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1. Introduction

The concept of Industry 5.0 signifies a major shift in 
perspective, as it encompasses multiple dimensions 
beyond production efficiency. This paradigm 
recognizes the importance of integrating various 
goals, such as efficiency, sustainability, mitigating 
the environmental impacts of industrial processes, 
and enhancing the well-being of employees. By 
embracing these diverse directions, Industry 5.0 
aims to foster a holistic and responsible approach 
towards industrial practices with a focus on 
optimizing the overall quality of life (Adel, 2022).

Within this context, the optimization of energy 
consumption in manufacturing systems necessitates 
the implementation of suitable optimization 
algorithms, the integration of advanced 
technologies for energy storage and recovery, the 
utilization of devices compatible with Industrial 
Internet of Things (IIoT), and the deployment of 

systems for data collection and analysis (Nicolae, 
Necula & Carutasiu, 2023)). These technological 
advancements enable the real-time gathering of data 
from manufacturing lines, which can subsequently 
be analysed to identify and improve energy-
inefficient processes (Alexandru et al., 2023). 
Furthermore, based on the amassed data, predictive 
models can be developed with exceptional precision 
to anticipate the energy requirements accurately 
(Knežević, Blagojević & Ranković, 2023).

The optimization of production processes, 
particularly in cases where parallel production 
is feasible, represents a complex challenge, 
particularly in tackling the optimization issues 
pertaining to operations (job shop). This 
complexity arises due to the involvement 
of equipment with varying cycle times and 
constraints in these systems. Furthermore, the 
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Abstract: The efficient management of energy consumption is an essential concern in the manufacturing industry, with far-
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optimization algorithm called the improved genetic algorithm (IGA), which is conceptually subordinated to the structure 
of the standard genetic algorithm (GA). The improved multi-objective genetic algorithm featured a high performance in 
terms of execution time and optimization of energy consumption. Thus, in the framework of the IGA algorithm, a layered 
approach to the optimization process was proposed by successively employing two genetic algorithms in the MATLAB 
programming environment. The first genetic algorithm identified the value of the minimum energy consumption, and the 
second GA adjusted the parameters of the first GA iteratively, in order to obtain the minimum consumption. Comparing the 
results obtained by employing the IGA algorithm with those obtained for the Non-dominated Sorting Genetic Algorithm 
(NSGA-II) in terms of real-time execution time, it can be noticed that a significant improvement was achieved from 25.7 s for 
the standard NSGA-II to 0.0527 for the IGA without any change in the performance of IGA with regard to the minimization 
of power consumption. By harnessing the inherent capabilities of the GA, the aim of this paper is to increase the energy 
efficiency for the analysed production system, thereby contributing both to cost savings and to reducing the environmental 
impact of manufacturing processes. 

Keywords: Power consumption optimization, Power monitoring, Genetic algorithm (GA), Industrial production line.



https://www.sic.ici.ro

28 Păun M.-A., Coandă H.-G., Mincă E., Iliescu S. S., Duca O. G., Stamatescu G.

optimization problem becomes more intricate 
when considering the presence of server-based 
processing (cloud computing). Addressing 
these challenges requires a comprehensive 
and systematic approach that incorporates 
advanced techniques and methodologies to 
optimize production processes and achieve 
efficient resource allocation while considering 
the dynamics of parallel operations, variable   
equipment constraints, and the incorporation of 
cloud computing resources (Hassan, et al. 2015).

This paper focuses on optimizing the energy 
consumption of a manufacturing line through the 
application of the IGA on mathematical models 
representing the variation in energy consumption 
of manufacturing stations. To ensure a clear and 
logical progression of ideas, this paper is structured 
as follows.  Section 2 presents the industrial 
production system in which the optimization will 
be achieved. Section 3 sets forth the GA-based 
multi-objective approach. Section 4 presents the 
proposed IGA-based approach by describing the 
analysed production scenario and also the structure 
of the implemented procedure for optimizing 
energy consumption. Section 5 presents the results 
obtained for applying IGA to optimize energy 
consumption on the manufacturing line. Finally, 
Section 6 summarizes the main findings of the 
research, reiterating the significance of energy 
consumption optimization in manufacturing lines.

2. Description of the Industrial 
Production System

This article addresses the analysis and improvement 
of manufacturing processes by leveraging theoretical 
optimization concepts applied to equipment within 
a manufacturing system. The specific objective 
of this article is to implement an improved multi-
objective GA on a flexible manufacturing system 
with the aim of optimizing energy consumption in 
a manufacturing scenario. This optimization aims 
to streamline the production flow for making a 
complex product on the production line, considering 
the unique requirements and constraints associated 
with the production scenario.

2.1 Flexible Manufacturing Line (FML)

The flexible manufacturing system incorporates a 
network of workstations, wherein each workstation 
possesses distinct characteristics tailored to the 
specific nature of the tasks performed on the 
workpieces. Within the manufacturing system, 

the products can be categorized based on their 
architecture into three main types: simple products, 
complex products, and hybrid products (Figure 1).  
These product variations are assembled on the 
production line and can be further configured in 
numerous combinations to meet customer demands. 
Consequently, in addition to the conventional 
sequential production aspect, the workstations also 
integrate a flexible component, which necessitates 
the utilization of equipment capable of producing a 
wide range of configurations (Abdullah, Humaidi 
& Shahrom, 2020).

a)                            b)                          c)

Figure 1. The structure of a simple product (a), 
complex product (b), and hybrid product (c)

The incorporation of workstations with unique 
task-specific characteristics, along with the ability 
to handle different product architectures and 
configurations, highlights the adaptability and 
versatility of the flexible manufacturing system 
(Figure 2). By acknowledging the presence of 
both sequential and flexible components within 
the manufacturing system, the significance of 
implementing equipment capable of producing 
various product configurations becomes 
obvious. Consequently, this approach serves as 
a base for further exploring ways to optimize the 
implementation of production flows and enhance the 
overall efficiency and effectiveness of the flexible 
manufacturing system (Filipescu et al., 2020).

To ensure the comprehensive completion of a 
product, irrespective of its architecture, a specific 
manufacturing flow is employed within the system. 
For the manufacturing of a simple product two 
possible flows are considered as follows: WS1 
WS2  WS3  WS4  WS5  WS4  WS5 
 WS6 or WS3  SCARA Robot (SR)  WS6.

The operations involved in first flow presented 
include releasing the transport tray onto the 
conveyor, assembling the basal part, assembling 
small parts, assembling the upper part, returning 
the part to WS3, assembling an additional layer 
of small parts, adding another top part, and finally 
compacting the entire product (Duca et al. 2022).
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The manufacturing line implements manufacturing 
flows of significant complexity, allowing to 
produce products in both random order and 
according to a predefined algorithm. Within this 
context, the potential for process optimization 
utilizing multi-objective GA is noted, specifically 
regarding the reduction of energy consumption 
through the optimization and control of production 
processes. The operator defines the quantity 
and types of products to be manufactured. 
Subsequently, an optimized production algorithm 
is employed to establish the optimal order for 
manufacturing various products.

The energy performance of the production 
system is heavily influenced by the strategies 
employed for optimizing energy consumption 

and reducing the waiting time. Waiting time, both 
from the perspectives of productivity and energy 
consumption, results in losses. 

The flexible production system under investigation 
in this study currently lacks an energy optimization 
algorithm.  Consequently, it becomes imperative 
to assess the system’s suitability for implementing 
such an energy optimization algorithm.

2.2 The Developed EMS Implemented 
on FML

The integration of an EMS (Figure 3) on the 
assembly and disassembly production line offers 
a significant potential to optimize energy usage, 
lower costs, and enhance overall energy efficiency. 

Figure 2. The modular hierarchical structure of the FML equipped with the centralized real-time energy 
consumption monitoring system (EMS), and with the subsystems Power Meter Panel(i), i = 1,..7, connected to 

WS(i), i = 1, ..7, respectively

Figure 3. The real-time MATLAB Interface Application FML integrated in an EMS architecture for a flexible 
manufacturing line
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This can be accomplished through the installation 
of sensors and measuring equipment that record 
real-time energy consumption data, coupled 
with the implementation of software capable of 
analysing and interpreting this data (Limpraptono 
et al., 2021).

An EMS can help identify sources of inefficient 
energy consumption and provide recommendations 
for optimization measures. For example, it can 
show which equipment consumes the most energy 
resources and suggest changes or optimizations to 
improve its efficiency (Sun, Lin & Meng, 2022).

An important aspect in the process of optimizing 
the energy consumption of manufacturing systems 
is the introduction of an EMS adapted to the 
physical architecture of the system. 

The EMS system proposed in this article for 
monitoring energy consumption consists of a 
hardware part and a software part (Figure 2). 
The hardware consists of seven smart energy 
meters mounted on a Modbus RTU bus connected 
to a laptop (Figure 3). On the other hand, the 
software application developed in MATLAB 
allows the representation and saving of real-time 
energy consumption data from the manufacturing 
line. The monitoring system consists of the 
following equipment: seven measuring meters 
with communication via Modbus RTU protocol, 
control panel, Modbus RTU – USB converter and 
a computer that allows data acquisition. To achieve 
this, it was necessary to design a specialized program 
in the MATLAB programming environment as well 
as an interface through which to display all data.

In this regard, an interface was created in 
MATLAB App Designer, which allows 
monitoring workstations and making real-time 
graphs. This function is especially practical when 
a large amount of data needs to be analysed. 
This advanced functionality enables individual 
monitoring of the energy consumption at each 
workstation, providing valuable insights into the 
energy usage patterns (Figure 3). This individual 
workstation monitoring offers a comprehensive 
view of the energy consumption distribution 
within the manufacturing line.

3. GA Multi-objective Approach

GA is an optimization method used for solving 
problems that require an optimal solution with 
or without constraints (Serban & Carp, 2017). 

By simulating the process of natural selection, 
GA explores potential solutions through its 
iterative processes and steadily refines them 
over successive generations. This optimization 
approach by implementing the genetic variation, 
crossover, and mutation can generate new 
candidate solutions and iteratively converge 
towards optimal or near-optimal solutions. 

GA commonly employs three types of rules in 
each iteration to generate new populations:

1. selection rules: selection rules in GA involve 
a stochastic process wherein individuals are 
chosen as potential parents based on their 
individual scores or fitness values; 

2. crossover rules: crossover rules govern the 
combination of genetic material from two 
selected parents to generate offspring, known 
as children. Through crossover operations, 
genetic information is exchanged and 
recombined, leading to new individuals that 
inherit traits from both parents;

3. mutation rules: mutation rules introduce 
variability and diversity into the population 
by randomly altering the genetic material 
of selected individuals, typically parents, 
to generate new genetic variations for  
future generations. 

3.1 Structure of Multi  
Objective Problems

Multi-objective optimization algorithms are meant 
to solve problems that involve finding at least two 
or more goals (minimum/maximum) associated 
with optimization functions. These optimization 
functions usually have different constraints of 
either equality or inequality. Therefore, multi-
objective optimisation problems can be formulated 
as follows:

( ) 1,2,3,....., ,

( ) 0 1,2,3,......, ,

1, 2,3,......, ,

1, 2,3,......., ,

f x n Nn
g x t Tt
h k Kk
x l Ll

=

≤ =

= =

≤ =
                            

(1)

where fn(x) represents objective functions, gt(x) 
inequality constraint functions, hk equality 
constraints and x1 inequality constraints.

The solution for implementing a multi-objective 
algorithm is of the form x ∈ Rl where l is the vector 
of decision variables x = (x1,x2,x3,...,xl)

T. Solutions 
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that satisfy boundary constraints constitute the space 
of feasible states S ⊂ Rl . Thus, the optimization 
problem has an N dimension hereinafter referred 
to as the lens space in which Z ⊂ RN. For each 
solution x in the decision variable space there is 
an associated point z = (z1,z2,z3,...,zN)T. Thus, a 
solution is both a vector and a point corresponding 
to the objective vector. Optimal solutions in multi-
objective optimization are dominant terms.

3.2 Multi-objective Algorithms

Multi-objective optimization algorithms are 
designed to solve problems with multiple 
objectives (Djebbar & Boudia, 2022). Unlike 
single-objective optimization, where only one 
optimal solution is sought, multi-objective 
optimization aims to find a set of solutions 
that represent a compromise between different 
objectives (Delorme, Battaïa & Dolgui, 2014).

Non-dominated genetic sorting algorithm (NSGA-
II) is a popular evolutionary algorithm for 
multicriteria optimization. It uses a combination 
of genetic operators such as selection, crossover, 
and mutation to evolve a population of candidate 
solutions (Verma, Pant & Snasel, 2021). The 
algorithm applies non-dominated sorting to 
determine the Pareto dominance for solutions, 
which classifies them according to their non-
dominated status. NSGA-II offers a diverse set 
of solutions covering the pareto-optimal front, 
allowing decision-makers to choose the most 
suitable solution according to their preferences 
(Ma et al., 2023).

Strength Pareto Evolutionary Algorithm (SPEA2) 
is another evolutionary algorithm widely used 
in multi-objective optimization. It uses a fitness 
function assignment scheme that combines 
both goal-based fitness and density estimation 
to promote diversity among solutions. SPEA2 
maintains an external archive of non-dominated 
solutions and uses a selection mechanism to 
guide the evolution process. It aims to find a 
well-distributed and representative set of optimal 
Pareto solutions.

Multi-objective Particle Swarm Optimization 
(MOPSO) is a variant of the particle swarm 
optimization algorithm adapted for multi-goal 
optimization. It incorporates the concept of 
Pareto domination and guides the movement of 
particles in search space to converge towards 
the Pareto-optimal front. The MOPSO maintains 

the best personal position for each particle and 
updates it based on the dominance relationship 
with the most well-known positions found up to 
that point. The algorithm provides a good balance 
between exploration and exploitation, enabling the 
discovery of diverse and high-quality solutions 
(Yunus & Alsoufi 2020).

4. Improved Genetic Algorithm

The improvement of GA can be achieved through 
two approaches: modifying the algorithm itself 
or adjusting its parameters to align it with the 
specific addressed problem. This article focuses 
on a scenario where the GA adapts to the given 
problem by utilizing another optimization 
algorithm to fine-tune the parameters and achieve 
optimal results in the shortest possible time.

To accomplish these improvements, the initial 
implementation of the GA must be established. 
The GA functions by generating an initial 
population which progressively evolves across 
successive iterations thereby enabling the 
discovery of optimal solutions. In each iteration, a 
suitable selection of parent agents is made from the 
population, ensuring the production of offspring 
for future generations. The children generated 
in each generation contribute to the progressive 
convergence towards the optimal solution. 
A graphical representation of the algorithm’s 
structure implemented on the production line is 
depicted in Figure 4.

This approach enables the GA to leverage 
the optimization capabilities of an additional 
algorithm, resulting in an improved performance 
and efficiency. By incorporating parameter tuning 
mechanisms, the GA can adapt its parameters 
iteratively to enhance the quality and speed of 
convergence, leading to the identification of 
optimal solutions in a shorter timeframe.

The solution takes the following structure:

1 1 2 3 7( , , ,.........., )fX x x x x=                                (2)

The candidate solutions in the optimization 
process represent the specific values of the 
working speeds for the station conveyors within 
the production system. The energy consumption 
for each production station is determined based on 
consumption change equations presented in vector 
Z. The fitness function assesses the overall energy 
consumption by summing all elements of vector Z. 
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By iteratively applying the genetic operators 
within the algorithm and evaluating the fitness 
function, the speeds that produce the minimum 
energy consumption values for the entire 
production system are determined.

Through this iterative optimization process, the 
GA effectively identifies the optimal working 
speeds for the station conveyors, thus minimizing 
energy consumption within the production system. 

This approach fosters sustainable and efficient 
operations, reducing energy costs and improving 
the overall environmental performance of the 
manufacturing process.

To assess candidate solutions, an objective 
function is employed, taking the candidate 
solution as input data, and generating an output 
that represents its quality. By comparing the 
values obtained for each candidate solution, their 
quality can be determined.

Following the definition of the fitness function, 
various criteria have been established to halt 
the algorithm. These criteria imply a maximum 
number of iterations to prevent excessive 
computation and impose a time limit on the 
algorithm’s execution.

In addition, the implemented GA algorithm 
incorporates the genetic selection operator known 
as Roulette Wheel Selection. This operator assigns 
a value to each parent on the wheel based on their 
fitness values derived from the fitness function. 
Parents with higher fitness values are more likely 
to be chosen as parents for the next generation.

The selection probability is calculated using 
equation (3):

1

1, 2,3, 4....7;i
i N

i
j

f
P i

f
=

= =

∑
                              

(3)

where fi is the value of the fitness function for 
iteration i and 

1

N

i
j

f
=
∑  is the value of the sum of all 

fitness functions.

The functions tailored for optimization in this 
paper are:

7
1 1 2 3 4 5 1
( , , , , ) ( ),

t
f v v v v v z t

=
= ∑                            (4)

2

1

( _ , _ , , , , )
( ( _ , _ , , , , )),f

f Max Iter Max Pop
time GA Max Iter Max Pop

β γ µ ν
β γ µ ν
=

      
(5)

where Max _ Iter is the maximum number of 
iterations allowed for the GA algorithm, Max _
Pop is the maximum permitted population, β is 
the coefficient of selection, γ the coefficient of 
the number of chromosomes, μ is the mutation 
coefficient and v is the importance of mutation.

Crossover, performed as a part of the optimization 
algorithm, involves generating new generations 
by combining the chromosomes of parents. 
The specific type of crossover employed in the 
algorithm is uniform crossover. This method 
allows for the exchange of genetic material 
between parents by uniformly selecting gene 
segments from each parent.

In addition to crossover, the optimization 
algorithm incorporates genetic mutation. 
This operation introduces random changes to 
chromosomes, typically affecting one or more 
genes. It is important to note that the applied 
algorithm maintains a low probability of mutation 
occurrence, ensuring that changes are introduced 
gradually and selectively.

To further enhance the optimization process, an 
additional optimization algorithm, referred to as 
the GA optimizer, is applied. The GA optimizer 
operates on the premise of optimizing parameters 
that impact the performance of the primary 
optimization algorithm. Essentially, it is another 
iteration of the GA that aims to fine-tune parameters 
to improve the execution time of the optimization 
algorithm. Figure 4 illustrates the overall structure 
of this optimizer. The algorithm generates candidate 
solutions that are represented in a specific form, 
capturing the desired variables or components 
needed to address the optimization problem at 
hand. The candidate solutions can be expressed as:

2
( _ , _ , , , , )fX Max Iter Max Pop β γ µ ν=             (6)

The fitness function not only quantifies the 
execution time of the algorithm, but it also aims 
to minimize energy consumption to a level that 
satisfies the user’s preferences. As a result, the 
algorithm’s stop criterion considers the user’s 
desired outcome alongside the requirement to 
achieve minimal energy consumption.

By accounting for user preferences in the fitness 
function, a comprehensive optimization approach is 
established. This user-centric perspective allows the 
algorithm to strike a balance between the execution 
time and energy consumption, ensuring that the 
resulting solution meets both the desired level 
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of energy efficiency and the user’s satisfaction. 
Striking an optimal balance between energy 
consumption and execution time is important in 
addressing the optimization problems effectively.

The use of IGA to optimize the manufacturing 
flow for assembling the complex product involves 
in the first phase the development of the fitness 
function associated with this process. This article, 
from among all production scenarios, considered 
the scenario in which the complex product is 
assembled through the following manufacturing 
flow: WS1  WS2  WS3  WS4  WS5  
SR  WS4  WS5. 

The functions that make up the vector Z


 are 
obtained by applying linear regression to the data 
monitored with EMS:

1 1 1

2 2 2

3 3 3

4 4 4

(-0.0008*v +8.41)*(v *0.0114+69.304)+tsi *43.92
(-0.0035*v +20.2)*(v *0.0481+70.804)+tsi *98.39
(-0.0052*v +21.35)*(v *0.0126+115.57)+tsi *178.83
(-0.0025*v +85.45)*(v *0.0021+189.36)+tsi *131.94
(-0.0

Z =


5 5 5

6 6 4

7 7 5

034*v +24.05)*(v *0.0080+30.561)+tsi *25.12
133.76* 48.22 * 48.08
(-0.0025*v +85.45)*(v *0.0021+189.36)+tsi *131.94
(-0.0034*v +24.05)*(v *0.0080+30.561)+tsi *25.11

rtsi

 
 
 
 
 
 
 
 
 +
 
 
 
 

,

  

(7)

where iv , 1,7i =  is the conveyor speed, while 
ktsi , 1,5k =  and rtsi  are variables that model the 

delay time in relation to the production time of the 
next workstation.

The vector Z


 contains the functions for   varying 
the energy consumption in relation to the speed 
of the conveyors but also to the working speed 
of the SR. It should be noted that the equivalent 
speed was considered to have two command 
limits: an upper limit equal to 2000 and a lower 
limit equal to 1000. In addition to this, the delay 
time was considered, this time was calculated as 
the difference between the production time of the 
next station and the production time of the current 
station. If the difference in production times is 
negative, the delay time takes the value 0. The 
fitness function implemented in MATLAB is 
performed in accordance with the vector 7Z R∈



. 
Thus, to achieve this fitness function, the sum of all 
elements of the vector Z



 was calculated as follows:

( ) 1,2,3,4,.......,
1

u
F z i i uf i

= =∑
=                    

(8)

where z(i) the value of power consumed for the 
passage of the product through the station i, i is the 
variable characterizing the equations denoted with 
regard to the vector Z



 and u is the total number of 
functions associated with the vector .Z



During the implementation of the algorithm in 
MATLAB, an important aspect considered was 
ensuring that the difference between the working 
time of a station, tsii, and the working time of 

Figure 4. FML’s real-time control structure dedicated to optimizing the energy consumption of workstations, 
adaptable to product manufacturing scenarios, from simple to complex typologies
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the next station is always greater than or equal to 
zero. In cases where this difference is less than 
zero, it is set to zero to maintain consistency and 
avoid negative delays. This condition promotes 
an efficient workflow management within the 
manufacturing system.

To calculate the delay time, the difference between 
the production time of the current station and the 
production time of the next station is determined. 
This calculation enables the identification of 
potential delays in the production flow, aiding 
in the analysis and optimization of the system. 
By considering the delay time, manufacturing 
processes can be coordinated to minimize waiting 
times and optimize production efficiency (9):

1 2 1

2 3 2

3 4 3

4 5 4

5

tsi =(-0.0035*v +20.2)-(-0.0008*v +8.42);
tsi =(-0.0052*v +21.35)-(-0.0035*v +20.21);
tsi =(-0.0025*v +85.45)-(-0.0052*v +21.35);
tsi =(-0.0034*v +24.06)-(-0.0025*v +85.46);
tsi =(-0.0016*1500+7.22)-(-0.0 5

4

034*v +24.06);
tsi (-0.0025*v +85.45);r =         

(9)

If delay time is less than zero, then automatically 
the waiting time in a certain station will take the 
value zero.

( 0) 0, 1,2,3,4,5,
( 0) 0,

k k

r r

if tsi tsi k
if tsi tsi

< = =
< =              

(10)

where k is the variable that allows the selection of 
delay time for workstations.

5. Results and Discussion

The optimization of production processes 
by applying optimization techniques, in the 
analysed scenario, has the role of reducing 
energy consumption and at the same time the 
execution time for the optimization algorithm. 
Thus, the two objectives can be achieved by 
applying the IGA algorithm to the analysed 
collection of consumption data, by identifying 
in the first phase the optimal value of energy 
consumption, and then implementing an 
optimizer on the existing algorithm to obtain the 
best execution time adapted to the optimization 
of the assembly system.

To accommodate the increased processing 
demands resulting from the larger number 
of variables, a Dell computer with a high-
performance configuration was employed for this 
analysis. The computer utilized for this analysis 
exhibited the following configuration: two octa-

core Intel Xeon processors, each operating at 2 
GHz, provided substantial processing power, 
a video card equipped with 4 GB of NVIDIA 
KP4200 memory facilitated enhanced graphics 
processing capabilities and the computer was 
equipped with an internal solid-state drive (SSD) 
memory with a capacity of 1 TB.

5.1 Optimization of Power 
Consumption Using  
NSGA-II Algorithm

The originally applied GA was implemented for 
a population of 200 individuals with a migration 
interval of 20 units. The maximum number of 
generations used was 600. The execution time 
required to identify optimal values was 25,7 s. The 
obtained value of the fitness function was 42237.1 
W*h (0.011732 W*s). The speeds that allowed 
this value to be obtained were (as it can be seen 
in Figure 5) (1) 1029x = , (2) 1000x =  (3) 2000x = , 

(4) 2000x =  and (5) 2000x = .

Figure 5. Application of a GA in MATLAB on the 
production flow for assembling the complex product

5.2 Optimization of Power 
Consumption Using  
IGA Algorithm

The optimization of the manufacturing process 
by means of the IGA algorithm involved using 
the obtained value to apply the algorithm with 
a single GA objective to energy consumption 
data and achieving a minimum satisfactory 
value for the user. The minimum value was 
later used for meeting the feasibility criterion 
of the GA optimizer, so that the optimizer could 
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change the parameters of the GA algorithm and 
the performance of minimizing the value of 
power consumption for this algorithm remained 
unchanged while obtaining a minimum execution 
time for this algorithm.

The GA optimizer implemented upper and lower 
limits for each parameter of the GA algorithm. 
This ensured that the parameters of the GA 
algorithm remained within specified boundaries. 
Thus, the parameters of the GA algorithm have 
the following limits:
100 _ 1000,
50 _ 1000,
0 1, 0 1,
0 1, 0 1

Max Iter
Max Pop

=< <=
=< <=
<= <= <= <=
<= <= <= <=

β γ
µ ν                    

(11)

The GA optimizer exhibits specific characteristics 
that govern its operation within the GA framework. 
These characteristics include the number of 
analyzed variables, that is 7, the maximum 
number of iterations, that is 100, a population 
size of 1000 individuals, the selection coefficient 
with the value 1, the coefficient corresponding to 
the number of analyzed chromosomes with the 
value 1, the crossover coefficient with the value 
0.1, the mutation coefficient with the value 0.1, 
and the mutation importance coefficient, with the 
value 0.1.

The outcomes achieved through the implementation 
of the enhanced GA were illustrated in Figure 6, 
showing notable improvements in execution time. 
These enhancements empower the algorithm for 
real-time data analysis derived from the power 
meters, enabling the adjustment of conveyor speeds 
based on changes in production times, all without 
requiring manual intervention from operators.

Figure 6. Representation of IGA convergence on a 
Cartesian scale

The original algorithm took 25.7 s to complete the 
optimization process, whereas the implementation 
of the IGA achieved a remarkable optimization 
time of just 0.0527 seconds (Figure 7). This 
significant improvement in execution time 
underscores the efficiency and effectiveness 
of the enhanced algorithm. However, it is 
important to note that achieving this level of 
improvement necessitated considerable effort 
in fine-tuning the algorithm. The process of 
refinement and optimization took nine hours. 
The best values obtained for the optimizer are: 
118.3,51.1,0.045, )0( .9,0.6,0.46,0.46 . By means 

of these parameters, the velocity vector was 
identified: 1000,  1000,  20 )0( 0,  2000,  2000 .

Figure 7. Representation of IGA convergence on a 
logarithmic scale

6. Conclusion

This research addresses the optimization of energy 
consumption in a manufacturing flow executed 
on a flexible manufacturing line. The utilization 
of a GA aims to optimize the fitness function’s 
value, which represents the energy consumption 
throughout the entire manufacturing process. 
By applying the proposed GA optimization 
procedure, the minimum processing time for the 
standard GA single- objective function was found. 
The optimization procedure has been extended to 
a multi-objective GA approach, namely to the 
optimization of two variables: energy consumption 
and algorithm processing time.

In this paper, the IGA algorithm is approached as a 
two-layered optimization algorithm, in which the 
optimization of energy consumption is prioritized 
over the execution time for the algorithm. Thus, 
the energy consumption for the manufacturing 
flow for manufacturing a complex product is 
minimized to the value of 42237.1 W*h with 
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an execution time of 0.0527 s, a very good time 
compared to the execution time for the standard 
NSGA-II algorithm, which is 25.7 s.

The use of the IGA algorithm made it possible 
to reach optimal speed values in a time-efficient 
manner, which were subsequently implemented 
in the production flow for assembling a 
complex product on the FML. As a result of the 
optimization time being much longer in the case 
of the NSGA-II algorithm in comparison with the 
IGA algorithm, the latter has been applied for real-
time control of conveyor speeds. Its architecture, 

also highlighted in Figure 4, allowed to increase 
the speed of production, thus reducing energy 
consumption and the risk of blockages while also 
minimizing electricity costs.

This research contributes to the field of energy 
optimization in production by demonstrating the 
effectiveness of the IGA algorithm in obtaining 
significant energy reductions and the efficiency of 
the layered approach of optimization algorithms in 
obtaining optimal values in the shortest possible 
time. Further research will consider applying this 
approach to other optimization algorithms.
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