A reactive control strategy integrating time transfer delays is proposed to improve the water-asset management of networked hydrographical systems. The considered systems are characterized by large scale networks where each diffluence is equipped with a control gate and a measurement point. Modelling methods of the networked hydrographical systems with equipped diffluences are presented. The proposed strategy, based on a supervision and hybrid control accommodation approach, requires generic resource allocation and setpoint assignment rules. The simulation results show the effectiveness of the reactive control strategy.
supervision, hybrid control accommodation, resource allocation, setpoint assignment, gridded systems, water management