
73

ICI Bucharest © Copyright 2012-2024. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X

1. Introduction

With the rise of data-driven computational
methods for modelling user interactions with
GUIs (Graphical User Interfaces), the GUIs
have become not only interfaces for human
users to interact with the underlying computing
services, but also valuable data sources that
encode the underlying task flow, the supported
user interactions, and the design patterns of
the corresponding applications (Li et al., 2021;
Abulhaija et al., 2022). Hence, researchers and
practitioners have focused on GUI-based testing
of the applications, including the GUI itself.

Manual GUI-based testing is inefficient,
costly and difficult to ensure test coverage. By
contrast, automated GUI-based testing is more
effective (Mao, Harman & Jia, 2017). GUI
models support automatic test case generation
for GUI-based automated testing. These models
are typically created after the application has
been built. The ability to automatically generate
large sets of different test cases, which have a

greater possibility of identifying defects under
deep paths, is one advantage of this automated
test case generation over manual test case
creation. Moreover, these models can serve as
documentation to help stakeholders understand
the scope of the tests, and what is being tested,
because they capture the desired behaviour of the
AUT (Application Under Test). Hence, creating
accurate GUI models for AUTs is a critical step
in GUI-based automated testing.

Despite the numerous advantages of the GUI
models, their adoption in industry remains slow.
One obstacle that stands in the way of wide
adoption is that testers and software engineers are
reluctant to manually create models, because it is
time-consuming and costly (Kong et al., 2018).
Hence, automation of modelling approaches has
become essential.

Existing automated modelling approaches are
mainly based on application demonstrations,

Studies in Informatics and Control, 33(1) 73-90 March 2024

https://doi.org/10.24846/v33i1y202407

Automatic Construction of Graphical User Interfaces
Semantic Models Using Robots for

Mobile Application Testing
Feng XUE1,2, Qingying LIU2, Tao ZHANG2*, Shaoying LIU3, Jing CHENG4, Chunyan MA2

1 School of Information, Xi’an University of Finance and Economics,
360 Changning Street, Changan District, Xi’an, 710100, China
120150792@qq.com
2 School of Software, Northwestern Polytechnical University,
1 Dongxiang Road, Changan District, Xi’an, 710129, China
qyliu@mail.nwpu.edu.cn, tao_zhang@nwpu.edu.cn (*Corresponding author),
machunyan@nwpu.edu.cn
3 Graduate School of Advanced Science and Engineering, Hiroshima University, 1 Chome-3-2 Kagamiyama,
Higashi Hiroshima City, 739-8527, Hiroshima, Japan
sliu@hiroshimau.ac.jp
4 School of Computer Science and Engineering, Xi’an Technological University,
2 Xuefuzhong Road, Weiyang District, Xi’an, 710021, China
chengjing@xatu.edu.cn

Abstract: With the growing adoption of rich GUIs (Graphical User Interfaces) in mobile applications, researchers and
practitioners have focused on GUI-based testing of the applications. Constructing a GUI model for AUT (Application Under
Test) is a conventional strategy; nevertheless, automated modelling is typically grounded in source code logic, often lacking
representation of functional semantics. However, manually constructing a GUI model enriched with semantics is inefficient.
In this work, a GUI semantic model is proposed, namely FSM-ES (Finite State Machine with Extended Semantics), which
not only reflects the syntactical structure of the GUI, but also the semantics of its elements. Moreover, visual technology
is used to capture GUI information and use semantic ontology to guide robots in order to complete gesture actions such as
clicking and sliding on the GUI, achieving the establishment of FSM-ES. The case study demonstrates that, while ensuring
coverage of the core functions of the AUT, GUI semantic model proposed in this paper is 52% faster than manual modelling.
Moreover, it facilitates the generation of test cases focused on functional semantics.

Keyword: Robotic testing, GUI semantic model, Automated modelling.

https://www.sic.ici.ro

74 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

test cases, or source code. The approach based
on application demonstrations (Xu et al., 2021;
Kong et al., 2018) extracts information using
a GUI framework that requires platform-
specific customization. The approach based on
test cases (Lin, Jabbarvand & Malek, 2019)
requires the tester to create a set of test cases and
automatically construct models from the set. The
approach based on source code (Reis & Mota,
2018; Bera et al., 2021) reverse engineers the
model from the source code, and the generated
model shows only a minimal relationship with
the mobile application GUI.

The above-mentioned modelling techniques
are invasive to the devices under test. These
techniques require support from the underlying
OS (Operating System) or GUI framework of
an AUT to obtain GUI states and trigger GUI
actions. If the AUT is running on a closed system
with no underlying OS or GUI framework
support accessible or an uncommon platform
whose underlying system support is hard to
access, then such a modelling approach may be
difficult to apply (Qian et al., 2020). Although
the underlying systems might be accessible for
some AUTs, hacking into these systems to enable
modelling may change the tested environments
to a certain extent, and the GUI actions triggered
via internal system facilities may not closely
emulate the experience of real users. Under such
circumstances, the modelling results of the AUT
may not be trustworthy.

Non-invasive modelling techniques are necessary
for mobile applications that do not require or
provide access to underlying system support.
Given that robots have the potential to perform
human-like operations (He et al., 2023; Li, Shi &
Hwang, 2023; Shi et al., 2023) and achieve non-
invasive exploration of the AUT, a possible way is
to utilize them to undertake modelling. This idea
stems from the fact that robots have been widely
used in the field of GUI-based testing in recent
years (Pan et al., 2020).

Robotic testing inherently provides a fully non-
invasive approach to automated GUI-based
testing of mobile applications. In practice, robots
with a high-definition camera that simulates the
human eye and a robotic arm that simulates the
human arm are available for testing, as shown

in Figure 1, as well as intelligent algorithms
that emulate the human brain (Pan et al., 2020).
However, in non-invasive modelling and testing
based on robots, where reliance on source
code is absent, a heightened necessity exists
to comprehend the GUI semantics of the AUT.
Traditional GUI testing models, such as FSM
(Finite State Machines) (Miao & Yang, 2010),
EFG (Event Flow Graphs) (Huang & Lu, 2012),
unified modelling language (Lafi, Alrawashed
& Hammad, 2011), etc., lack the expression of
functional semantic information of the AUT
(Kull, 2012; Liu et al., 2018). Moreover, manually
constructing a semantically rich testing model is
inefficient (Salihu et al., 2019).

Figure 1. Robotic testing system

This paper addresses these limitations by
extending the semantics for the GUI model. The
DAOM (Domain Application Ontology Model)
is built for specific domains based on the textual
semantic description of mobile applications (Song,
2021). Additionally, AFG (Action Flow Graph) is
incorporated to delineate the interactive behaviour
of mobile applications, thereby shaping the FSM-
ES model (Finite State Machine with Extended
Semantics). Moreover, the mapping from AFG to
FSM-ES produces a TSG (Task Sub-Graph), which
can support the generation of function-related test
cases, thus effectively shortening the test sequence.
A case study is also conducted on an application
running on a touch screen device. The result shows
that using robots to construct FSM-ES provides
an efficient way to create initial GUI models with
extended semantics. This research from this paper
provides the following major contributions:

 75

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

 - FSM-ES is proposed as a language and
mechanism for representing mobile
application GUI models that can facilitate
non-invasive, automated GUI-based testing
of the GUI itself and the related applications;

 - A specific approach is presented to
automatically constructing an FSM-ES for
the AUT using robots and a case study to
demonstrate its feasibility.

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Section 3
discusses the proposed model. Section 4 presents
the FSM-ES modelling approach using robots.
Section 5 exhibits the case study. Finally, Section
6 presents the conclusion of the present work.

2. Related Work

2.1 Reverse Engineering-based
GUI Modelling

A number of GUI modelling approaches have
emerged in the automated GUI testing. The most
common approach is based on reverse modelling
engineering of system demonstrations. Nguyen
et al. (2014) developed the GUITAR tool, which
dynamically reverse engineers the EFG of a
system by automatically capturing the GUI. The
obtained model represents all possible actions that
the user can perform in that GUI system. Imparato
(2015) used the SlumDroid tool, which uses the
Robotium framework to simulate the user’s
interaction with the Android device and extracts
the executable tasks stored in the task list. A
challenge of this approach is to provide a specific
input to text fields without user instructions.

2.2 Test Cases-based GUI Modelling

GUI models can also be constructed using test
cases. Schulze et al. (2015) developed a GUI
model construction approach that allows testers
to first create and debug a set of test cases. The
proposed method automatically constructs a model
from test cases that the tester is satisfied with. The
constructed model is derived from the test cases,
which are the actions that the system can perform
(e.g., clicking a button) and their expected outputs
in the form of assertion statements (e.g., asserting
data inputs). Lin, Jabbarvand & Malek (2019)
proposed CRAFTDROID, a framework that

uses information retrieval, static analysis, and
dynamic analysis techniques to extract from an
application’s existing test suite human knowledge
and to pass test cases and predictions to other
applications with similar functionality for testing.
The test case-based approaches require testers to
write and maintain a set of executable test cases
(Tan et al., 2022).

2.3 Source Code-based GUI Modelling

Another popular approach used to construct GUI
models is to observe the state of a system or its
abstract representation based on a source code.
Marchetto et al. (2008) proposed an approach
to abstract the document object model of a web
application into a state model and generate
additional test cases. They applied their technique
on an open-source to-do list manager application
with seed defects. Reis & Mota (2018) used
Socket to create GUI models from a Java/Swing
source code. However, the state in the proposed
source code-based approach has only a small
relationship with GUIs.

The above testing methods greatly promote
the automation of mobile application testing.
However, with the diversity of applications
system platforms and the diversity of its numbers,
the above methods cannot be effectively applied
to modelling and testing of different types
of applications. For example, for the same
application, it is still highly complex to model
it multiple times on different platform versions
(Android, iOS, web, etc.). The method proposed in
the present paper does not rely on the application
platform, but revolves around the functional
meaning reflected in the GUI to complete
application modelling. It can better support cross
platform testing while achieving functional test
case generation.

3. Model

The traditional FSM-based GUI models are
characterized by using nodes to represent GUI
states and edges to describe interactions. However,
these representations do not contain semantics
of the nodes and edges. This work organizes all
the semantic information related to a domain,
expresses it in DAOM and proposes an FSM with
extended semantics, called FSM-ES. The model
structure is illustrated in Figure 2.

https://www.sic.ici.ro

76 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

Domain application ontology metamodel (Meta-
DAOM) is constructed on the basis of the OWA
(Ontology-based Web Annotation) metamodel
(Naing, Lim & Goh, 2003; Mandić, 2022) to
provide a complete formal definition of DAOM.
Such a DAOM is an instance of Meta-DAOM
oriented to a certain domain. To generate function-
related test cases, the tasks are described in the
DAOM using AFGs. Then, the AFGs are mapped
to FSM-ES to generate TSGs. According to the
TSG, function-related test cases can be generated
automatically. The details of the model are
discussed in the following subsections.

3.1 Ontology-based Web Annotation
(OWA) Metamodel and Meta-
Domain Application Ontology
Model (DAOM)

The ontology is an explicit formal specification
of a shared conceptual model (Gelfert, 2017). The
central role of ontology is to define the specialized
vocabulary within a domain and the relationships
between things within the domain represented by
the vocabulary. The OWA metamodel is a typical
formal definition of the ontology, and it provides
a complete formal definition for describing the
semantics of more complex objects. In this work,
the OWA metamodel is used to describe the
ontology, as defined below.

Definition 1: Ontology O is a six-tuple,
{ , , , , , }C RO C A R A H X= , where:

 - C is the set of concepts related to the domain;

 - AC is the set of attributes of each concept. The
set of concept attributes AC(ci) means that
each concept ci in the set of concepts C is used
to represent a set of objects of similar kind and
can be described by the same set of attributes;

 - R is the set of relations between concepts.
Relation (,)i p qr c c means that each relation
ri in relation R represents a binary relation
between concepts Cp and Cq. The instances
of this relation are a pair of concept objects
(,)p qc c ;

 - AR is the set of attributes of each relation. The
set of relation attributes AR(ri) represents the
attributes of relation ri;

 - H is the hierarchy of concept set C, which
represents a set of parent–child relations
between concepts in C;

 - X is the set of axioms. Each axiom in
X is a constraint on the attribute values
of concepts and the attribute values of
relations, or a constraint on the relationship
between concepts.

Meta-DAOM is a domain-independent and
generic model that mainly provides formal
definitions for domain-dependent DAOMs and
guidance for constructing DAOMs based on the
OWA metamodel.

Definition 2: The domain application ontology
metamodel (Meta-DAOM) MetaO is a six-tuple,

{ , , , , , }C R
Meta Meta Meta Meta Meta Meta MetaO C A R A H X= , where:

 - { , , }Meta E A TC c c c= ;
 - { (), (), ()}C C C C

Meta Meta E Meta A Meta TA A c A c A c= ;

 -

{{ (,) | },
 { (,) | },
 { (,) | },
 { (,) | },
 { (,) | },
 {

Meta p q p E q E

p q p E q E

p q p E q A

p q p A q E

p q p T q A

R INCL c c c c c c
ASSC c c c c c c
IN c c c c c c
OUT c c c c c c
INCL c c c c c c

= ∈ ∧ ∈

∈ ∧ ∈

⊆ ∧ ∈

∈ ∧ ⊆

∈ ∧ ∈

(,) | }};p q p T q TSEQ c c c c c c∈ ∧ ∈

 -
{ (), (), (),

 (), ()};

R R R R
Meta Meta Meta Meta

R R
Meta Meta

A A IN A OUT A INCL

A ASSC A SEQ

=

Figure 2. Model structure

 77

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

 - {(,), (,)}Meta E A A TH c c c c= ;
 - { (), (), ()}Meta Meta E Meta A Meta TX X c X c X c= .

cE is a set of conceptual nouns common to domain
applications, called entities.

cA is a set of atomic operations for mobile
applications. Atomic operations of this type are
called actions. Once an action occurs, it cannot
be interrupted. Precisely, it is defined as follows.

Definition 3: For Acα∀ ∈ , action α is a triplet,
s s
ks Op acα = { , , } , where:

 - ss
k is the semantics of the GUI state sk in which

the action is executed;

 - Op is the operation necessary to implement
the action, such as a click;

 - acs is the semantics of the GUI element
operated in the action.

The semantics of GUI states and elements will be
described in detail in subsection 3.4 Finite State
Machine with Extended Semantics (FSM-ES).

cT is the set of tasks that correspond to the
functional requirements.

Definition 4: For Tcτ∀ ∈ , task τ is a quaternion,
{ , , , }s s

I FN s D sτ = , where:

 - N is the name of the task;

 - ss
I is the semantics of the initial GUI state sI

of the task;

 - D is the corresponding AFG for the task,
which describes a set of actions and the
relationships between the actions;

 - ss
F is the semantics of the finish GUI state sF

of the task.

The other involved notations are explained
as follows:

(,)p qINCL c c indicates that entity Cp includes
entity Cq for p Ec c∀ ∈ , q Ec c∀ ∈ . For example,

username Ec c∈ , user Ec c∈ , (,)user usernameINCL c c indicate
that username is an included concept in user.

(,)p qASSC c c indicates that entity Cp is
associated with entity Cq for p Ec c∀ ∈ , q Ec c∀ ∈ .
All other relationships between entities that
are not inclusion relationships are association

relationships. (,) (,)p q q pASSC c c ASSC c c= and
(,) (,)p q p qINCL c c ASSC c c∩ =∅ .

(,)p qIN c c indicates that entity Cp is an input to
action Cq for p Ec c∀ ∈ , q Ac c∀ ∈ , { , , }s s

q kc s Op ac= ,
that is, Op input= and s

pac c= .

(,)p qOUT c c indicates that the output of action Cp
is the entity Cq for p Ac c∀ ∈ , q Ec c∀ ∈ .

(,)p qINCL c c indicates that the task Cp contains the
action Cq for p Tc c∀ ∈ , q Ac c∀ ∈ .

(,)p qSEQ c c indicates that task Cq can only be
executed after the task Cq for p Tc c∀ ∈ , q Tc c∀ ∈ .

3.2 Action Flow Graph (AFG)

To generate function-related test cases, a new
structure is used in DAOM to model the execution
behaviour of GUIs, called action flows, each of
which corresponds to a task and is represented by
AFGs. The structure is described as follows.

The AFG describes the control flow from action
to action. Actions are indivisible, and transitions
between actions are triggered by the completion
of previous actions. After the completion of an
action, the control flow will immediately reach
the next action. Transition is used to represent this
flow from one action to another.

Definition 5: For Tcτ∀ ∈ , { , , , }s s
I FN s D sτ = , and the

AFG D is a six-tuple, { , , , , , }I FD A T F G α α= , where:

 - A = {α1,α2,...,αm} is a finite set of action;

 - T = {t1,t2,...,tn} is a finite set of transitions;

 - F ⊆(A×T)∪(T×A) is a set of flow relations;

 - G(t) is the conditional expression for
the transition t;

 - α1 ∈ A, is the initial action, { , , }s s
I Is Op acα = ;

 - αF ∈ A , is the initial action, { , , }s s
F Fs Op acα = .

Only one transition t satisfies (,)I t Fα ∈ and for
any t T′∈ , (,)It Fα′ ∉ and (,)I t Fα ′ ∉ .

Definition 6: { , , , , , }I FD A T F G α α= is an AFG.
The current action µ in D is an arbitrary
subset of A . For t T∀ ∈ , { | (,) }t a A a t F= ∈ ∈

and { | (,) }t a A t a F= ∈ ∈

 denote the precursor
action and the successor action of t, respectively.

https://www.sic.ici.ro

78 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

A transition t is triggered for action µ if t µ⊆
 ,

and the value of ()G t is true; otherwise it is not
triggered. The set of μ-triggerable transitions is
denoted by ()enabled µ .

At a certain point in time, a triggerable transition
must satisfy the following conditions:
Definition 7: { , , , , , }I FD A T F G α α= is an AFG.
The transition t T∈ can be triggered from the
action µ when and only when ()t enabled µ∈
and ()t tµ − ∩ = ∅

 , at which point the new state
()t tµ µ′ = − ∪

 . When an action that a GUI can
receive is executed, the state will transit.

Definition 8: { , , , , , }I FD A T F G α α= is an AFG. A
run σ of D is a sequence of actions and transitions

0 11
0 1 ... nt tt

nσ µ µ µ−= → → → , where:

 - μ0 = {α1};

 - μn = {αF};

 - ti ∈ enable(μ), i ≥ 0;

 - 1 1 1() , 1i i i it t iµ µ − − −= − ∪ ≥

.

According to the above definition, the basic
elements of AFG are initial action, finish action,
intermediate action, transition, branch, bifurcation,
and convergence. In the AFG, the hollow circle
indicates the initial action; the hollow ring is the
finish action; the rectangular box denotes the
intermediate action; and the solid line with arrows
represents the transition (Figure 3). The branches
in the AFG are represented by diamonds, and
they can have one incoming degree and multiple
outgoing degrees. On each outgoing transition, a
Boolean expression is indicated, and the diamond
in AFG without Boolean expression is indicated as
a merge node. Synchronization bars are used in the
AFG to handle the bifurcation and convergence
of the parallel control flow. This flow means that
the actions are executed in no sequence. The
synchronization bar is represented by a thick
line. The bifurcation has one incoming degree
and multiple outgoing degrees, each representing
a separate control flow. Actions in different control
flows behind the fork are concurrently executed.
Convergence can have multiple degrees and
one outgoing degree. Before the convergence,
actions on different control flows are concurrently
executed. When the merge is reached, the

concurrent control flows are synchronized, that
is, each control flow waits until all control flows
have arrived before triggering the next action.

Figure 3. Schematic of AFG

3.3 Domain Application Ontology
Model (DAOM)

DAOM is an instance of Meta-DAOM oriented
to a certain domain. Meta-DAOM serves as a
fundamental model, defining solely the essential
elements required by the domain model. In
contrast, DAOM constitutes semantic modelling
tailored for specific application scenarios. The
semantics of GUI elements are defined manually
based on Meta-DAOM. A partial example of a
DAOM is shown in Figure 4, corresponding to the
login function. Three entities are involved, which
are user, username, and password with the user
containing the username and password. Moreover,
three actions are involved, entering the username
in the GUI state s1 with semantics ss

1, entering the
password in the GUI state s2 with semantics ss

2
and clicking the login button in the GUI state s3
with semantics ss

3. Username and password are
the inputs for the first two actions. A task, which
is Login, contains three actions. AFG(Login)
indicates that the inputting the username and
password are simultaneously executed in no
sequence. When entering a password, the two
options are correct and incorrect. Then, Login is
clicked after completing the input. AFG defines
possible behavioural pathways rather than specific
processes. For example, login may not require the
order of entering usernames and passwords.

 79

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

3.4 Finite State Machine with
Extended Semantics (FSM-ES)

The FSM-ES consists of GUI state nodes and
interaction edges with their semantics. Semantics
are provided by DAOM, where the entities and
their relationships provide semantics for nodes,
actions provide semantics for edges, and tasks
provide semantics for TSGs. The GUI state is an
abstract representation of the GUI of the tested
application, and in FSM-ES, it is composed of a
state number, the GUI elements it contains, and the
semantics formed by these elements. In short, the
semantics of GUI states and events refer to a textual
representation (entity) of unique states and events.
Furthermore, the connection between GUI states
and events is established at the functional meaning
level through entity-to-entity relationships, rather
than just simple state transition relationships.

Definition 9: FSM-ES is a quaternion,
0_ { , , , }FSM ES S sδ= ∑ , where:

 - S is an infinite nonempty set of states of
the GUI, consisting of all possible states of
the AUT;

 - ∑ is the finite nonempty set of all possible
input events of the AUT;

 - δ is the state transfer function that maps S ×Σ
to S, : S Sδ ×Σ → . For s S∀ ∈ , e∈Σ and
(),s eδ indicate the states that can be reached

from GUI state s, along the edge labeled e;

 - s0 is the initial GUI state, 0s S∈ .

Definitions 10 to 15 are supplementary definitions
to FSM-ES.

Definition 10: For s S∀ ∈ , GUI state s is a triplet,
{ , , }ss AC CC s= , where AC is the set of atomic

elements, which are non-divisible elements in the
GUI. CC is the set of composite elements, which
are obtained by combining the atomic elements
according to Rule 1.

Definition 11: For as AC∀ ∈ , atomic element ac
is a quadruplet, { , , , }t v s pac ac ac ac ac= , where:

 - act indicates the type of ac. The types are text,
icon, image, and input box. The semantic type
is determined by the type of GUI element;

 - acv indicates the value of ac. The elements
whose act is text have this attribute, and acv
is the value of the text;

 - acs is the semantics of ac, which is the
mapping of acv to the corresponding entity ce
in DAOM, { | }:s v

e e Eac ac c c c→ ∈ ;

 - acp is the position of ac, which is represented
by the upper-left and lower-right coordinates
of the element, () ()(), , ,p ac ac ac ac

min min max maxac x y x y= .

Rule 1: If an atomic element of a text type is a
description of other atomic elements, then the
combination is performed.

Figure 5 lists the composite elements that comply
with this rule. In this case, the text is a description
of an icon, a radio box, a checkbox, and a switch.

Figure 4. DAOM corresponding to the login function

Figure 5. Composite elements

https://www.sic.ici.ro

80 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

Definition 12: For s S∀ ∈ , { , , }ss AC CC s= ,
cc CC∈ , composite element cc is a triplet,

{ , , }AC s pcc cc cc cc= , where:

 - ccAC is the set of atomic elements, ccAC ⊆ AC;

 - ccS is the semantics of cc, which is the
semantics of text type elements in ccAC, that
is { | text}s s AC tcc ac ac cc ac= ∈ ∧ = ;

 - ccP is the position of cc, which is
represented by the upper-left and lower-
right coordinates of the composite element,

() ()(), , ,p ac ac ac ac
min min max maxcc x y x y= .

Definition 13: For cc CC∀ ∈ , if ACac cc∈ , then
s sac cc= .

Definition 14: Ss is the semantics of GUI
state s, { , | }s s s ACs cc ac cc CC ac AC ac cc= ∈ ∧ ∈ ∧ ∉ ,
which is the set of elements in GUI state s mapped
to the entities in DAOM.

Definition 15: For e∀ ∈Σ , event e is a quadruple,
{ , , , }c a p se e e e e= , where:

 - ec is the element that the e needs to trigger;

 - ea is the trigger operation of ec, such as a click;

 - ep is the parameter of e;

 - es is the semantics of e, which defines
the functional operations supporting the
state migration mapped to the action ea
in DAOM, a Ac c∈ , { , , }s s

a kc s Op ac= ,
{ | , }s c s s

a ke c e ac s s= = ⊆ , and ss is the
semantics of current GUI state s.

3.5 Task Sub-Graph (TSG)

To automate the generation of function-related test
cases from FSM-ES, the AFG must be mapped to the
FSM-ES. The mapping result is called a TSG. Each
AFG built according to the functional requirements
has a unique corresponding one TSG in the AUT.

Definition 16: Let the FSM-ES 0{ , , , }G S sδ= ∑
and { , , ', }IG S sδ′ ′ ′ ′= ∑ . If S S′ ⊆ , ′Σ ⊆ Σ , and
δ δ′ ⊆ , then G' is called a sub-graph of G and is
represented as G G′ ⊆ .

Definition 17: Let the FSM-ES 0{ , , , }G S sδ= ∑ ,
{ , , , }p p p p pG S sδ= ∑ , { , , , }q q q q qG S sδ= ∑ , and

pG G⊆ , qG G⊆ .

 - If p qS S⊆ , then Gp is smaller than Gq, or Gq
is larger than Gp and is written as p qG G< or

q pG G> ;

 - If p q p qS S= ∧Σ ⊆ Σ , then Gp is smaller than
Gq, or Gq is larger than Gp and is written as

p qG G< or q pG G> ;

 - If p q p q p qS S δ δ= ∧Σ = Σ ∧ ⊆ , then Gp is
smaller than Gq, or Gq is larger than Gp and is
written as p qG G< or q pG G> .

Definit ion 18: Let the FSM-ES
0{ , , , }G S sδ= ∑ , { , , ', }IG S sδ′ ′ ′ ′= ∑ , G G′ ⊆ ,

task Tcτ ∈ , { , , , }s s
I FN s D sτ = , and the AFG

{ , , , , , }I FD A T F G α α= . If for a A∀ ∈ , where
s s
ka s Op ac= { , , } , there is qs S∈ ′ such that s s

p qs s⊆ ,
and G' is the smallest sub-graph satisfying the
above conditions, then G' is called the TSG of G
with respect to task τ, represented as ()G Gτ′ ⊆ .

Figure 6 shows the TSG of the task named
login. is S∈ and fs S∈ can be found in the
FSM-ES 0{ , , , }G S sδ= ∑ , satisfying s s

I is s⊆ ,
1
s s

is s⊆ , 2
s s

qs s⊆ , 3
s s

is s⊆ , and s s
F fs s⊆ . The sub-

graph G' marked in red is the TSG of G with
respect to the Login task and is represented as

()G Login G⊆′ . AFG can divide FSM-ES into
functional submodels TSG. In addition, since
AFG defines feasible actions for functionality, it
can optimize state transition relationships, support
more accurate generation of test cases, and reduce
redundancy in test cases.

Figure 6. Mapping from the AFG of the login function to the FSM-ES results in TSG

 81

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

4. Automatic Construction
of FSM-ES

Instead of manually creating a model, which is
a common way to model the AUT, the proposed
modelling approach heuristically constructs the
FSM-ES using a robot exploring the mobile
application. The modelling workflow is shown in
Figure 7. The robot performs a series of processes
on the images after capturing the current GUI
of the AUT. First, GUI element detection is
performed using the trained deep learning model.
Then, text recognition is performed using the
open-source API (Application Programming
Interface). Finally, semantic matching is
completed by referring to the DAOM manually
created by the tester. To prevent node explosion in
the model, it is necessary to complete isomorphic
GUI recognition based on GUI element detection,
and the above-mentioned steps are performed only
once for isomorphic GUIs. The above-mentioned
process is repeated until all GUIs have been
explored, and the corresponding FSM-ES for
the AUT is constructed. A three-axis robotic arm
and an industrial high-definition camera are used.
The robotic arm can simulate typical single finger
actions such as clicking, double clicking, long
pressing, sliding, and brushing by setting different
position intervals and pause times. The camera
is used to locate the interactive object elements
on the GUI, thereby guiding the interaction
between the robotic arm and the AUT. Therefore,
it presents a non-invasive, platform independent
exploration approach that supports generalized
testing modelling.

The robot explores the AUT using a depth-first
strategy to drive the robotic arm to operate the
GUI elements and complete the state migration.
Accordingly, exploring the next state does not
require all GUI elements in the current state to be
operated. The algorithm framework is shown in

Algorithm 1. The robot first captures the current
GUI picture (Line 2) and then determines whether
it is isomorphic to the existing state in the model
(Line 3). If the picture is isomorphic, then the robot
updates the model edge set and state transition
form (Lines 4 to 5). Otherwise, the robot processes
the GUI to obtain modelling information and
update the node set, edge set and state transition
form (Lines 7 to 10). Thereafter, the robot will be
directed to operate on the next GUI element (Line
12). The details of the techniques are as follows.

Algorithm 1. Build GUI Model
Input: Domain application ontology model D
Output: FSM-ES M of AUT, M = {S, Σ, δ, s0}
1: while not finish exploring do
2: capture the current state of the GUI picture
3: if scur is isomorphic to spre in S then
4: scur = spre
5: update Σ, δ
6: else
7: detect GUI elements in scur
8: recognize texts in scur
9: semantic match with D
10: update S, Σ, δ
11: end if
12: operate the next element in scur
13: end while

4.1 GUI Element Detection

The robot needs to obtain the type and position
information of the elements from the GUI pictures
captured with the camera. Currently, the deep
learning-based technology has shown significant
progress, especially in computer vision (Shi et al.,
2020; Li et al., 2023), and deep learning-based
GUI element detection methods have proven
to be an effective solution (Xue, Wu & Zhang,
2022). Deep learning-based detection methods
can be divided into one-stage and two-stage
detectors. Detection speed is important in the
present work. Accordingly, the one-stage detection
method, YOLOv5 (Jocher, 2020) is employed for

Figure 7. Modelling workflow

https://www.sic.ici.ro

82 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

real-time GUI element recognition. YOLOv5
extracts graphical features through convolutional
neural networks and returns the categories and
location information of the detection target.
Compared to two-stage detection, YOLOv5 has
a faster detection efficiency, while maintaining
high accuracy, making it suitable for real-time
interaction between robots and AUTs.

4.2 Text Recognition

The content of text elements is important for the
acquisition of semantics. The text recognition
service provided by Baidu is suitable for multi-
scene, multi-lingual, and high-precision whole-
image text detection and recognition tasks and is
used for text recognition in the proposed modelling
approach. Baidu provides OCR (Optical Character
Recognition) methods that can recognize text
on GUI interfaces and provide the position of
characters in the interface. More details can be
found in the case study section.

4.3 Semantic Matching

The recognized text is matched with entities in
the DAOM to determine the semantics of the GUI
elements. Currently, different methods focusing

on semantic matching are used for three patterns
of text. Methods such as distance similarity
and cosine similarity are used to determine the
semantic similarity of the text.

 - For text with a fixed format, such as emails
and phone numbers, regular expressions are
used to obtain semantics;

 - For text containing synonyms, such as buying
a ticket and ordering a ticket, semantic
matching is done by the semantic similarity
calculation service provided by Baidu.
Similarity is a real value between zero and
one. The higher the output value is, the higher
the relative semantic similarity becomes;

 - For named entities, such as names of people
and places, semantic matching is performed
by named entity recognition technology
provided by Baidu.

4.4 Isomorphic GUI identification

Isomorphic GUIs are GUIs that differ in
appearance (text, image, colour, and size), but
are identical in function, structure, and internal
logic relationships. Figure 8 shows an example
of isomorphic GUIs. Figures 8(a)–8(c) show

Figure 8. Example of isomorphic GUIs: (a)–(c) detailed interface of the information of three flights in the list;
(d) interface of the flight information list

 83

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

the detailed interface of the information of three
flights in the list, and they differ only in terms of
text. Figure 8(d) shows the interface of the flight
information list.

Figure 9(a) shows an example of the
corresponding model in Figure 8, where S2a, S2b,
and S2c can be regarded as the same state, and the
simplified GUI model is shown in Figure 9(b).
Hence, the robot can avoid the state explosion
problem by identifying isomorphic GUIs. This
work completes the experiment by using the
isomorphic GUI recognition method proposed by
Zhang et al. (2020). First, a GUI skeleton is built
to exclude noise from the GUI style characters
based on the result of GUI element detection. An
autoencoder is used to extract the feature vectors
from the reconstructed GUI skeleton. Finally,
relative entropy is used in the identification of
isomorphic GUIs. Isomorphic GUI identification
can achieve simplification of the state model,
avoiding redundant paths and repeated jumps in
local paths.

Figure 9. Simplified example of the GUI model by
FSM: (a) original GUI model; (b) simplified version

5. Case Study

In this section, a case study of constructing the
FSM-ES for a commercial mobile application
is described in order to demonstrate how the
modelling approach proposed in this paper works
in practice, and its effectiveness is analyzed. The
important issues identified during the case study
are also discussed.

5.1 Creation of the DAOM

Given that DAOM is domain-related, a specific
domain should be selected for the case study. A
DAOM of the airline service mobile applications is
chosen to be built, because mobile applications in
airline services are rapidly spreading worldwide.

First, the DAOM is manually built to construct
the FSM-ES. Figure 10 shows the entities,
actions, and a typical task in the DAOM and their
relationships. For the sake of space, only the task
of searching flights is taken into consideration.

Figure 10 shows 21 common entities, including
user, username, password, login information, email
address, order, flight number, and flight duration.
Some of these entities may be associated with
each other, such as user and order. Meanwhile,
some entities may contain other entities as their
components, such as name containing first name
and last name and order containing passenger,
cabin class, and price.

The action flow diagram corresponding to the
task of searching flights in DAOM contains four
actions. Each action contains the semantics of
the GUI state, the action type, and the semantics
of the triggered GUI element. The task is first
performed by selecting the departure (a1), the
destination (a2), and the date (a3) and then clicking
the search button (a4), where the entity departure,
destination, and date are the inputs for actions a1,
a2, and a3, respectively.

5.2 Construction of the FSM-ES

Cathay Pacific airline services are used as example
to explain in detail the steps of constructing
FSM-ES using a robot. The application of the
modelling approach proposed in this paper allows
to demonstrate the practicality and effectiveness of
the present approach, because Cathay Pacific is a

Figure 10. DAOM for airline service mobile applications

https://www.sic.ici.ro

84 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

commercial application with more than 1 million
downloads on Google Play. In this case study, the
DOBOT Magician robotic arm and Hikvision
industrial camera with model MV-CS200-10GC
are used.

The steps of constructing FSM-ES are shown in
Figure 11. The first step shows the GUI element
detection. Figure 11(b) shows the result of the
GUI element detection for the original GUI shown
in Figure 11(a). The second step explains the text
recognition. Figure 11(c) shows the result of the
text recognition for the original GUI. The third
step states the semantic matching. Figure 11(d)
illustrates the semantics of the identified text for
Figure 11(c). To prevent GUI state explosion,
isomorphic GUI states are recognized and merged.
Figure 11(e) shows the GUI skeleton required for
isomorphic GUI recognition. The details of the
above-mentioned steps will be discussed below.

5.2.1 GUI Element Detection

The GUI element detection is performed by using
the YOLOv5 network. To this end, the network
needs to be trained to become capable of fulfilling
the task. 1901 labeled GUI images taken from Rico
(Deka et al., 2017) were used to train the network
and apply it to the Cathay Pacific application.
The 36 GUI states in Cathay Pacific has a total of
840 elements, and the trained network identified
a total of 694 elements, where 11 elements were
incorrectly identified and 146 elements were
missed, with an accuracy rate of 81.31%.

The robot detects the GUI elements in Figure
12(a) using the trained YOLOv5 network, and
the detection results are shown in Figure 12(b),
corresponding to the TXT file shown in Figure
12(c), which contains the coordinates and
categories of the GUI elements. According to the
result of GUI element detection, the set of states

Figure 11. FSM-ES construction process: (a) GUI; (b) GUI element detection; (c) text recognition; (d)
semantic matching; (e) GUI skeleton

Figure 12. Result of GUI element detection: (a) original GUI; (b) detection result; (c) result details

 85

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

in the FSM-ES is updated, and the robot can be
driven to the next step.

5.2.2 Text Recognition

This case study introduces the OCR technology to
recognize a text because the elements of text type
need to obtain specific element values. Taking
Cathay Pacific as example, the accuracy of text
recognition based on the result of GUI element
detection is compared with the accuracy of text
recognition directly on the image. The former
is 79.06%, and the latter is 92.29%. The former
is lower due to the dependence on the accuracy
of recognition and classification in GUI element
detection, so direct performance on the image is
taken for text recognition. After the OCR is used,
the GUI element detection accuracy increased to
90.71%.

The robot uses OCR to directly perform text
recognition on the GUI shown in Figure 12(a)
and obtains the text recognition result, as shown
in Figure 13, which contains the values of the text
elements in the GUI and their coordinates. After
the text recognition, the robot updates the state
set in the FSM-ES. Performing text recognition
directly on the GUI can also prevent text elements

from being missed, thus improving the accuracy
of constructing the model.

The dynamic GUIs and element rich GUIs in AUT
can lead to a decrease in the accuracy of visual
recognition of GUI. Further visual recognition
training for apps in segmented fields may improve
this issue.

5.2.3 Semantic Matching

The essential way to obtain the semantics of
the recognized entities from the GUI is first to
recognize the relevant texts and then try to match
them with the similar texts stored in the DAOM.
The semantics of the recognized texts from the
GUI can be found, because the text stored in the
DAOM is associated with a clear semantics. In
the present case study, three patterns of texts,
namely texts with a fixed format, texts containing
synonyms in the DAOM and the named entities,
are taken into consideration.

For fixed format text, regular expressions are
used for text type detection, such as the date
concept expressed by year, month, and day. For
the proprietary names that DAOM may contain,
direct matching is chosen, such as place names. In
terms of named entity recognition, it is obtained

Figure 13. Result of text recognition

https://www.sic.ici.ro

86 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

by converting entity concepts into vectors
using an encoder and measuring the similarity
of the vectors. In Cathay Pacific, a total of 85
element semantics were identified. The results
of text recognition shown in Figure 13 are used
for semantic acquisition, where Hong Kong is
analyzed as a place name, which can be associated
to departure or destination in DAOM entity. Wed
17 Aug 2022 and Wed 24 Aug 2022 are analyzed
as dates, which can be associated to the dates in the
DAOM entity. Meanwhile, cabin class can directly
correspond to cabin class in the DAOM entity.

5.2.4 Isomorphic GUI Recognition

This case study merges nodes by identifying
isomorphic GUIs to prevent GUI state explosion.
Figures 14(a) and 14(c) show examples of
isomorphic GUIs that appear in Cathay Pacific.
The robot uses the corresponding GUI element
detection results to obtain the GUI skeletons as
shown in Figures 14(b) and 14(d) to exclude
noise from UI style characters. An auto-encoder
is then used to extract feature vectors from the
reconstructed GUI skeleton. Finally, the relative
entropy was used to identify isomorphic GUIs.
The two interfaces in Figure 14 were identified as
isomorphic. If the GUI state is the first occurrence,
then no interface is isomorphic to it, and the

number of states in the model increases; otherwise,
the node is merged into an existing node, and the
number of states in the model remains the same.

After the above-mentioned procedure is performed
according to Algorithm 1, the corresponding FSM-
ES of Cathay Pacific can be obtained, as shown
in Figure 15.

Simultaneously with automated modelling,
senior master’s students specializing in software
engineering are engaged to perform manual
modelling. After multiple modelling rounds
to achieve core functional coverage of Cathay
Pacific, manual modelling requires an average
of 122 minutes, whereas the robot completes the
modelling in an average of 58 minutes. Automated
modelling is 52% faster than manual modelling.
However, besides covering the core functions,
manual modelling has extended coverage to
additional application states. This discrepancy
arises from the richer semantic concepts possessed
by humans, enabling the unlocking of additional
application states.

After exploration by the robot, the FSM-ES with
36 nodes and 78 edges of the Cathay Pacific
application is formed, as shown in Figure 16. Table
1 shows the keywords in the GUI corresponding
to each node.

Figure 14. Isomorphic GUI recognition: (a) isomorphic GUI; (b) corresponding GUI skeleton for (a);
(c) isomorphic GUI; (d) corresponding GUI skeleton for (c)

Figure 15. GUI states of Cathay Pacific about searching flights

 87

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

5.3 Generate Test Cases

In this subsection, first the TSG that illustrates
the search flight function in the Cathay Pacific
application is described, and then the test cases
generated based on the TSG in order to check the
search flight function are explained.

Figure 16 shows the states of the GUI for searching
flights in the Cathay Pacific application. Five
screens are associated with the task of searching
for flights. The GUI pages (or interfaces) shown
in the diagram are Home, Select Departure,
Select Destination, Select Date, and Flight List.
The Select Departure and Select Destination
interfaces are merged into the same node s8
through isomorphic GUI recognition, and the
other remaining interfaces are represented by
nodes s7, s9, and s14.

Figure 17 shows the TSG of Cathay Pacific
regarding the searching flights task. This TSG
involves a total of four states and eight events.
Taking s7 as example, the corresponding GUI
semantics for this node is [Book a trip, Round trip,
One way, Departure, Destination, Date, ADULTS,
Children, INFANTS, (12+), (2-11), (<2), 1, 0, 0,
Cabin Class, Need help with your trip, Search].
Taking e1 as example, the event semantics for
this edge is [Book a trip, Departure, Destination,
Date][Input][Departure] corresponding to action
a1 shown in Figure10.

Figure 17. TSG corresponding to the task of
searching the flights in Cathay Pacific

In this case study, test sequences are used to
represent test cases. The test sequence generated
from the TSG corresponding to the searching the
flight task is shown in Table 2. Each test sequence
corresponds to a test case related to the searching
flight function.

Table 2. Test sequence generated from the TSG

No. Test Sequence

1 5 6 71 432

7 8 7 8 7 9 7 14

e e e ee e e

s s s s s s s s→ → → → → → →

2 3 5 6 724 1

7 8 7 8 7 9 7 14

e e e ee e e

s s s s s s s s→ → → → → → →

3 5 6 3 71 2 4

7 8 7 9 7 8 7 14

e e e ee e e

s s s s s s s s→ → → → → → →

4 3 5 64 1 72

7 8 7 9 7 8 7 14

e e e ee e e

s s s s s s s s→ → → → → → →

5 5 6 31 2 74

7 9 7 8 7 8 7 14

e e e ee e e

s s s s s s s s→ → → → → → →

6 5 6 3 4 1 72

7 9 7 8 7 8 7 14

e e e ee e e

s s s s s s s s→ → → → → → →

Figure 16. FSM-ES of Cathay Pacific

Table 1. Corresponding GUI for each node

Node GUI Node GUI Node GUI
s0 Home s1 Message Centre s2 Travel alerts
s3 List Items s4 Sign in s5 Sign in with account
s6 Learn more s7 Book a trip s8 Select city or airport
s9 Select date s10 Select other information s11 Travel Help
s12 Travel Restriction s13 See other sections s14 Departing flight
s15 Flight Sort & Filter s16 Select fare s17 Mobile boarding passes
s18 Flight status s19 Flight results s20 Timetable

https://www.sic.ici.ro

88 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

Take No. 1 test sequence as example, the robot
first clicks on at s7 to jump to s8 to select the
departure. Then, the robot gets the instance of
departure in DAOM, enters it, and returns to s7.
Subsequently, it clicks on at s7 to jump to
s8 to select the destination. After that, the robot
gets the instance of destination in DAOM, enters
it, and returns to s7. In s7, it clicks on
to jump to s9 to select the date. In DAOM, it gets
the instance of date, selects it, and then returns to s7.
Finally, in s7, the robot clicks on to
jump to s14.

5.4 Discussion

The case study allowed the gaining of experience
in applying the present modelling and identifying
two important aspects. This subsection discusses
these issues to provide a full picture of the
present approach.

5.4.1 Limitations on Equipment

The proposed modelling approach allows to
build the FSM-ES for all mobile applications
deployed on touchscreen devices. The only
restrictions on the device are that the device must
have a touch screen, and the test environment
needs to have a programmable robot that can be
used for testing. The method is independent of
the underlying operating system of the device
and theoretically supports compatibility testing.
Mobile applications have adaptability and display
differences at different resolutions and sizes. For
example, a line of text on a large-sized screen may
appear as multiple lines on a small-sized screen.

5.4.2 Human Intervention

Although the approach proposed in this paper
aims to realize automatic construction of semantic
model FSM-ES of mobile applications, the case
study helped to find the necessity of involving
human intervention during the modelling process

using a robot. The main reasons are described
as follows. First, exceptions may occur in the
GUI during the modelling process. Given that
this mechanism is still in the model construction
process, there is no valid reference information,
so the error cannot be detected, and the robot
will only continue to generate the wrong model
based on the current GUI state. Second, the error
detection of the GUI elements cannot be avoided
due to the limitation of the current vision-based
GUI element recognition accuracy, and the error
detection of the GUI elements may generate a
wrong model. Hence, Testers need to intervene
in key steps during the modelling and testing
process to complete it. However, establishing a
comprehensive exception handling mechanism
will further promote the level of automation.
Moreover, utilizing human-in-the-loop approaches
and using robots as testing aids will still promote
improved testing efficiency.

6. Conclusion

This paper proposes FSM-ES, a semantic GUI
model automatically built by robot. FSM-ES
enables efficient test case generation with reduced
redundancy, focusing tests on functionality. In
addition, the combination of visual technology
and robotics was researched to achieve code-
independent and platform-independent GUI
modelling. Compared to manual modelling, the
automated construction of FSM-ES is 52% faster.

However, optimizing the reduction of human
intervention remains a worthwhile future direction,
with a focus on enhancing the accuracy of visual
algorithms and refining modelling execution
strategies to augment automation. Additionally,
the testing method relying on robot vision holds
significant potential value for cross-platform
testing and migration testing of applications.

REFERENCES

Abulhaija, S., Hattab, S., Abdeen, A. & Etaiwi,
W. (2022) Predicting mobile apps performance
using machine learning. Journal of System and
Management Sciences. 12(6), 300-314. doi: 10.33168/
JSMS.2022.0619.

Bera, D., Schuts, M., Hooman, J. & Kurtev, I. (2021)
Reverse engineering models of software interfaces.

Computer Science and Information Systems. 18(3),
657-686. doi: 10.2298/CSIS200131013B.

Deka, B., Huang, Z., Franzen, C., Hibschman, J.,
Afergan, D., Li, Y., Nichols, J. & Kumar, R. (2017)
Rico: A mobile app dataset for building data-driven
design applications. In: Proceedings of the 30th
Annual ACM Symposium on User Interface Software

 89

ICI Bucharest © Copyright 2012-2024. All rights reserved

Automatic Construction of Graphical User Interfaces Semantic Models Using Robots for Mobile...

and Technology, UIST 2017, 22-25 October 2017,
Québec City, Canada. New York, NY, United States,
Association for Computing Machinery. pp. 845-854.

Gelfert, A. (2017) The ontology of models. In: Magnani,
L. & Bertolotti, T. (ed.) Springer Handbook of Model-
Based Science. Cham, Springer Handbooks, Springer,
pp. 5-23. doi: 10.1007/978-3-319-30526-4_1.

He, Z., Li, J., Wu F., Shi H. & Hwang, K. (2023)
DeRL: Coupling Decomposition in Action Space for
Reinforcement Learning Task. IEEE Transactions on
Emerging Topics in Computational Intelligence. 8(1),
1030-1043. doi: 10.1109/TETCI.2023.3326551.

Huang, Y. & Lu, L. (2012) Apply ant colony to event-
flow model for graphical user interface test case
generation. IET Software. 6(1), 50-60. doi: 10.1049/
iet-sen.2011.0012.

Imparato, G. (2015) A combined technique of GUI
ripping and input perturbation testing for Android
apps. In: Proceedings of the IEEE/ACM 37th IEEE
International Conference on Software Engineering,
ICSE 2015, 16-24 May 2015, Florence, Italy.
Washington, DC, United States, IEEE Computer
Society. pp. 760-762.

Jocher, G. (2020) YOLOv5, code repository. https://
github.com/ultralytics/YOLOv5 [Accessed 15th
October 2023].

Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T. F. &
Klein, J. (2018) Automated testing of android apps:
A systematic literature review. IEEE Transactions
on Reliability. 68(1), 45-66. doi: 10.1109/
TR.2018.2865733.

Kull, A. (2012) Automatic GUI model generation:
State of the art. In: Proceedings of the IEEE 23rd
International Symposium on Software Reliability
Engineering Workshops, ISSRE Wksp 2012, 27-30
November 2012, Dallas, TX, USA. Washington, DC,
United States, IEEE Computer Society. pp. 207-212.

Lafi, M., Alrawashed, T. & Hammad, A. M. (2021).
Automated test cases generation from requirements
specification. In: Proceedings of the 2021 International
Conference on Information Technology, ICIT 2021,
14-15 July 2021, Amman, Jordan. Washington, DC,
United States, IEEE Computer Society. pp. 852-857.

Li, J., Shi, H., Chen, W., Liu, N. & Hwang, K.
(2023) Semi-Supervised Detection Model Based on
Adaptive Ensemble Learning for Medical Images.
IEEE Transactions on Neural Networks and Learning
Systems. 1-12. doi: 10.1109/TNNLS.2023.3282809.

Li, J., Shi H. & Hwang, K. (2023) Using Goal-
Conditioned Reinforcement Learning with Deep
Imitation to Control Robot Arm in Flexible Flat Cable
Assembly Task. IEEE Transactions on Automation
Science and Engineering. 1-12. doi: 10.1109/
TASE.2023.3323307.

Li, T. J. J., Popowski, L., Mitchell, T. & Myers, B.
A. (2021) Screen2vec: Semantic embedding of GUI
screens and GUI components. In: Proceedings of
the 2021 CHI Conference on Human Factors in
Computing Systems, CHI 2021, 8-13 May 2021,
Yokohama, Japan. New York, NY, United States,
Association for Computing Machinery. pp. 1-15.

Lin, J. W., Jabbarvand, R. & Malek, S. (2019) Test
transfer across mobile apps through semantic mapping.
In: Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2019, 10-15 November 2019, San Diego, CA, USA.
New Jersey, USA, IEEE Press. pp. 42-53.

Liu, T. F., Craft, M., Situ, J., Yumer, E., Mech, R.
& Kumar, R. (2018) Learning design semantics for
mobile apps. In: Proceedings of the 31st Annual
ACM Symposium on User Interface Software and
Technology, UIST 2018, 11-14 October 2018, Berlin,
Germany. New York, NY, United States, Association
for Computing Machinery. pp. 569-579.

Mandić, M. (2022) Semantic web based platform
for the harmonization of teacher education curricula.
Computer Science and Information Systems. 19(1),
229-250. doi: 10.2298/CSIS210207050M.

Mao, K., Harman, M. & Jia, Y. (2017) Robotic testing
of mobile apps for truly black-box automation. IEEE
Software. 34(2), 11-16. doi: 10.1109/MS.2017.49.

Marchetto, A., Tonella, P. & Ricca, F. (2008) State-
based testing of Ajax web applications. In: Proceedings
of the 1st International Conference on Software
Testing, Verification, and Validation, ICST 2008, 9-11
April 2008, Lillehammer, Norway. Washington, DC,
United States, IEEE Computer Society. pp. 121-130.

Miao, Y. & Yang, X. (2010) An FSM based GUI
test automation model. In: Proceedings of the 11th
International Conference on Control Automation
Robotics & Vision, ICARCV 2010, 7-10 December
2010, Singapore. Washington, DC, United States,
IEEE Computer Society. pp. 120-126. doi: 10.1109/
ICARCV.2010.5707766.

Naing, M. M., Lim, E. P. & Goh, D. H. L. (2003)
A survey of ontology-based web annotation. In:
Proceedings of the 1st International Conference on
Computer Applications, ICCA 2003, 15-16 January
2003, Yangon, Myanmar. Singapore Management
University. pp. 113-123.

Nguyen, B. N., Robbins, B., Banerjee, I. & Memon,
A. (2014) GUITAR: an innovative tool for automated
testing of GUI-driven software. Automated Software
Engineering. 21, 65-105. doi: 10.1007/s10515-013-
0128-9.

Pan, Z., Chen, J., Yao, L. & Chen, Z. (2020) Research
on functional test of mobile app based on robot. In:
Proceedings of the IEEE 5th International Conference
on Signal and Image Processing, ICSIP 2020, 23-

https://www.sic.ici.ro

90 Feng Xue, Qingying Liu, Tao Zhang, Shaoying Liu, Jing Cheng, Chunyan Ma

25 October 2020, Nanjing, China. Washington, DC,
United States, IEEE Computer Society. pp. 960-964.

Qian, J., Shang, Z., Yan, S., Wang, Y. & Chen, L. (2020)
RoScript: a visual script driven truly non-intrusive
robotic testing system for touch screen applications.
In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE 2020, 05-
11 October 2020, Seoul, South Korea. New York, NY,
United States, Association for Computing Machinery.
pp. 297-308.

Reis, J. & Mota, A. (2018) Aiding exploratory testing
with pruned GUI models. Information Processing
Letters. 133, 49-55. doi: 10.1016/j.ipl.2018.01.008.

Salihu, I. A., Ibrahim, R., Ahmed, B. S., Zamli,
K. Z., & Usman, A. (2019) AMOGA: A static-
dynamic model generation strategy for mobile apps
testing. IEEE Access. 7, 17158-17173. doi: 10.1109/
ACCESS.2019.2895504.

Schulze, C., Lindvall, M., Bjorgvinsson, S. &
Wiegand, R. (2015) Model generation to support
model-based testing applied on the NASA DAT Web-
application - An experience report. In: Proceedings of
the IEEE 26th International Symposium on Software
Reliability Engineering, ISSRE 2015, 2-5 November
2015, Gaithersbury, MD, USA. Washington, DC,
United States, IEEE Computer Society. pp. 77-87.

Shi, H., Li, J., Mao J. & Hwang K. (2023) Lateral
Transfer Learning for Multiagent Reinforcement
Learning. IEEE Transactions on Cybernetics. 53(3),
1699-1711. doi: 10.1109/TCYB.2021.3108237.

Shi, H., Wu, H., Xu, C., Zhu, J., Hwang, M. & Hwang,
K. S. (2020). Adaptive image-based visual servoing
using reinforcement learning with fuzzy state coding.
IEEE Transactions on Fuzzy Systems. 28(12), 3244-
3255. doi: 10.1109/TFUZZ.2020.2991147

Song, Y. (2021) Construction of Event Knowledge
Graph based on Semantic Analysis. Tehnički Vjesnik
[Technical Gazette]. 28(5), 1640-1646. doi: 10.17559/
TV-20210427063132.

Tan, Z. Y. J., Hasa, M. M., Wong, M. Y. &
Ramasamy, R. K. (2022) Implementation approach
of unit and integration testing method based on recent
advancements in functional software testing. Journal
of System and Management Sciences. 12(4), 85-100.
doi: 10.33168/JSMS.2022.0406.

Xu, H., Li, P., Cong, Z., Zhang, F., Pan, Y., Ren,
X., & Xing, Y. (2021) Test case prioritization based
on artificial immune algorithm. Tehnički Vjesnik
[Technical Gazette]. 28(6), 1871-1876. doi: 10.17559/
TV-20210311060442.

Xue, F., Wu, J. & Zhang, T. (2022) Visual Identification
of Mobile App GUI Elements for Automated Robotic
Testing. Computational Intelligence and Neuroscience.
2022, 4471455. doi: 10.1155/2022/4471455.

Zhang, T., Liu, Y., Gao, J., Gao, L. P. & Cheng,
J. (2020) Deep learning-based mobile application
isomorphic GUI identification for automated robotic
testing. IEEE Software. 37(4), 67-74. doi: 10.1109/
MS.2020.2987044.

This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	TEMPGOTO
	_Ref127022615
	ZEqnNum880024
	ZEqnNum856825
	ZEqnNum320982
	ZEqnNum164712
	_Hlk140656681
	_Hlk140656204
	_Hlk156549055
	_Hlk158810424
	_Hlk158893319
	_Hlk93663884
	MTBlankEqn
	_Hlk158906166
	_Hlk158906447
	_Hlk160141029
	_Hlk156917456
	_Hlk156904928
	h1

