ++ –
Chattering (ψ) ++ –

7. Conclusion

This paper presents a new approach for designing 
a robust controller with the purpose of ensuring 
the reliable trajectory tracking of the pitch and 
yaw angles for a 2-degree-of-freedom helicopter. 
This article makes three key contributions. 

The first is the development of an ideal sliding 
surface using a process that guarantees both 
the stability of the closed-loop system and the 
effectiveness of the control law. The second 
contribution involves designing a sliding mode 
controller coupled with an optimal global robust 
control system based on the LQR technique. The 
third contribution concerns the optimal controller 
configuration, and this is accomplished by 
employing a combination of intelligent techniques, 
including metaheuristics and deep learning, aimed 
at reducing the “chattering” phenomenon. The 
obtained experimental results demonstrate that 
this innovative approach can significantly enhance 
the closed-loop system’s performance.
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