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1. Introduction

Methods on model predictive control (MPC) 
(Camacho & Bordons, 2013; Löfberg, 2003) 
have received a lot of interest from the scientific 
community in the last years. The method is used 
both in academia and industry, respectively in 
chemical plants, oil refineries, power electronics, for 
managing energy in buildings etc (Morari & Lee, 
1999; Sousa, Leite & Rubio Scola, 2018). Classical 
MPC does not take into consideration model 
uncertainties and disturbances and therefore robust 
MPC emerged (Kothare, Balakrishnan & Morari, 
1996; Jouirou, Boukadida & Benamor, 2023). 

In (Tahir & Jaimoukha, 2011), the authors present 
two controllers, one that steers the system state 
to a robust positively invariant set and another 
one that maintains the state in this set when 
disturbances appear. 

Smith (2004) proposes a control method with 
feedback and feedforward. The feedback assures 
that the state is in an ellipse when bounded 
disturbances and system perturbations are present 
in the system. The feedforward component makes 
these ellipses to be at a desired reference state. 

In (Ojaghi, Bigdeli & Rahmani, 2016) the nonlinear 
system has a linear and a nonlinear term with a 
bounded additive uncertainty. The nonlinear and 
uncertain terms are bounded by a quadratic function 
from a sum of squares optimization problem. 

Yu et al. (2010) considers the case of unknown 
bounded disturbances. The solution of nominal 
MPC problem is computed and the nominal 
trajectory is defined. The trajectories of the error 
system are kept in a disturbance invariant set. 

In (Yang, Cai & Ding, 2019), the authors present 
a robust MPC method with less computational 
burden. The estimation error set is formulated and 
recursive feasibility is kept. 

The authors Liu, Chen & Knoll (2020) present 
robust MPC for a system with bounded 
uncertainties, norm-bounded external disturbances 
and bounded time-varying delay. The system state 
is in a robust positively invariant set through a 
Lyapunov-Razumikhin function. The robust 
MPC controller in (Tahir & Jaimoukha, 2013) 
minimizes an upper bound on an H2 / H∞ based 
cost function. The robust positively invariant set is 
computed as solution of a linear matrix inequality 
(LMI) optimization problem. 

In (Esfahani & Pieper, 2019) robust MPC is 
presented for switched linear systems when model 
uncertainty and norm bounded disturbances are 
present. The control problem is expressed in 
Riccati-Metzler inequalities. This problem is then 
converted to one with LMIs. 

Model uncertainty and unknown disturbances 
are considered in (González & Odloak, 2010). 
The control problem includes cost contracting 
constraints and the output feedback case is with 
a non-minimal state-space model that takes into 
consideration past output measurements and past 
input increments. 

Yang et al. (2016) present robust MPC for 
parameter varying systems and norm-bounded 
external disturbances. A minimal ellipsoidal 
robust positively invariant set and observer gain 
are determined. A H∞ cost function is used in order 
to optimize performance. 
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Robust MPC for nonlinear systems that have 
bounded disturbances with unknown upper 
bound is studied in (Huofa & Marrani, 2020). The 
worst-case objective function is considered and 
with LMI the calculation time and complexity 
are improved. 

The main contribution of this article is to propose 
robust MPC for systems under two disturbances: 
a constant and a time varying norm 2 bounded 
one. The method is a modified version of the one 
from (Kothare, Balakrishnan & Morari, 1996), 
that takes into consideration these disturbances. 
The steps are to define the robust performance 
objective that needs to be minimized and to 
determine an upper bound for it used for defining 
the control optimization problem. The time 
varying disturbance does not appear anymore 
in the control computations being replaced by 
its norm 2 bound. The proposed approach is 
compared in a MATLAB simulation with the 
robust MPC method in (Kothare, Balakrishnan & 
Morari, 1996). This initial method served as a base 
for many papers in the scientific literature.  Note 
that disturbances are not taken into consideration 
in (Kothare, Balakrishnan & Morari, 1996), 
while the presented method studies the behaviour 
under disturbances. A subject of investigation of 
the present paper is if, in the presence of large 
disturbances, the proposed approach is innovative 
in the sense that it succeeds to have a smaller 
steady state error than the one resulted from the 
method proposed in (Kothare, Balakrishnan & 
Morari, 1996).

This article is organized as follows. Section 2 
contains mathematical preliminaries and the 
proposed robust MPC approach. Section 3 
presents the simulation results and Section 4 is 
devoted to the conclusions. 

2. Robust Model Predictive Control 
for Systems Affected  
by Disturbances

2.1 Mathematical Preliminaries

Lemma 1. Let ϒ1, ϒ2 be real and constant matrices 
and ϒ0 a positive matrix. Then, for any ε ˃ 0 the 
following inequality holds (Poursafar, Taghirad 
& Haeri, 2010):

1
1 0 2 2 0 1 1 0 1 2 0 2
T T T Tε ε −ϒ ϒ ϒ + ϒ ϒ ϒ ≤ ϒ ϒ ϒ + ϒ ϒ ϒ     (1)

2.2 The Proposed Approach

Consider the linear discrete time system affected 
by a constant disturbance ρ and a norm 2 bounded 
disturbance w(k).

[ ]
( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) , 1
d d

d d

x k A k x k B k u k w k
A k B k k

ρ+ = + + +

∈Ω ≥   
(2)

where 1( ) nx k ×∈ , 1( ) mu k ×∈ , 1nρ ×∈ , 
1( ) nw k ×∈ , ( ) n n

dA k ×∈ , ( ) n m
dB k ×∈ . 

The polytope Ω where Co devotes to the convex 
hull is:

[ ] [ ] [ ]{ }1 1 2 2, , ,d d d d d dCo A B A B A Bσ σΩ =    (3)

if [ ]( ) ( )d dA k B k ∈Ω , then [ ]( ) ( )d dA k B k =  
[ ]

1
l dl dl

l
A B

σ

λ
=

=∑  for 
1

1l
l

σ

λ
=

=∑ , 0lλ ≥ , 1,l σ= .

The system is disturbed by constant ρ and 
w(k) which is in the following set w(k) ∈ W, 

{ }2
( ) | ( ) , 1W w k w k kα= ≤ ≥ , *α +∈ .

The objective is to find ( ) ( )ku k L x k= , ( )u k U∈  
{ }2

( ) | ( ) , 1c cU u k u k u k= ≤ ≥ , *u +∈  using 
the proposed robust MPC such that the system 
is stable. A min-max problem, where a robust 
performance objective is minimized is considered 
for all [ ]( ) ( )d dA k B k ∈Ω  and w(k) ∈ W:

[ ]( ) ( )( | ) , 0
( | ) , 0

min max ( )
d dA k i B k iu k i k U i
w k i k W i

J k∞+ + ∈Ω+ ∈ ≥
+ ∈ ≥                     

(4)

where (
0

( ) ( | ) ( | )T

i
J k x k i k Qx k i k

∞

∞
=

= + + +∑
)( | ) ( | )Tu k i k Ru k i k+ + +  with n nQ ×∈ , m mR ×∈ ,  

0Q > , 0R >  positive definite and ( | )x k i k+ ,  
( | )u k i k+  the state and input predicted at k 

+ i from time k. An upper bound is derived 
on the robust performance objective. Let 

( ( | )) ( | ) ( | )T
kV x k i k x k i k P x k i k+ = + + , 0kP >  

and the following inequality to hold:

(
)

( ( 1| )) ( ( | ))

( | ) ( | )

( | ) ( | )

T

T

V x k i k V x k i k

x k i k Qx k i k

u k i k Ru k i k

+ + − + ≤

≤ − + + +

+ + +                

(5)

If (5) is summed from i = 0 to i = ∞, then the 
following is obtained:

[ ]
( )

( ) ( )
( | ) , 0

max ( ) ( | )
d dA k i B k i
w k i k W i

J k V x k k∞+ + ∈Ω
+ ∈ ≥

≤

               
(6)

Thus, the problem is reduced to minimizing a 
variable γk under ( )( | ) kV x k k γ≤  and (5).
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Theorem

Let x(k) = x(k|k) be the state of the uncertain 
system (2) at k and *θ +∈ , *φ +∈ ,  

*ψ +∈ . A robust stabilizing control law 
( | ) ( | )ku k i k L x k i k+ = + , 

2
( | )u k i k u+ ≤ , i ≥ 

0, *u +∈  is given by 1
k k kL Y X −= , where 0kX >  

and kY  are the solutions of optimization problem:

, ,

1 1
2 2

1

1
2

1
2

min

. .

1 ( | ) 0( | )

0

0 0 0 0
1 00 0 0

1

0 0 0

0 0 0

1,

0

k k k
kX Y

T

k

T T

T
k l k k

k

l k

k k n

k k m

k
k n

s t

x k k
x k k X

X Q X R Y

X

Q X I

R Y I

l

X I

γ
γ

γ

ψ

γ

γ

σ
γ
θ

−

  ≥  
    
 Ξ    
    
 − Λ
 

≥Ξ 
+ 

 
 
 
 

=

− ≥

2 0
T

k k

k m

X Y
Y u I
  ≥                                                

(7)

with 

( )( ) ( )( )1 21 1 1 1T

l dl k dl kA X B Y

θ ψ φ ρ ρ θ ψ φ α−Λ = + + + + +

Ξ = +

Proof

If ( ( | )) ( | ) ( | )T
kV x k k x k k P x k k=  with 1

k k kP Xγ −=  
is substituted in ( ( | )) kV x k k γ≤  then:

1

1

( | ) ( | )

1 ( | ) ( | ) 0

T
k k k

T
k

x k k X x k k

x k k X x k k

γ γ−

−

≤

− ≥                            
(8)

Then, using Schur complement, the following 
constraint is obtained:

1 ( | ) 0( | )
T

k

x k k
x k k X
  ≥                                   

(9)

I f  ( 1| )x k i k+ +  u s i n g  ( 2 )  a n d 
( | ) ( | )ku k i k L x k i k+ = +  are substituted in 
( ( 1| ))V x k i k+ + , then, by using Lemma 1 

with ( ) ( )cl d d kA k i B k i LΓ = + + +  and *ψ +∈ , 
it results:

( )
( )

( ) ( )
( )
( ) ( )
( )

( ( 1| )) ( ( | ))

( | ) ( | )

( | ) ( | )

( | ) ( | )

( | ) ( | )

( | ) ( | )

( | ) ( | )

( | ) ( | )

T
cl k

cl

T
k

T
k

T
k cl

T
cl k

T
cl k cl

V x k i k V x k i k

w k i k x k i k P

w k i k x k i k

x k i k P x k i k

w k i k P w k i k

w k i k P x k i k

x k i k P w k i k

x k i k P x k i k

ρ

ρ

ρ ρ

ρ

ρ

+ + − + =

= + + + Γ + ×

+ + + Γ + −

− + + =

= + + + + +

+ + + Γ + +

+ Γ + + + +

+ Γ + Γ +

( ) ( )
( )1

( | ) ( | )

(1 ) ( | ) ( | )

(1 ) ( | ) ( | )

( | ) ( | )

T
k

T
k

T
cl k cl

T
k

x k i k P x k i k

w k i k P w k i k

x k i k P x k i k

x k i k P x k i k

ψ ρ ρ

ψ −

−

− + + ≤

≤ + + + + + +

+ + Γ + Γ + −

− + +   

(10)

Set k nP Iθ≤ , *θ +∈  with 1
k k kP Xγ −=  and add 

1
k n

k
X Iθ

γ
− ≤ , 0k

k nX Iγ
θ

− ≥  as constraint such 

that the following is obtained:

( ) ( )
( ) ( )

( | ) ( | )

( | ) ( | )

T
k

T

w k i k P w k i k

w k i k w k i k

ρ ρ

θ ρ ρ

+ + + + ≤

≤ + + + +        
(11)

Thus, by using Lemma 1 with *φ +∈ , (10) 
becomes the following:

( )( ) ( )
( )( )

( )( ) ( )( )
( )

( )

1

1

1

( ( 1| )) ( ( | ))

1 ( | ) ( | )

1 ( | ) ( | )

( | ) ( | )

1 1 1 1

( | ) ( | ) 1

( | ) ( | )
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T

T
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T
k

T

T

T
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T
k
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x k i k P x k i k

x k i k P x k i k

w k i k w k i k

x k i k P x k i k

x k i k P x k i k

θ ψ ρ ρ

ψ

θ ψ φ ρ ρ θ ψ φ

ψ

−

−

−

+ + − + ≤

≤ + + + + + +

+ + Γ + Γ + −

− + + ≤

≤ + + + + + ×

× + + + + ×

× Γ + Γ + −

− + +

( )( ) ( )( )
( )( )

1 2

1

1 1 1 1

1 ( | ) ( | )

( | ) ( | )

T

T
cl k cl

T
k

x k i k P x k i k

x k i k P x k i k

θ ψ φ ρ ρ θ ψ φ α

ψ

−

−

≤

≤ + + + + + +

+ + Γ + Γ + −

− + +   

(12)

From (12) with ( )( )1 1 Tθ ψ φ ρ ρΛ = + + +  
( )( )1 21 1θ ψ φ α−+ + +  and (5) it results that:

( )

(
)

11 ( | ) ( | )

( | ) ( | )

( | ) ( | )

( | ) ( | )

T T
cl k cl

T
k

T

T T
k k
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x k i k P x k i k

x k i k Qx k i k

x k i k L RL x k i k

ψ −Λ + + + Γ Γ + −

− + + ≤

≤ − + + +

+ + +   

(13)

( )1( | ) 1

( | ) 0

T T
cl k cl k

T
k k

x k i k P P Q

L RL x k i k
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+ + + Λ ≤     
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11

22

0( | ) ( | )
0

01 1

Tx k i k x k i k∆+ +    
≤    ∆        

(15)

With:

( )1
11 1 T T

cl k cl k k kP P Q L RLψ −∆ = + Γ Γ − + +

22∆ = Λ                                                           
(16)

If the diagonal matrix in (15) denoted by 
( 1) ( 1)n n+ × +∆∈ , 11 22( , )diag∆ = ∆ ∆  is multiplied 

on the left with ( ),T
k kdiag X γ , on the right with 

( ),k kdiag X γ  and then k k kY L X= , 1
k k kP Xγ −= :

( )1 1
11

1 1 1 1
2 2 2 2

2 2
22

1 ( ) ( )

( ) ( ) ( )

T T
k k k k

T T

k k k k k k

k k

d k d k

X X k i X k i

X Q X Q X R Y R Y

k i A k i X B k i Y

ψ γ

γ

γ γ

− −∆ = + Ξ + Ξ + −

   
− + +      

   

∆ = Λ

Ξ + = + + +   

(17)

( )
11

1 1

1 1 1 1
2 2 2 2

2
22

1

1 ( ) ( )

1 1

1

T
k k

k

T
k k

T T

k k k k
k k

k k
k

X X

k i X k i X

Q X Q X R Y R Y

γ

ψ

γ γ

γ γ
γ

− −

− ∆ =

= − + Ξ + Ξ + + −

   
− −      

   

− ∆ = − Λ
  

(18)

Thus:
1

1
1
2

1
2

1
2

1
2

1( )0 0 0
1

0 0 0 0
0 0 0

0

( )0

0 0

0

T
k

k
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X Q X I
I
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R Y

ψ
γ

γ γ

−
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 Ξ +     +      −   − Λ              

Ξ + 
 
 × ≥ 
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1
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1
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T
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k
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−

        Ξ +    
    

 − Λ
 
  ≥Ξ + + 
 
 
 
 
    

(20)

Next, (20) holds if the following hold:

1 1
2 2

1

1
2

1
2

0

0 0 0 0
1 00 0 0

1

0 0 0

0 0 0

, 1,

T T
T

k l k k

k

l k

k k n

k k m

l dl k dl k

X Q X R Y

X

Q X I

R Y I

A X B Y l

γ

ψ

γ

γ

σ

−

    
 Ξ            

− Λ 
 

≥ Ξ
+ 

 
 
 
 
  

Ξ = + =   

(21)

Next, the input constraint is considered after 
defining the invariant ellipsoid for the predicted

states of the system. Knowing Q > 0 and R > 0 , 
from (5) it results that:

( ( 1| )) ( ( | )) 0V x k i k V x k i k+ + − + <            (22)

Thus ( 1| ) ( 1| )T
kx k i k P x k i k+ + + + <

( | ) ( | )T
kx k i k P x k i k< + +  

and because ( | ) ( | )T
k kx k k P x k k γ≤ , then it 

follows that 1( 1| ) ( 1| ) 1T
kx k k X x k k−+ + < .  

Similar, using (22) it is obtained that 
1( | ) ( | ) 1T

kx k i k X x k i k−+ + < , i > 0. The invariant 
ellipsoid for the predicted states of the system 
is defined:

{ }1| 1T
kIE e e X e−= ≤

                                   
(23)

The input constraint is considered next.
22 1

2 20 0
21 1 1

12 2 2
max

2

max ( | ) max ( | )

max

k ki i

T T
k k k k k k ke IE

u k i k Y X x k i k

Y X e X e X Y Y Xλ

−

≥ ≥

− − −−

∈

+ = + ≤

 
≤ ==  

    

(24)

Imposing 
2 2
2

( | )u k i k u+ ≤  leads to the following 
constraint.

2 0
T

k k

k m

X Y
Y u I
  ≥                                            

(25)

3. Simulation Results

The proposed robust min-max MPC approach 
is implemented using MATLAB with YALMIP 
toolbox (Löfberg, 2004). 
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Example 1:

The system model is represented by:

1

2

1 2 1

1

-0.6890 -0.0993 0.1767
-0.0993 -1.1274 -0.1724 ,  
0.1767 -0.1724 -0.8237

-0.6890 -0.0993 0.2
-0.0993 -1.1274 -0.1724 ,

0.2 -0.1724 -0.8237

0.4900 0
0.7394 -2.1384 , ,
1.7119 0

( ) (

d

d

d d d

A

A

B B B

x k x

 
=  
  
 

=  
  
 

= = 
  

= [ ]2 3) ( ) ( ) Tk x k x k

The disturbance ρ that affects the system:

[ ]310 * 11 12 15 Tρ −=

The other simulation parameters:

[ ](1) 0.5 0.75 5 Tx π π= − , 10u = , 310*Q I= , 
210*R I= , 

210θ = , 
210ψ = , 

210φ = , 5α =

Case 1: Small disturbances: 

[ ]1
2( ) 10 * 0 0 sin( ( )) Tw k x k−=  for every 1k ≥

Figures (1)-(3) indicate the simulation results 
for the proposed approach and for the robust 
predictive control method in (Kothare, 
Balakrishnan & Morari, 1996) when small 
disturbances are present. For both methods, all the 
states of the system are stabilized and they reach 
0 in steady state. The oscillations are damped in 
a longer period of time for the proposed method, 
but the advantage comes when large disturbances 
are present.

Case 2: Large disturbances: 

[ ]2( ) 5* 0 0 sin( ( )) Tw k x k=  for every 1k ≥

Figures (4)-(6) indicate the simulation results 
for the proposed approach and for the robust 
predictive control method in (Kothare, 
Balakrishnan & Morari, 1996) when large 
disturbances are present. For both methods, the 
states of the system are stabilized, but not all of 

Figure 1. Stabilized x1- small disturbance

Figure 2. Stabilized x2- small disturbance Figure 3. Stabilized x3- small disturbance



https://www.sic.ici.ro

104 Iulia-Cristina Rădulescu

them reach 0 in steady state. Due to the presence 
of large disturbances, an error appears. Compared 
to (Kothare, Balakrishnan & Morari, 1996), the 
proposed approach has a smaller steady state error. 
This can be observed by zooming in at the steady 
state area. 

Example 2:

The system model is represented by:

1

2

1 2 1

-0.3427 0.0368 0.2842
0.0368 -0.2833 -0.1226 ,  
0.2842 -0.1226 -1.0136

-0.3427 0.0368 0.3
0.0368 -0.2833 -0.1226 ,

0.3 -0.1226 -1.0136

0 0
0 0 , ,

-1.9071 0.7648

d

d

d d d

A

A

B B B

 
=  
  
 

=  
  
 

= = 
 − 

The disturbance ρ that affects the system and the 
other simulation parameters are kept the same as 
in Example 1.

Case 1: Small disturbances: 

[ ]1
2( ) 10 * 0 0 sin( ( )) Tw k x k−=  for every 1k ≥

Figures (7)-(9) indicate the simulation results for 
the proposed approach and for the robust predictive 
control method in (Kothare, Balakrishnan & 
Morari, 1996) when small disturbances are present. 
For both methods, all the states of the system are 
stabilized and they reach 0 in steady state. The 
oscillations are damped in a longer period of time 
for the proposed method, but the advantage comes 
when large disturbances are present.

Case 2: Large disturbances: 

[ ]2( ) 4* 0 0 sin( ( )) Tw k x k=  for every 1k ≥

Figures (10)-(12) indicate the simulation results for 
the proposed approach and for the robust predictive 
control method in (Kothare, Balakrishnan & Morari, 
1996) when large disturbances are present. For both 
methods, the states of the system are stabilized, but 
not all of them reach 0 in steady state. Due to the 
presence of large disturbances an error appears. 
Compared to (Kothare, Balakrishnan & Morari, 

Figure 4. Stabilized x1- large disturbance

Figure 5. Stabilized x2- large disturbance Figure 6. Stabilized x3- large disturbance
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Figure 7. Stabilized x1- small disturbance

Figure 8. Stabilized x2- small disturbance

Figure 9. Stabilized x3- small disturbance

Figure 10. Stabilized x1- large disturbance

Figure 11. Stabilized x2- large disturbance

Figure 12. Stabilized x3- large disturbance

1996), the proposed approach has a smaller steady 
state error. This can be observed by zooming in at 
the steady state area.

4. Conclusion

This article proposes a robust MPC approach for 
systems affected by two disturbances, a constant 
one and a norm 2 bounded one. Through several 
mathematical manipulations the norm 2 disturbance 
is replaced in the computations by its upper 

bound. The constant disturbance does not create 
problems in the computations and it appears in the 
optimization problem constraints. The simulation 
results using MATLAB indicate a stabilized system 
using the proposed algorithm. The advantages of the 
proposed method compared with the method from 
(Kothare, Balakrishnan & Morari, 1996), are that it 
applies to a larger class of systems, i.e. systems with 
disturbances, and it achieves a smaller steady state 
error in the case of large disturbances. As it can be 
seen in simulation, a disadvantage of the proposed 
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approach would be the presence of oscillations and 
a steady state error when large disturbances are 
present. To overcome these problems, a feedforward 
component for the control law, which depends on 

the disturbances, can be introduced. Future work can 
consider the same scenario, but with the feedforward 
control law component. This component can better 
counteract the effect of the disturbance.
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