Thursday , June 21 2018

 Comparison of SPEA2 and NSGA-II Applied to Automatic Inventory
Control System Using Hypervolume Indicator

Ewelina CHOŁODOWICZ, Przemysław ORŁOWSKI
West Pomeranian University of Technology Szczecin,
Sikorskiego 37, Szczecin, 70-313, Poland.
cholodowicz.ewelina@gmail.com; przemyslaw.orlowski@zut.edu.pl

ABSTRACT: The optimization of multi-objective problems is an area of important research. The importance attained by this type of problems has allowed the development of multiple algorithms. To determine which multi-objective algorithm has the best performance with respect to the problem of goods flow in the inventory, in this article an experimental comparison between two of the main multi-objective evolutionary algorithms is conducted: Nondominated Sorting Genetic Algorithm II (NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2). The inventory model is optimized by taking into account two objectives: minimal cost of lost opportunities to make sales and minimal cost of used space in the inventory. The results obtained by both algorithms are compared and analysed based on hypervolume indicator that measures the volume of the dominated space.

KEYWORDS: Inventory control system; SPEA2; NSGA-II; multi-objective optimization; hypervolume.

>>FULL TEXT: PDF

CITE THIS PAPER AS:
Ewelina CHOŁODOWICZ, Przemysław ORŁOWSKI,
Comparison of SPEA2 and NSGA-II Applied to Automatic Inventory Control System Using Hypervolume Indicator, Studies in Informatics and Control, ISSN 1220-1766, vol. 26(1), pp. 67-74, 2017.

REFERENCES

  1. Bringmann, K., & Friedrich, T. (2013). Approximation quality of the hypervolume indicator. Artificial Intelligence, 195,  265-290.
  2. Chołodowicz, E., & Orłowski, P. (2015). Dynamiczny dyskretny model systemu magazynowego ze zmiennym w czasie opóźnieniem. Logistyka, 4, 28-32.
  3. Chołodowicz, E., & Orłowski, P. (2015). A periodic inventory control system with adaptive reference stock level for long supply delay. Measurement Automation Monitoring, 61, 568-572.
  4. Chołodowicz, E., & Orłowski, P. (2015). Sterowanie przepływem towarów w magazynie z wykorzystaniem predyktora Smitha. Pomiary Automatyka Robotyka, 19 (3), 55-60.
  5. Chołodowicz, E. & Orłowski, P. (2016). Comparison of a Perpetual and PD Inventory Control System with Smith Predictor and Different Shipping Delays Using Bicriterial Optimization and SPEA2. Pomiary Automatyka Robotyka, 20(3), pp. 5-12.
  6. Deb, K. (2014). Multi-objective optimization. In Search methodologies Search methodologies. Introductory tutorials in optimization and decision support techniques Springer, 403-449.
  7. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving From Nature (pp. 849-858).
  8. Dolgui, A., Ammar, O. B., Hnaien, F., & Louly, M. A. (2013). A state of the art on supply planning and inventory control under lead time uncertainty. Studies in Informatics and Control, 22 (3), 255-268.
  9. Donoso, Y., & Fabregat, R. (2007). Multi-objective optimization in computer networks using metaheuristics. Auerbach Publications, Taylor & Francis Group.
  10. Emmerich, M., Beume, N., & Naujoks, B. (2005). An EMO algorithm using the hypervolume measure as selection criterion. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 62-76).
  11. Fleischer, M. (2003). The measure of Pareto optima applications to multi-objective metaheuristics. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 519-533).
  12. Ghiasi, M. S., Arjmand, N., Boroushaki, M., & Farahmand, F. (2016). Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms. Medical & biological engineering & computing, 54 (2-3), 431-440.
  13. Hiroyasu, T., Nakayama, S., & Miki, M. (2005). Comparison study of SPEA2+, SPEA2, and NSGA-II in diesel engine emissions and fuel economy problem. In The 2005 IEEE Congress on Evolutionary Computation (pp. 236-242).
  1. Hnaien, F., Delorme, X., & Dolgui, A. (2010). Multi-objective optimization for inventory control in two-level assembly systems under uncertainty of lead times. Computers & operations research, 37 (11), 1835-1843.
  2. Knowles, J. D., Corne, D. W., & Fleischer, M. (2003). Bounded archiving using  the Lebesgue measure. In The 2003 Congress on Evolutionary Computation (pp. 2490-2497).
  3. Lagos, C., Vega, J., Guerrero, G., & Rubio, J. M. (2016). Solving a Novel Multi-Objective Inventory Location Problem by means of a Local Search Algorithm. Studies in Informatics and Control, 25 (2), 189-194.
  4. Laumanns, M., Rudolph, G., & Schwefel, H. P. (1999). Approximating the pareto set: Concepts, diversity issues, and performance assessment. Technical Report, CI, pp. 72/99.
  5. Le, K. N., & Landa-Silva, D. (2016). Hyper-volume evolutionary algorithm. VNU journal of science: computer science and communication engineering, 32 (1), 10-32.
  6. Liao, S. H., Hsieh, C. L., & Lai, P. J. (2011). An evolutionary approach for multi-objective optimization of the integrated location–inventory distribution network problem in vendor-managed inventory. Expert Systems with Applications, 38 (6), 6768-6776.
  7. Luo, Z., Sultan, U., Ni, M., Peng, H., Shi, B., & Xiao, G. (2016). Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms. Renewable Energy, 94, 114-125.
  8. Maihami, R., & Kamalabadi, I. N. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136 (1), 116-122.
  9. Mohammaditabar, D., Ghodsypour, S. H., & O’Brien, C. (2012). Inventory control system design by integrating inventory classification and policy selection. International Journal of Production Economics, 140 (2), 655-659.
  10. Mousavi, S. M., Hajipour, V., Niaki, S. T. A., & Alikar, N. (2013). Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: two calibrated meta-heuristic algorithms. Applied Mathematical Modelling, 37 (4), 2241-2256.
  11. Schmitt, A. J., & Snyder, L. V. (2012). Infinite-horizon models for inventory control under yield uncertainty and disruptions. Computers & Operations Research, 39 (4), 850-862.
  12. Srivastav, A., & Agrawal, S. (2016). Multi-objective optimization of hybrid backorder inventory model. Expert Systems with Applications, 51, 76-84.
  13. Van Veldhuizen, D. A. (1999). Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. D. thesis, Graduate School of Engineering of the Air Force Institute of Technology.
  14. Yao, X., Burke, E., Lozano, J. A., Smith, J., Merelo-Guervós, J. J., Bullinaria, J. A., & Schwefel, H. P. (Eds.). (2004). In Parallel Problem Solving from Nature-PPSN VIII. In 8th International Conference (pp. 18-22).
  15. Yang, K., Deutz, A., Yang, Z., Back, T., & Emmerich, M. (2016). Truncated expected hypervolume improvement: Exact computation and application. In IEEE Congress on Evolutionary Computation (CEC) (pp. 4350-4357).
  16. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control With Applications to Industrial Problems (95-100).
  17. Zitzler, E., Brockhoff, D., & Thiele, L. (2007). The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 862-876).
  18. Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms — a comparative case study. In International Conference on Parallel Problem Solving from Nature (pp. 292-301).
  19. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3 (4), 257-271.
  20. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich.
  21. Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In International Conference on Parallel Problem Solving from Nature (pp. 832-842).

https://doi.org/10.24846/v26i1y201708